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Here we describe the development of a computer algorithm to simulate the Time-Dependent Ginzburg–
Landau equation (TDGL) and its application to understand superconducting vortex dynamics in confined geome-
tries. Our initial motivation to get involved in this task was trying to understand better our experimental meas-
urements on the dynamics of superconductors with vortices at high frequencies leading to microwave stimulated 
superconductivity due to the presence of vortex (A. Lara, et al., Sci. Rep. 5, 9187 (2015)). 
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1. Time-dependent Ginzburg–Landau simulations 

High frequency dynamics in superconducting and mag-
netic vortex states has been subject of recent activities both 
from experimental and numerical points of view. While 
Landau–Lifshitz–Gilbert equation is simulated numerically 
to obtain static magnetization and spin wave modes [1], the 
Time-Dependent Ginzburg–Landau equation (TDGL) is 
usually resolved numerically to understand the static and 
dynamic properties in the superconducting vortex state [2]. 

The initial attempts to simulate the vortex behavior as a 
function of time using the TDGL equation date from the 
early 1990s. The most popular method to tackle this problem 
is the link variable method [3–8], which uses finite differ-
ences (i.e., regular grids and derivatives are approximated 
by subtractions between neighbors). Some attempts have 
been made using finite elements [9], but the extra complica-
tions that this method has makes it much harder to imple-
ment, although it allows to better represent curved shapes. 

The work presented below is based on the numerical ap-
proach exposed in [10], with important extensions to include 
arbitrary shapes and calculations in 3D. First, some general 
concepts about the numerical solution of differential equa-
tions are explained, followed by a more detailed descrip-
tion of the particular method for solving TDGL. 

2. Numerical method 

2.1. Numerical solution of differential equations 

There are three types of differential equations to repre-
sent physical phenomena: 

– Time-dependent equations. To solve these equations, 
one integrates numerically some variable in time. An exam-
ple of this is the classical three body problem, where one 
integrates in time the position of a body in the presence of 
two other bodies, taking into account only their gravitational 
interaction. Time integration uses the methods like the sim-
ple but effective Euler method, or the more complicated 
Runge–Kutta.  

– Space-dependent problems. This type of problems re-
quire integrating a differential equation independent of time, 
such as Laplace’s equation for the electrostatic potential. 
When there is a spatial dependence, one resorts to methods 
like finite differences or finite elements. Typically an itera-
tive method is used to find a convergent solution.  

– Space and time-dependent methods. This is the present 
case of TDGL equation, and it is a combination of the for-
mer two. One typically finds by spatial integration the time 
derivative of the variable of interest (in our case, ( ) /d t dtΨ , 
in turn dependent on ( )tΨ ) and integrates it in time. With 
the updated value of ( )tΨ , ( ) /d t dtΨ  is calculated again.  

2.2. Finite difference discretization 

Finite difference methods approximate derivatives by dif-
ferences of a variable between neighboring cells of a mesh. 
There are three ways of approximating a derivative:  

forward  ( ) ( ) ,dy y x h h x
dx h

+ −


  

central  ( / 2) ( / 2) ,dy y x h h x h
dx h

+ − −

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and backward  ( ) ( ) .dy y x h x h
dx h

− −


  

The mesh has a constant spacing (not necessarily the same 
spacing in the different directions). 

2.3. Link variable method 

We have used the usual approach to solve the TDGL 
equations known as link variable method. Normally in fi-
nite difference methods the interaction between neighbor-
ing cells is expressed (partially or completely) via the spa-
tial derivatives. The interesting feature of the link variable 
method is that it relates the interaction between neighbor-
ing cells with the magnetic flux enclosed by each set of 
cells forming a closed path, which is also dependent on an 
external applied field. This is done by introducing the aux-
iliary “link variables” in all directions, of the form: 
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where x, y, z are the spatial components and , ,ξ η ζ are 
auxiliary integration variables in the same directions as 
x, y, z (not to be confused with the superconducting coher-
ence length, ξ). ix  are the positions where ( , , )x y zΨ  is cal-
culated, and 0 0 0, ,x y z  are arbitrary positions that in the end 
up cancelling out after doing line integrals along closed paths. 

Given a plane, XY  for example, the rectangle formed 
by the cells in ( ,i j), ( 1,i j+ ), ( , 1i j + ) and ( 1, 1i j+ + ) will 
hold a circulation of the vector potential that can be related 
to magnetic flux at that position inside the superconductor 
via link variables:  

 = = .Bd d
∂Σ Σ

⋅ ⋅ Φ∫ ∫∫A l H s


  

From such rectangle the discretized distribution of magnetic 
field can be found in the =x i , =y j, =z k  coordinates: 

 ( ), 1, , ,, , 1, , = exp ( , , )yx x y
i j k i j ki j k i j kU U U U iH i j k x y++ − ∆ ∆   

and similar calculations for the other two planes YZ  and .ZX  

2.4. Discretization of the TDGL equations 

We start with the TDGL equations in the following di-
mensionless, for zero scalar potential gauge:  

 ( ) ( )( )21 2= 1 | | 1i T
t

−∂Ψ  η − − Ψ + − Ψ − Ψ  ∂
A∇ ,  

 ( ) ( ){ }* 2= 1 Re .T i
t

∂
− Ψ − − Ψ − κ × ×

∂
A A A∇ ∇ ∇   

Here, lengths are scaled by the coherence length at zero 
temperature 0 =0Tξ ≡ ξ . Time t  is in units of 0 =t  

/ 96 B ck T= π . The vector potential A  is expressed in units 
of 2 0cH ξ . The coherence length dependence on tempera-
ture is assumed to be well described by ( ) =Tξ  

0 / 1 / cT T= ξ − . κ  is the Ginzburg–Landau ratio which 
decides if a superconductor is a type I or II. η is the positive 
constant with value 2

0 0= / Dtη ξ , where D  is the diffusive 
constant for normal electrons. Re means real part. 

To reproduce the configuration of our experimental set-
up, we need to be able to have magnetic fields both parallel 
and perpendicular to the plane. With the more usual 2D con-
figuration, one can only apply fields perpendicular to the 
plane, since to consider the effect of magnetic flux, it has to 
actually go through some closed path. If one tries to apply a 
field parallel to the plane ( ,XY  for example) in a 2D simula-
tion, because there is only one cell in the Z  direction, no 
flux can enter. To have nonzero magnetic flux in-plane re-
quires having more than one cell in the perpendicular to the 
plane direction. However, the more complicated geometry 
we want to reproduce cannot be achieved in 2D, since mag-
netic flux (used for boundary conditions) needs at least two 
layers to be accommodated in the simulated domain (flux 
is calculated via the circulation of link variables. Therefore, 
only flux perpendicular to a direction, where the film has 
more than one layer of cells, can be considered). Figure 1 
shows more graphically the circulation of the link variables 
in every direction. 

Also, we need the boundary conditions. The first condi-
tion is for Ψ at the boundaries. We will consider the case 
of samples isolated from their surroundings. This means 
that no supercurrent flows through the boundary, and it is 
expressed as: 
 ( ) = 0.i− − Ψn A∇   

A second boundary condition for the magnetic field is 
used. It is through it that the magnetic field actually enters 
the sample. It has the form: 
 ,= ,i e iH×n A∇   

Fig. 1. Circulation of the link variables in a 3D simulation. 
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where in  is the unit vector in the direction of the compo-
nent of the magnetic field H  that we are interested in, par-
allel to a given surface, and ,e iH  is the value of the same 
component of the external magnetic field. 

The equations integrated in time are four, one for the or-
der parameter (first Ginzburg–Landau equation), and the 
other three for the auxiliary variables known as link variables 
(see [10] for more details), that can be obtained by rearrang-
ing the three components of the second Ginzburg–Landau 
equation for the vector potential. The boundary conditions, 
which depend on A , can also be written in terms of the link 
variables. Therefore, the vector potential A  is not explicitly 
solved, and it is not needed either. Its value (more precisely, 
its circulation) is included implicitly in the link variables, 
which are used to recalculate the order parameter in each 
step of the simulation, making it unnecessary to explicitly 
solve A . 

An important detail encountered when the transition 
from 2D to 3D is described next. To solve the equations 
for the link variables in the boundary in 2D one uses the 
circulation (see Fig. 2 for more clarity):  

 ( )**
, , , 1 ,,1,= = exp .y yx x z

i j i j i j x y i ji ji jL U U U U ia a H++ −   

This set of four cells is what we will refer to as “square loop”. 
By multiplying both sides by de appropriate link variable 

(conjugated or not) one can isolate the link variable at the 
edge of the sample for each of the smallest possible square 
loops to calculate its value from the value of the other three 
and the applied field. 

2.5. Passing from 2D to 3D 

If one tries now to do the same thing in 3D, there is an 
inconsistency, because at the edges the unknown boundary 
link variable can take two different values, depending on 
whether it is calculated from the one or the other loop in 

which it takes part (Fig. 3). The workaround that we came 
up with, and works well, is to forget about calculating 
boundary link variables, and just force the flux through the 
boundary square loops. The boundary link variables are 
given arbitrary values. This works because these link vari-
ables really aren’t used to calculate anything. 

Having overcome this problem, everything works well. 
Then, one would expect to see the tilted vortices under an 
inclined field, as indeed happens. Figure 4 shows two 
isosurfaces of early stages of the development of a vortex 
state under an inclined field in a cube in a simulation with 

= 2κ  and 50x50x50 cells. After some simulation time the 
system stabilizes and the tilted vortices are observed 
(Fig. 5). In these scalar fields | ( , , ) |x y zΨ  one needs to 
select isosurfaces at low values, for example, plot only the 
points with | ( , , ) |= 0.1x y zΨ  to clearly see the vortices. In 
this case, a magnetic field from one corner to the opposite 
((1,1,1) direction) is applied. Even without considering 
demagnetizing effects, vortices start at one border of the 
sample and end at another one which is not the opposite. 
The boundary conditions force the direction of magnetic 

Fig. 2. Circulation of link variables at the boundary in 2D. Fig. 3. Link variables at the edges (in this figure, between the two 
green cells) have an uncertain value. 

Fig. 4. Development of a tilted vortex (at early stages) state pre-
sented through isosurfaces of the order parameter with arrows 
representing supercurrents. Field is applied in the direction (1,1,1), 
from corner 1 to corner 2. 

1 
1 

2 
2 
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field at the boundaries, and far from them the vortex curves 
to adapt. Thus, shorter vortices (closer to corners) are also 
more curved. Calculated isocurrents curl around vortices. 
Instead of plotting all (or a subset) of the arrows at each cell, 
as in Fig. 5(a), the supercurrent direction can be easier to 
understand if we only plot some isolines, as in Fig. 5(b). 
These isolines clearly show the supercurrent screening tak-
ing place in the direction perpendicular to the applied field 
(Fig. 4(a)), i.e., the streamlines fall in planes perpendicular 
to the (1, 1, 1) direction. 

3. Results 

3.1. Increasing field part of hysteresis loops 

Figure 6 shows the field ramps and the global magneti-
zation response. As expected from a superconductor, mag-
netization is negative for positive fields, creating a field 
opposing the external field, so that the internal field is zero 
in the superconductor. In these time-dependent calcula-
tions, the speed at which the applied fields change is rele-
vant. In the figure it is easy to see how ramping the field 
more slowly (more iterations) gives a curve with more 
jumps. This is so because vortices have more time to enter 
the sample discretely, overcoming at certain moments, 
many at once, boundary energy barriers. Faster ramps are 

less controlled, and vortices enter in a more disorganized 
manner, leading to a smoother curve, where jumps corre-
sponding to entering vortices are smoothed out. The pres-
ence of jumps is also very dependent on the size of the 
sample. Their relative importance is larger in smaller sam-
ples. On the other hand, large samples give the more typi-
cal smooth “field penetration regions” found in magnetiza-
tion measurements. 

3.2. Steady flow of vortices between permanent magnets 

In this numerical experiment, we verify the idea of con-
verting magnetostatic energy into a steady flow of vortices 
in one direction. The setup is simple: a superconducting 
strip, with the appropriate width to hold only one row of 
vortices across its length, and two permanent magnets, each 
one in end of the strip, with magnetization pointing in oppo-
site directions, perpendicular to the plane of the strip (Fig. 7). 

The magnets are modeled by boundary conditions: a 
non-uniform external field, nonzero at the strip ends (only 
in a few cells near the center, not the whole lateral side), 
and zero everywhere else. 

Of course, this is an approximation, but the fast decay 
of 31/ r  typical of dipolar magnetic field suggests that is 
still valid. If both magnets are equally strong, vortices and 
antivortices are created in the same amount, and they meet 
at the center of the strip as long as they don’t need to travel a 
large distance (if they have, they will exit the superconduc-
tor throught the long sides). Since they have different 
signs, they annihilate. What can be done now is tuning the 
values of the strength of the magnets, making one higher 
than the other. In this case, the point where the vortices 
meet shifts laterally, closer to the weaker magnet. This is so 
because the stronger magnet manages to get the vortices it 

Fig. 5. Tilted vortex state. Isosurface at | |= 0.1Ψ , (a) with and (b) without arrows representing supercurrents. (c) Isosurfaces at 
| |= 0.1Ψ , 0.2 and 0.3. 

Fig. 6. Initial parts of hysteresis loops from = 0H  to 2= cH H  in 
a different number of steps. 

Fig. 7. A superconducting strip with two magnets at its ends. 
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creates sooner into the strip than the weaker magnet. We can 
even get to the point where there is only a steady flow of 
vortices from one magnet to the other (when one of them is 
not strong enough to create vortices, but still stronger than 
the zero field at the long sides of the strip). Practically, this 
would mean to tune the values of very small magnets, 
which does not seem very feasible or practical. Instead, we 
can apply perpendicular to the plane magnetic field, which 
will oppose the field created by one of the permanent mag-
nets, and reinforce that of the other magnet. One needs to 
be careful to apply low values to this external field, since if 
it is too large it can lead to the creation of vortices itself. 

Instead, by keeping its values low, we are creating a “slope” 
which will determine where vortices of different signs will 
annihilate. Figure 8 shows how the external field can influ-
ence this. 

This idea could be implemented for different purposes, 
such as very precise magnetic field detectors, since moving 
vortices induce electric fields, which could be tracked by 
some array of sensors over the strip, to relate the annihilation 
position of vortices to the external field. Also, electrically 
charged nanoparticles could be transported by these moving 
vortices, until they are deposited in the annihilation place, 
where no longer electric field is induced after annihilation. 

Fig. 8. Snapshots of the order parameter of a superconducting strip with magnets at the center of the right and left sides. The left side 
magnet points opposite to the external field, and the right side magnet points in the same direction as the external field. The external 
field is indicated at the top of each column. Rows represent snapshots at different times (evenly spaced). The green dashed line indicates 
the annihilation point of opposite sign vortices created at the sides. The white circles indicate the position of the magnets, which 
produce a magnetic field of value 2/ = 0.2cH H  in that region. 
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3.3. Including holes 

Another feature that could be added to the program, 
which fell out of the scope of this thesis due to lack of time 
to develop it completely, is being able to include holes in 
the calculations, also of the arbitrary cross-section but, at 
least to start with, “drilled” completely perpendicular to the 
boundary. Again, the idea shown in [10] could be adapted 
to 3 dimensions. An extra step would be necessary for in-
cluding multiple holes: since for each hole, the magnetic 
field in that hole needs to be tracked for imposing bounda-
ry conditions, a function could scan the whole sample, to 
detect which cells belong to what hole. A more or less 
complicated procedure should be thought of to identify 
what is a hole, and what cells form it, based on the neigh-
boring cells which have already been scanned and are emp-
ty. After that, the cells forming the boundary of each hole 
should be associated with a “type” of cell, depending on 
where the neighboring empty cell lays with respect to 
them. With that, and knowing the field already trapped 
inside each hole, the boundary conditions could be calcu-
lated. Whenever a vortex falls inside a hole, the magnetic 
field in it will experience abrupt jumps. Including holes in 
the calculations would allow to simulate effects like peri-
odic pinning, to calculate matching fields, as well as the 
interaction of vortices with defects of different shapes, for 
example, as is usually done in the context of ratchet effects 
with triangular defects [11,12]. 

3.4. Rectification effects 

Rectification effects of the vortex lattice have attracted 
a lot of attention, especially in superconducting films with 
periodic pinning arrays, typically of triangular elements 
[11–13]. In general, nonlinear dynamics in the vortices in 
asymmetric potentials, under high frequency microwave or 
combined dc and ac (microwave) drives have recently re-

turned into the focus of interest of the researchers in vortex 
physics and applications [14–16]. 

The idea of rectification is to create a potential land-
scape that favors the motion of vortices in one direction 
with respect to the opposite direction. These systems are of 
interest both from the applied and fundamental point of 
view, since they allow to design mechanisms to control the 
vortex flow artificially. Some other works focus on the 
motion of vortices in structures with ratchet-like shape 
[17,18]. Also, rectification effects have been found in sys-
tems that do not posses obvious ratchet potentials [19]. 
Those ac current induced dc voltages appear at high 
enough frequencies due to vortex rectification by each of 
the oppositely situated surface barriers [20]. Most of the 
work so far considers the motion of vortices already pre-
sent in the sample, whether it is a uniform film with pin-
ning centers, or patterned superconducting elements. In this 
case we have applied our program to the case of vortices 
entering and exiting the sample. Rectification effects, in 
this case, occur due to the very geometry of the sample and 
the energy barriers that vortices need to overcome in order 
to enter inside. In this set of simulations (Fig. 9) we have 
put our program to the test to verify two facts: First, adding 
rectangular notches to the boundary facilitates the entrance 
of vortices through them. This had been already found for 
single triangular notches in circular samples [21] and one 
side situated triangular notches in rectangular samples [22]. 
Second, a rectangular shape with the notches in the long 
sides, in the presence of a perpendicular to the plane field 
(which slowly oscillates in value), a larger number of vor-
tices enter through these sides than they exit during an os-
cillation period. This means that the combination of this 
geometry with the notches is enough to create a net vortex 
flux for an external field of zero average value in time. In 
practice, if such mechanism proved to be true, a voltage 
could be measured between the sides of the sample.  

Fig. 9. Amplitude (top row) and phase (bottom row) of the order parameter. The perpendicular to the plane field is indicated in each 
column. The blue arrows indicate the net vortex flux direction. 
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3.5. Motion of vortices under a stationary current 

This simulation reproduces the vortex flow under the 
influence of a current flowing through a superconducting 
strip. A simple approximation to simulate a current is to, 
instead of using any current at all, modify the magnetic 
fields at the boundaries parallel to the flow of current. In 
one of them, an extra field should be added, and in the other, 
the same value should be subtracted, since a current flowing 
uniformly will create a magnetic field around it. This sim-
plification only works for 2D simulations, due to symmetry 
reasons, since for 3D simulations, the curvature of the mag-
netic field lines should be taken into account, but in 2D they 
are perfectly perpendicular to the plane since this case is 
equivalent to a sample infinitely long in the z axis. This 
method has been used before [23]. Figure 10 shows snap-
shots of a simulation of the vortex motion under a current 
parallel to the long sides of the strip, every 20 timesteps. 

3.6. Spontaneous nucleation of vortices 

Usually it is of interest to create vortices in a controlled 
manner with an applied field, but that is not the only way. 
Spontaneous formation of vortex-antivortex pairs has been 
observed due to the stray fields of magnetic elements 
placed on top of superconducting films [24]. A supercon-
ductor cooled from above the critical temperature can also 
develop pairs of vortex-antivortex inside [25,26], still having 
a total zero magnetic flux. This configuration is unstable, 
and vortices and antivortices will find it favorable to ap-
proach and annihilate each other to reduce the magnetic en-
ergy. Next we explore the behavior of the program to cal-
culate the spontaneous formation of vortex-antivortex pairs 
in a superconductor in the absence of an external magnetic 
field, starting from a random distribution of the order pa-
rameter centered around | |= 0.1Ψ . This is shown in Fig. 11 
for a simulation with 1000 ×  1000 cells (0.5ξ  per cell) in 

Fig. 10. Vortex motion perpendicular to an external current flowing along the long side of the strip (60 ξ in length). 

Fig. 11. Spontaneous vortex-antivortex pairs formation starting from a random order parameter. 
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the plane. This replicates the situation of abruptly quenching 
superconductivity by cooling down a sample in the normal 
state. After the vortices and antivortices are formed, they 
start annihilating each other if they happen to be close to-
gether. After several annihilations, there will be some vor-
tices and antivortices left, far apart enough to not feel each 
other’s attraction and the final state will have vortices in-
side, but still a zero (or close to zero, due to vortices exiting 
through the boundary) total magnetic field inside. 

4. Perspectives 

The numerical solution of the time-dependent Ginzburg–
Landau equation has been an active topic since the early 
1990s, until the present moment. Currently, there are a 
number of researchers using these simulations to study 
theoretically the behavior of increasingly complex super-
conducting systems. We have focused on a rather simple 
system, a thin uniform film, under conditions reproducing 
our measurements (crossed alternating and constant mag-
netic fields), as well as to predict what would happen under 
certain conditions, paying attention to the motion of vorti-
ces. Interesting results on static 3D simulations of vortices 
in parallel magnetic field can be found in [27]. Application 
of the developed method to high frequency response of the 
vortex system related with microwave stimulated super-
conductivity can be found in [2,28].  

The use of these simulations is far from being exhaust-
ed. Currently an important effort is being made toward 
understanding multiband superconductors, such as MgB2, 
with several order parameters using numerical methods 
more complicated that the one presented here, where several 
order parameters are present and coupled among them-
selves [29]. 

Also, as has already happened in the field of electronic 
circuits design, especially in circuits working at high fre-
quencies, simulations can become a must-have tool to de-
sign better performing circuits, without the need to build lots 
of circuits by trial and error before reaching an optimum 
configuration. We expect that the same situation will be 
reached soon with superconducting circuits, which are 
gaining more and more attention for applications such as 
superconducting antennas and quantum computers [30]. 
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Часове моделювання Гінзбурга–Ландау 
надпровідних вихорів для тривимірного випадку 

Antonio Lara, César González-Ruano, 
Farkhad G. Aliev 

Описані розробка комп’ютерного алгоритму для моделю-
вання нестаціонарного рівняння Гінзбурга–Ландау (TDGL) 
та його застосування для розуміння динаміки надпровідних 
вихорів в обмеженій геометрії. Початкова мотивація участі у 
розв’язанні цієї проблеми полягала в тому, щоб краще зрозу-
міти наші попередні експериментальні дані про динаміку 

надпровідника з вихорами на високих частотах, яка призво-
дить до НВЧ стимульованої надпровідності, пов’язаної з 
наявністю вихорів (A. Lara, et al., Sci. Rep. 5, 9187 (2015)). 

Ключові слова: надпровідник, надпровідні вихори, динаміка 
вихорів, нестаціонарне рівняння Гінзбурга–Ландау. 

Временное моделирование Гинзбурга–Ландау 
сверхпроводящих вихрей для трехмерного случая 

Antonio Lara, César González-Ruano, 
Farkhad G. Aliev 

Описаны разработка компьютерного алгоритма для моде-
лирования нестационарного уравнения Гинзбурга–Ландау 
(TDGL) и его применение для понимания динамики сверх-
проводящих вихрей в ограниченной геометрии. Изначальная 
мотивация участия в решении этой проблемы состояла в том, 
чтобы лучше понять наши предыдущие экспериментальные 
данные о динамике сверхпроводника с вихрями на высоких 
частотах, которая приводит к СВЧ стимулируемой сверхпро-
водимости, связанной с наличием вихрей (A. Lara, et al., Sci. 
Rep. 5, 9187 (2015)). 

Ключевые слова: сверхпроводник, сверхпроводящие вихри, 
динамика вихрей, нестационарное уравнение Гинзбурга–
Ландау.
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