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Vortex generation in a superfluid gas of dipolar chains
in crossed electric and magnetic fields

D.V. Fil*? and S.1. Shevchenko3

lInstitute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61072, Ukraine

2V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine

®B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
47 Nauky Ave., Kharkiv 61103, Ukraine
E-mail: shevchenko@ilt.kharkov.ua

Received November 25, 2019, published online February 28, 2020

Crossed electric and magnetic fields influence dipolar neutral particles in the same way as the magnetic field
influences charged particles. The effect of crossed fields is proportional to the dipole moment of the particle (in-
herent or induced). We show that this effect is quite spectacular in a multilayer system of polar molecules. In this
system molecules may bind in chains. At low temperature the gas of chains becomes the superfluid one.
The crossed fields then induce vortices in the superfluid gas of chains. The density of vortices is proportional
to the number of particles in the chain. The effect can be used for monitoring the formation and destruction

of chains in multilayer dipolar gases.
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Neutral particles in crossed electric and magnetic fields
behave as if they are charged and subjected to an effective
magnetic field. The effective magnetic field can be ex-
pressed through an effective vector potential which is pro-
portional to the vector product of the magnetic field B and
the dipole moment d of the particle. The direction of the
dipole moment can be fixed by the external electric field.
To produce nonzero effective vector potential the electric
and magnetic fields should be noncollinear.

The effective vector potential applied to a neutral super-
fluid can induce a superfluid current [1,2]. At least one the
fields (the electric or magnetic one) should be nonuniform.
Otherwise, the effective vector potential can be eliminated
by the gauge transformation. The effective vector potential
and the effective magnetic field applied to a dipole particle
can be described in terms of the Aharonov—Bohm phase [3,4].
Two spatially separated positive and negative charges of
a dipole particle feel slightly different vector potentials and
acquire slightly different in module and opposite in sign
phases under the motion of the dipole particle. The overall
phase is equal to the flux of the magnetic field through the
area covered by the vector ry =d/e during its motion.
One can introduce an effective vector potential and express
the Aharonov-Bohm phase through the integral of this
potential. The effective magnetic field is defined as the curl
of the effective vector potential.
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Generation of vortices in electrically neutral superfluids
by a nonuniform magnetic field was considered in [5,6]
(see also [7] for a review) with reference to a superfluid
gas of electron—hole pairs in a bilayer system. The bilayer
system consists of two conducting layers with carriers of
opposite signs separated by a dielectric layer. The dipole
moment of an electron-hole pair in a bilayer is proportion-
al to the distance between the layers and it can reach the
value up to 108 Debyes. Therefore moderate magnetic fields
are required to generate quantum vortices. Generation of
vortices in bilayers in a nonuniform electric field and uni-
form magnetic field was considered in [8]. Due to large po-
larizability of electron-hole pairs vortices are generated
already in moderate electric fields.

The typical value of the dipole moment of a polar mole-
cule does not exceed 5 Debyes [9-11] and much larger
magnetic fields are required to generate vortices. Dipolar
gases placed into a multilayer trap demonstrate a tendency
to form chains [12-14]. The phenomenon is connected
with that the dipole-dipole interaction between molecules
located at different layers is attractive at small distances.
The dipole moment of a chain is proportional to the num-
ber of molecules in a chain and it is comparable in value to
the dipole moment of the electron—hole pair in the bilayer.

It is expected that increasing of the dipole strength re-
sults in a phase transition from a molecular superfluid to
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a dipole chain superfluid [12], and then in a transition from
the chain superfluid to a dipole Wigner crystal [15]. In a sys-
tem of Fermi polar molecules in a multilayer trap a transi-
tion from the dipole chain superfluid to a dimerized super-
fluid may take place [16]. The vortices generated by the
crossed fields should disappear or their density should re-
duce considerably under the transitions from a chain super-
fluid to a molecular or dimerized superfluid. Vortices also
disappear in the Wigner crystal state.

Let us derive the effective vector potential and the ef-
fective magnetic field using the conception of the Aharo-
nov-Bohm phase. The motion of a dipole particle along
a closed loop results in generation of two Aharonov—Bohm
phases, one is for the positive charge and the other, for
the negative one. The sum of two phases is

e e
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where C, and C_ are the paths of the positive and negative
charges, correspondingly, and AS is the area covered by
the vector ry under such a motion. In a typical situation
a variation of the magnetic field and the dipole moment is
small at the scale of ry. Then the phase (1) can be ex-
pressed through the integral of the effective vector poten-
tial A along the center of mass path C:
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where
Bxd
Aeff = e (3)

Introducing the effective magnetic field
Berp = VX Aggt (4)

one can rewrite the phase (2) through the integral over
the area surrounded by the contour C:
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Taking into account that the dipole moment of the particle
or its direction may depend on the coordinate we obtain
the following expression for the effective magnetic field:

Ber :%[B(V-d)+(d-V)B—(B~V)d]. (6)

The effective field (6) influences neutral dipolar particles
in the same way as the real magnetic field influences
charged particles with the charge +e.

There is an essential difference between the Aharonov-
Bohm effect for a charged particle and for a dipole particle.
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For a charged particle the Aharonov—Bohm phase can be
nonzero even if the particle moves in the space where
the magnetic field is zero. In contrast the real magnetic
field should be nonzero along the path C to produce
the Aharonov—-Bohm phase (5).

If the dipole moment does not depend on R the compo-
nent of the effective field parallel to d can be expressed
though the two-dimensional divergence of the magnetic
field:

d d
By eff = EaZBZ = —E(aXBX +ayBy). 7)

Here the z axis is directed along d.

The superfluid chain phase emerges in a strong electric
field directed perpendicular to a stack of two-dimensional
(2D) traps. The dipole moment of a chain is directed along
the electric field and does not depend on the coordinate. To
produce the effective magnetic field the real magnetic field
should have nonzero component in the plane parallel to 2D
traps and be nonuniform.

Here we consider two configurations of the magnetic
field. The first one emerges at the face end of a solenoid.
The second is generated by a flat coil. The magnetic field
of a solenoid is circularly symmetric. Near the face end it
has nonzero radial component. The projection of the mag-
netic field to the plane of the face end of a long solenoid is
equal to By ~ Bsr/4Rg, where By is the magnetic field
deep inside the solenoid, Ry is the solenoid radius, and r is
counted from the solenoid axis (the inequality r <Ry is
implied). The normal to the face end plane component of
the effective magnetic field is uniform:

d B
B, ot = ———>. 8
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A flat coil induces the radial magnetic field in the coil
plane. For the distance a from the coil much smaller than
the coil radius R, and for a<r <Ry, (r is counted
from the coil axis) the magnetic field can be approximated
as By ~ Hegiir /1, where H oy = 2mingg), | is the electri-
cal current in the coil and n.; is the density of turns of the
coil. The effective magnetic field normal to the coil plane
is nonuniform:
By efr (1) = _9@- 9)
The crossed fields generate vortices if the effective flux
D¢ (the flux of the effective magnetic field) through the
Bose cloud exceeds the critical value @ . This critical value
depends on the particle density profile in the trap and the
dependence of B, . on coordinate. We specify the case
of an axially symmetric multilayer harmonic trap centered
at r=0 with layers parallel to the face end plane or
the coil plane. Then
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where ®g = 2niic/e is the flux quantum, Ryg is the To-
mas—Fermi radius of a Bose cloud, & is the vortex core
radius (§g < Ryg), and f is the numerical factor equal to
f = 2 for the case of the uniform effective field (8), and to
f =3/4 for the field (9). The effective flux ®.¢ can be
expressed through the real magnetic field B at r = Ryg:

2nRred dR
= —TF—B(Rrg) = egTzF Do, (11)
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where ¢ = /hc/eBp|(RTF) is the magnetic length. Taking
Boi(Rrg) =0.1T, Ryp =500 um and d = 3.5 Debye we ob-
tain @y ~ 6d. It corresponds to a state with one or few
vortices.

Let us now consider the conditions of emergence of
a superfluid chain phase in a stack of 2D traps. We imply
the same density of particles in each trap and equal dis-
tances b between next neighbour 2D traps. The electric
field aligns the dipole moments normally to the 2D traps.
The interaction between dipoles located in the same (n = 0)
or different (n = 0) traps is given by equation

_ d?[r® —2(nb)’]
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where r is the 2D radius vector, and n is the distance be-
tween the traps in units of b. Since the dipole-dipole inter-
action is attractive for the molecules located in different
layers not far from each other it may cause binding of mol-
ecules from different layers.

The interaction strength is characterized by the dimen-
sionless parameter:

==, (13)

where m is the mass of the molecule. In two dimensions
a particle in the potential AV (x) that satisfies the conditions

szxv (x) =0 and V («) = 0 has a bound state at any A [17]

(see, also [18]). The potential (12) is of that form. Two
polar molecules from the adjacent layers bind in a pair at
any Ug, but at small Uy the binding energy is exponenti-

ally small: E, ~ (h2 / mbz)exp (—8/U§) [19]. At large U
the formation of chains can be described analytically.

At large Uy one can use the harmonic approximation
for the potential (12):

242 +6d2r2
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(14)

The energy of the bound state of two particles in the po-
tential (14) with n =1 is equal to
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The energy (15) is the sum of the classical binding en-
ergy and the zero-point energy of quantum fluctuations.
The binding energy per molecule is Ep, , /2.

Considering a long chain N >1 and neglecting the
edge effects we obtain the following classical binding en-
ergy for the dipole chain:

(3, (16)
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where {(s) is the zeta-function (£(3) ~1.2), and N is the
number of molecules in the chain. The spectrum of low
energy excitations of the chain contains two degenerate
transverse modes with the energies

The zero-point energy is E,, :ZéngQ(q). The sum
Ecin + E;p Yields the binding energy

2Nd? 6
Epn ~— 1.2-0.92 /— . (18)
N b3 ( UOJ

The binding energy should be negative. Therefore the har-
monic approximation (14) is justified only at large Uy
(Ug >6). For LiK molecules with d =35 Debye and
m=7.6-10"2 g for the stack with b = 250 nm the interac-
tion strength parameter is equal to Uy ~ 30.

One can see from (15) and (18) that for a long chain the
binding energy per molecule E, \ /N is more than in two
times larger than of the same energy for a dimer (E, , / 2).
The edge effect reduces the binding energy, and the bind-
ing energy per molecule decreases under decrease of N.
Therefore it is energetically preferable for the molecules to
bind in the longest chains (N-segment chains for the N-layer
system).

At large density the chains overlap due to transverse vi-
brations. Overlapping may cause destruction of the chains.
To evaluate the effect of vibration we calculate the average
square transverse displacement of molecules in the chain:

2\ _ n?
(% = Z%M(H 2Ng[Q(@)]),  (19)

where Ng(Q) = (eQ/T —1)’1 is the Bose distribution func-
tion. Calculation of the integral over q in (19) yields

nchsz,

(20)
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where ng, is the density of the chains, Ty = hznch IM is
the temperature of degeneracy, and M = Nm is the mass of
the chain. One can see that for reasonable N (N <100),
Up>1 T<Ty and nenb? <1 the average displacement
satisfies inequality (¢2) < b2. Thus for the densities of
chains of order of b=2 or smaller the condition nChQ2 <1
is fulfilled and overlapping of the chains is small.

If polar molecules are bosons, the chains also satisfy
the Bose statistics. The 2D gas of such chains goes into
the superfluid state. The transition into the superfluid state
is of the Berezinskii—Kosterlitz—Thouless type. The transi-
tion temperature T, is given by equation

2

T h
T = Eﬁns (Te), (21)
where ng (T) is the superfluid density at finite temperature.
For the contact interaction between particles the super-

fluid density is obtained from the equation

fen =0 &(g’)[i} [h—J 22)
nch 2n Td M’Y '

where y is the constant of the contact interaction. For
the chains the constant y is evaluated as y ~ Nd? /W [20],
where W is the width of the individual trap. Since
Y>> 72 I M, the difference between the superfluid density
ns and the total density ng, is small at T <Tg4. Thus, with
agood accuracy the critical temperature is given by
the expression T, = nhznch /12M .

Taking ny, = b2, b =250 nm and N =100, we obtain
the critical temperature T, ~ 3 nK for LiK molecules. For
Boi(Rre) =0.1 T and Ryp =500 pm the effective flux
reaches the value of @y z6~102®0. It corresponds to
a multivortex state with the average density of vortices
n, ~8-10* cm~2. For smaller N the critical temperature is
larger, but the vortex density is smaller. For instance, for
N =10 we obtain T, =30 nK and n, ~8-10° cm2.

The vortex density is proportional to the dipole moment
of the compound particle and independent of its mass.
Therefore the transition from the superfluid gas of chains
to N uncoupled superfluid 2D gases should be accom-
panied with a strong decrease in the vortex density. Such
a transition can take place if one increases the distance
between the traps in the stack or decreases the electric field
that aligns dipoles along the z axis.

At low density the statistics of individual molecules is
not important and Fermi molecules at even N binds into
Bose chains as well. At larger densities Fermi systems may
demonstrate some specific features. It was shown in [16]
that the ground state of a Fermi gas of dipolar particles
in the multilayer system is a dimerized superfluid, with
the Cooper pairing only between every other layer. The di-
merized superfluid [16] is a variant of the Bardin—Cooper—
Schrieffer (BCS) state [21]. BCS state corresponds to the
weak coupling limit. The weak coupling limit can be also
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understood as the high density limit in a sence that the size
of the Cooper pair is much larger than the average distance
between the pairs. In the strong coupling limit the self-con-
sistence equation for the BCS order parameter is reduced
to the Schroedinger equation for the pair of particles [22].

The situation in multilayers is more complicate. The
BCS state is the state with only the two-body coupling.
The 4-body, 6-body etc. coupling is out of the BCS ap-
proximation and superfluid state of chains cannot be de-
scribed within the BCS approach. The pairing in multi-
layers is similar to one in many-particle barionic systems,
where the transition from the BCS paired superfluid to
a quartet Bose—Einstein condensation (BEC) occurs under
decrease in density [23]. By analogy with [23] in multi-
layer dipolar Fermi gases a transition from the dimerized
superfluid to the chain superfluid is expected. In nonuni-
form magnetic field that induces vortices such a transition
should be accompanied with a strong increase of the vortex
density.

We would mention that multilayer ultracold polar gases
are accessible now experimentally. In particular, in [24]
a multilayer (N > 20) stack with polar 408 Rb molecules
with the centre layer having more than 2000 molecules and
a peak density of 3.4-10" cm™ at T =500 nK was realiz-
ed. A few-layer stack with polar 23Na*®K molecules at
T =300 nK was realized in [25]. Also it was reported re-
cently [26] on a realization of a degenerate three-dimen-
sional Fermi gas of 4087 Rb molecules at T =50 nK with
density n~2-10" cm™ and total number of molecules
3-10*. Therefore one can hope that degenerate multilayer
dipole gases will be obtained soon. Thus, current state of
art in creating, cooling and trapping of dipole gases give
expectations that systems with required parameters will be
realized in the nearest future.

In conclusion, we have shown that crossed electric and
magnetic fields can be considered as a tool for the study of
the phase transitions in multilayer dipolar gases. In such
systems subjected to the electric field that aligns the dipole
moments perpendicular to the layers polar molecules bind
in long chains. At low temperature at which the gas of
chains becomes the superfluid one nonuniform magnetic
field with nonzero two-dimensional divergence may gen-
erate quantum vortices in a gas of chains. The disappear-
ance of the vortex pattern under variation of the parameters
of the system can be a signature of the initial presence of
chains which then undergo dissociation.
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"eHepyBaHHS BUXOPIB Y HAAMANHHOMY rasi
ONNOMNBHUX NaHLKOXKKIB Y CXPeLLEHUX eNneKkTPU4YHOMY
Ta MarHiTHOMy nonsx

[.B. ®inb, C.I. LLeB4yeHko

CxpelleHi eneKTpUYHe Ta MarHiTHE MoJIs BIUIMBAIOTh HA JU-
NOJIBHI HEHTpaibHI YaCTUHKM TAKMM CaMHUM YHHOM, SIK MartiTHe
[oJie BIUIMBA€E Ha 3apspKeHi 4acTHHKH. Jlis CXpEILICHMX IOJiB
HponopuiiiHa JUIOIBHOMY MOMEHTY YacTHHKH (BJIacHOMY abo
iHayKoBaHOMY). TIoKa3aHo, 110 TaKWil BIUIMB JOCTATHBO e(EeKTH-
BHO INIPOSIBUTBCS Y GaraTolapoBiii cHCTeMi MOJIIPHUX MOJIEKYII.
VY Ttakiif cucreMmi NOJSIPHI MOJEKYIH MOXYTh 3B’SI3yBaTHUCS Yy
naHIoKky. [Ipu HU3BKIN TeMmepaTrypi ra3 JaHII0KKIB CTae Hal-
[UIMHHUM, TOJi CXpEIIeHI MOJsS IHAYKYITb Y HbOMY BHXOPH.
HIinpHICTh BUXOPIB MPOMOPL{iHA YUCIY MOJIEKYN Y JIAHIIIOKKY.
Edekt Moxxe GyTH 3aCTOCOBAHHM JUIsl CIIOCTEPEKEHHS 32 (HOpMy-
BaHHAM Ta PO3MAJOM JIAHIIOXKKIB y 0araTolapoBuX JHUIIOIBHUX
razax.

Kuro4oBi ciioBa: IMMONBHI ra3u, 0araTolapoBi CHCTEMH, CXpe-
IICHI TIOJIs, KBAHTOBI BUXOPH.

FeHepMpOBaHme BI/IXpel71 B CBEPXTeKy4eM rase
ANNOJIbHbIX Leno4veKk B CKpeLleHHbIX 3J1eKTPU4ECKOM
N MarHMTHOM nonaAx

[.B. dunb, C.. LLleB4eHKO

CKpeIIeHHBIE JJICKTPUIECKOe W MAarHUTHOE MO BO3Zeii-
CTBYIOT Ha HEHTpaJIbHbIC JUIIOJIBHBIC YaCTUIIBI TAKUM Xe o0pa-
30M, KaK MAarHUTHOE M0JIe BO3ACIHCTBYET Ha 3apsKCHHBIC YaCTHULIBL.
Bo3zneiicTBue CKpEIIeHHBIX M0JIEH MTPONOPLUHUOHAIBHO JUIOJIBHO-
My MOMEHTY YacTHI[BI (COOCTBEHHOMY MO0 MHAYIHUPOBAHHOMY).
ITokazaHo, YTO Takoe BO3ACHCTBHE JI0CTATOYHO 3(PPEKTHBHO MPO-
SIBUTCSI B MHOTOCJIOMHBIX CHCTEMaX MOJISPHBIX MOJIEKYI. B aTux
CHCTEMax MOJIEKYJIbl MOTYT CBS3BIBAThCS B LENOUYKH. [Ipu HU3-
KOH TeMmeparype ra3 [erno4ek CTAHOBUTCSI CBEPXTEKYIUM, TOTIa
CKPEIICHHbIE T10JI1 UHAYLUHMPYIOT B HEM BUXpH. [IIOTHOCTH BHX-
peil IponopHHOHalIbHA YUCITY YACTHIL B Ierouke. DPheKT Moxer
OBITh MCIIOJIB30BaH Ul HaOMOAEHUS 32 GOPMHUPOBAHUEM U pac-
aJI0M LICIOYEK B MHOTOCIIOIHBIX JTUIOJIbHBIX ra3ax.

KiroueBrbie ciioBa: JIUIIOJIBHBIC Ta3bl, MHOTOCJIONHBIE CUCTEMBI,
CKPCHICHHBIC I10JI51, KBAHTOBBIC BUXPU.
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