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For the recently proposed exactly solvable two-chain correlated electron model with the anisotropic spin-spin 
interaction between electrons and the spin-orbit interaction the ground state persistent currents are calculated. 
The model describes the quasi-one-dimensional type II superconductor. It is shown, that the spin-orbit coupling 
determines the initial phase of oscillations of charge and spin persistent currents, related to unbound electron 
states. On the other hand, Cooper-like singlet pairs define oscillations of only charge persistent currents with the 
period, characteristic to pairs. Depending on the value of the external magnetic field and the band filling, the sys-
tem can reveal the complicated picture of the interference of several kinds of oscillations. 
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1. Introduction 

Persistent currents are caused by the Aharonov–Bohm 
(AB) phase shift. The AB effect [1] appears when charges 
move along a loop, pierced by a magnetic flux. The AB ef-
fect manifests the force-free topological influence of electro-
magnetic interaction on quantum dynamics of charged par-
ticles in a non-simply connected geometry. For any closed 
path around a solenoid the phase change is equal to 

0= 2 /ABφ πΦ Φ , where Φ  is the magnetic flux within the 
solenoid, and 0 = 2 /c eΦ π , where c is the speed of light in 
vacuum, and e is the charge of a particle. In classics the AB 
effect does not occur for any value of the flux, because the 
motion of particles takes place in the region outside the so-
lenoid, where electric and magnetic fields are zero. In con-
densed matter the Aharonov–Bohm effect manifests itself as 
magnetic oscillations of kinetic and thermodynamic charac-
teristics of samples in extremely weak magnetic fields, when 
field-induced forces can be disregarded. Aharonov–Bohm 
oscillations can serve as a testing ground for investigations 
of electron-electron correlations in conducting loops via the 
period, the initial phase shift and the magnitude of oscilla-
tions. For example, for superconductors the Aharonov–
Bohm effect manifests oscillations with the period twice 
smaller than the one for a normal metal, describing that way 
the doubled charge of the Cooper pair, with respect to the 

charge of an electron. An external magnetic flux produces 
nonzero momentum of charged particles. The persistent 
current is the derivative of the energy of a system in equi-
librium with respect to the applied magnetic flux: ( ) =J Φ  

( ( ) /c= − ∂ Φ ∂Φ , where   is the Helmholtz free energy of 
the total ring; in the ground state it reduces to the deriva-
tive of the ground state energy 0E . The Aharonov–Casher 
(AC) effect [2] is dual to the AB one. It is related to the 
movement of a particle with a magnetic moment around an 
electric flux, e.g., the electric flux = 4F πτ generated by a 
string passing through the center of a ring with linear charge 
density τ. It produces the phase shift of a particle with spin 

0= 2 /AC F Fφ π , where 0 = 2 / eF cπ µ  is the unit electric 
flux, eµ  is effective magneton related to the (quasi)particle. 
Then the spin persistent current is ( ) = ( ) /sJ F c F F− ∂ ∂ . 
Electro-magnetic fluxes Φ  and F  can be included in the 
Hamiltonian via the Peierls factors 0 0= [( / ) ( / )]F F↑Φ π Φ Φ +  
and 0 0= [( / ) ( / )]F F↓Φ π Φ Φ −  for electrons with spins up 
and down, respectively. Then a gauge transformation can 
move those phase shifts into twisted boundary conditions. 
Obviously, spin and charge persistent current can serve as a 
useful tool to measure the charge and spin of elementary 
excitations of the studied system. 

Unlike higher-dimensional correlated electron models, 
their low-dimensional quantum counterparts permit to ob-
tain exact (non-perturbative) results [3]. The necessity of 
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non-perturbative studies in one-dimensional quantum sys-
tems is caused by the enhanced quantum and thermal fluctu-
ations there, due to the features in the density of states [4]. It 
is known that the one-dimensional quantum models can de-
scribe not only real one-dimensional correlated electron sys-
tems, but also topological superconductors [5], and ultracold 
atoms in one-dimensional optical traps [6]. Low-dimen-
sional quantum correlated electron models often reveal 
properties of quantum spin liquids. In the latter the order is 
suppressed down to the lowest temperatures due to the 
frustration of spin-spin interactions and/or enhanced quan-
tum fluctuations in low-dimensional systems [7]. In many 
quantum spin liquids emergent magnetic excitations are 
fermions (as a rule they carry fractionalized charge or spin), 
instead of, e.g., magnons (bosons, which carry spin 1) for 
ordered magnetic systems. Namely because of that the in-
vestigation of the periodicity of AB and AC oscillations 
can provide information, whether emergent excitations carry 
fractional charges or spins. 

In this work, we propose to study persistent currents in 
the recently proposed exactly solvable correlated electron 
model, which describes electrons living in two coupled 
chains, which interact at nearest and next nearest neighboring 
sites via the anisotropic exchange interaction and possessing 
the spin-orbit interaction (SOI) [8]. The model reveals the 
properties reminiscent of the type II superconductor, be-
cause its low-energy excitations are Cooper-like spin singlet 
pairs and unbound electron excitations [9]. Persistent charge 
[10] and spin [11] currents were first studied in exactly 
solvable correlated electron models like the Hubbard chain 
with the attraction of electrons. For the system with local 
pairs (the Hubbard model with the attraction between elec-
trons sitting at the same site) the features of persistent cur-
rents were studied in Ref. 12. The goal of the work is to 
understand how the magnitudes and periods of the oscilla-
tions of charge and spin persistent currents can reveal the 
features of the ground state structure of the two-chain cor-
related electron system with superconducting correlations 
caused by the anisotropic spin-spin interaction of electrons 
on neighboring sites. Using the opportunity, we describe 
how the Hamiltonian and the exact solution of the station-
ary Schrödinger equation was obtained for the model [8]. 

2. The Hamiltonian and the exact integrability 

The Hamiltonian of the considered model can be writ-
ten as [8]  

 
2

, 2 22
( )sin h=

( ) ( )sin hsin
j j

j
H t H +

 η + ×
θ + η

∑   

 ( ), 2 , 1 1, 2
tan( )ˆ

sin h( )j j j j j jH B H H i+ + + +
 θ

× − + + − × η
  

 ( ), 1 1, 2, ,j j j jH H+ + +
× 

 (1) 

where [.,.] denotes the commutator, and the operator B̂  
modifies the hopping and the transverse interaction ampli-
tudes by the factor cos( )θ . Here we denote  

 ( )†
, 1 ,1,= H.c.j j j j jjH P a a P+ σ+ σ

σ
− + +∑   

 ( )† † † †
1, , 1, ,, 1, , 1,j j j jj j j ja a a a a a a a+ ↑ ↓ + ↓ ↑↓ + ↑ ↑ + ↓

+ + −  

 ( ), 1, , 1,e e .j j j jn n n nη −η
↑ + ↓ ↓ + ↑− +  (2) 

In this expression †
,ja σ ,( )ja σ  creates (destroys) the elec-

tron with the spin = ,σ ↑ ↓ at the site j , †
, ,,= ,j jjn a aσ σσ  

, 1,= (1 )(1 )j j jP n n−σ + −σ− −  projects out states with the double 
occupation of each site, the parameter η defines the anisot-
ropy of the interactions, and the parameter θ defines the 
inter-chain coupling. We can also include the spin-orbit 
interaction, which distinguishes the same axis, as the ani-
sotropy of the exchange interaction. For that we change 

t t′→ , where 2 2= / 4 exp ( 2 )t t g i′ + πσφ , (let us denote 
2 2" = / 4),t t g+  and the phase factor =φ  

(1/ ) arctan ( / 2 )g t= π  is caused by the spin orbit interac-
tion, SOI (with the SOI coefficient g ) [8]. That phase fac-
tor can be transferred to the twisted boundary conditions 
[8]. We see that the Hamiltonian contains three groups of 
terms. The first group describes coupling and hopping be-
tween nearest neighbors (NN). The second group defines 
the coupling and the hopping between the next nearest 
neighbors (NNN). Obviously the model of the chain with 
interactions and hoppings for NN and NNN is totally 
equivalent to the two-chain zigzag model. Finally, there 
are three-site terms. The analysis of the effect of the latter 
is given in [8]. The presence of three-site terms is the nec-
essary condition for the exact integrability of the model, 
see below. 

2.1. Algebraic Bethe Ansatz and exact integrability 

The method to solve the Schrödinger equation for the 
considered in [8] model and related class of models was 
pioneered by H. Bethe [13]. It is known as the Bethe Ansatz. 
It can be applied to models, in which the scattering between 
(quasi)particles is only elastic and non-dispersive. The con-
dition of elasticity was formulated in the form of the well-
known Yang–Baxter equations (YBE). Consider, e.g., sever-
al interacting (quasi)particles. Then the YBE for their two-
particle scattering matrices can be written in the form [14] 

 12 1 2 13 1 3 23 2 3
ˆ ˆ ˆ( , ) ( , ) ( , ) =S u u S u u S u u   

 23 2 3 13 1 3 12 1 2
ˆ ˆ ˆ( , ) ( , ) ( , ) ,S u u S u u S u u=  (3) 

where indexes = 1,2,3j  numerate (quasi) particles with the 
quantum numbers (called rapidities) ju , which parametrize 
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eigenfunctions and eigenvalues of the Schrödinger equation 
for the considered model. According to the YBE each scat-
tering process produces only a phase shift (no reflection), 
and the order of scatterings is not essential. As a result of 
the YBE fulfillment, any multi-scattering process can be 
considered as the product of two-scattering processes. 
Rapidities satisfy the so-called Bethe Ansatz equations 
(BAE) [13]. The algebraic version of the Bethe Ansatz is 
known as the quantum inverse scattering method (QISM) 
[15,16]. This method is based on the mapping of a one-
dimensional quantum problem onto the associated two-
dimensional statistical problem. Within the QISM, for a 
large class of integrable models the R -matrices (their con-
struction is related to one of the two-particle scattering 
matrices) satisfy the YBE  
 12 13 23 23 13 12( ) ( ) ( ) = ( ) ( ) ( ) ,R u v R u R v R v R u R u v− −  (4) 

where the indexes denote the Hilbert spaces in which the 
R  matrix acts, and ( )u v  is the spectral parameter. Define an 
L-operator acting on the tensor product between the “matrix-
space” 0V  (it is often called the auxiliary subspace) and the 
quantum space nV , which is identified with the Hilbert 
space over the nth site of the lattice. The following YBE for 
L-operators (they are often called intertwining relations) hold:  

( ) ( )( ) ( ) ( ) = ( ) ( ) ( ) ,n n n nR u v L u L v L v L u R u v− ⊗ ⊗ −  (5) 

where the tensor product is between quantum spaces, i.e., 
these YBE are nontrivial over the space 0 0 nV V V⊗ ⊗ . The 
intertwining relations determine the structure of L-operators, 
if one already knows R -matrices. Then we can introduce the 
monodromy matrix acting in the space 0 1 LV V V⊗ ⊗ ⊗  as  

 1
1

, , ,
1, , , ( ) = ( ) ( ) =L

LL
T u L u L u′ ′ ′σ σ τ
σ σ τ




   

 11 1
1 1
, ,
, ,( ) ( ) ( ) ,j j L

j j L L
S u S u S u− −γ γ ′τ γ γ τ

′ ′ ′σ σ σ σ σ σ=    (6) 

where L  is the length of the chain. Due to the definition 
and intertwining relations for L-operators the monodromy 
matrices also satisfy YBE  

 ( ) ( )( ) ( ) ( ) = ( ) ( ) ( ) .R u v T u T v T v T u R u v− ⊗ ⊗ −  (7) 

Tracing the monodromy matrix over the auxiliary space 0V  
we obtain the transfer matrix  

 1
1
, ,

1, ,ˆ ( ) = Tr ( ) ( ) =L
L Lu L L u′ ′σ σ

σ στ λ



   

 11 1
1 1
, ,
, ,( ) ( ) ( ) .j j L

j j L L
S u S S u− −γ γτ γ γ τ

′ ′ ′σ σ σ σ σ σλ   (8) 

From Eqs. (7) and (8) it follows that ˆ ˆ[ ( ), ( )] = 0u vτ τ , i.e., 
transfer matrices with different spectral parameters com-
mute. This property is the fundamental property, which 
means the exact integrability of a system: There exist infi-
nitely many (for a system with infinitely many degrees of 
freedom) integrals of motion, which commute mutually, 
and, hence, have the common set of eigenfunctions. Then 

one can construct any function of the transfer matrix, and 
due to the commutation of transfer matrices with different 
spectral parameters, all such functions commute mutually, 
and with the transfer matrix. The following series is used for 
the determination of integrals of motion in Bethe Ansatz-
solvable models [17] (the Hamiltonian from this series was 
first introduced in [18])  

 
1

=01
ˆln ( )ˆ ( ) = | ,

n

n n un
uQ u A

u

−

−
∂ τ

∂
 (9) 

where finally, after taking derivatives, the spectral parame-
ter is taken to be equal to its value, at which the R -matrix 
is unity (or the two-particle scattering matrix is the permu-
tation operator), and nA  are constants. This series is chosen 
because of the locality property: The integral of motion ˆ

nQ  
acts nontrivially only on n sites of a chain. 

We summarize the idea of the QISM: Starting with the 
solution of the YBE for R -matrices, then using that solu-
tion for the construction of L-operators and monodromy 
operators of a Bethe Ansatz-integrable system, we can ob-
tain the trace of the monodromy operator over the auxiliary 
subspace, the transfer matrix. As the consequence of the 
YBE for L-operators and monodromies (intertwining rela-
tions), transfer matrices with different spectral parameters 
commute, which constitutes the exact integrability of the 
model. Finally, the integrals of motion (including the oper-
ator of the energy, the Hamiltonian) can be constructed 
from the expression for the transfer matrix. 

2.2. Integrable two-chain models 

Consider now the two-chain L -operator for the site j  of 
the form [19]  

 
1, 2, 1, 1,, ,( ) = ( ) ( )

a j a jjL u L u L uσ σ σ σ+ θ ⊗ ⊗   

 
2, 2, 2, 1,, ,( ) ( ) ,

a j a j
L u L uσ σ σ σ⊗ ⊗ −θ  (10) 

where the index j  denotes the quantum space, and a denotes 
the auxiliary space. It is the product of four L-operators with 
the structure of L-operators of a single Bethe Ansatz-solvable 
chain, each of which satisfies the YBE. The parameter θ 
determines the strength of coupling between the chains. By 
construction L -operators also satisfy the YBE. The structure 
of L -operator is very clear. There are two chains, hence, 
we have to consider two quantum spaces and two auxiliary 
spaces (one set for each chain). The R -operator for the 
two-chain problem can be constructed similarly to a single 
chain case. The normalization for R -matrices implies 

ˆ ˆ( ) ( ) = 1R u PR u P−  . The monodromy for this two-chain con-
struction is the ordered product of L  L -operators  

 1 1( , ) = ( , ) ( , ) ( , ) .L L LT u L u L u L u−θ θ θ θ   

  (11) 

The monodromy shows the result of scatterings of two 
auxiliary particles off two sets of physical particles in each 
of chains. Such a monodromy also satisfies the YBE by 
construction. The transfer matrix ( , ) = Tr[ ( , )]Lu T uτ θ θ

  is 
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the trace over two auxiliary spaces of the monodromy. The 
associated two-dimensional statistical vertex problem is, 
naturally, the two-layered one. Defined that way transfer 
matrices with different u  and θ commute (with θ and u  
being fixed, respectively). Hence ( , )uτ θ  can be used as a 
generating functional for an infinite number of conserva-
tion laws. Hence, the problem is also integrable. It is inte-
resting to point out [19] that the transfer matrix of the two-
chain problem can be written as ( , ) = ( ) ( )u u uτ θ τ ⊗ τ + θ . 
The Hamiltonian for the two-chain problem can also be 
determined as the logarithmic derivative of the transfer 
matrix ( , )uτ θ  taken at = 0u . 

2.3. Supersymmetric electron model with anisotropic 
interactions 

To study the correlated supersymmetric electron model 
within the QISM it is convenient to use the graded version 
of the QISM [20]. Consider the graded linear space 

( | ) ( ) ( )=n m n mV V V⊕ , where n and m denote the dimen-
sions of the parts of this space and ⊕  denotes the direct 
sum. Let 1{ , , }n me e +  be a basis of ( | )n mV , such that 

1{ , , }ne e  is a basis of ( )nV  and 1{ , , }n n me e+ +  is a basis 
of ( )mV . The Grassmann parities of the basis vectors can 
be given by 1 = = = 0n   and 1 = = = 1n n m+ +  . Any 
linear operator on ( | )n mV  can be represented in a block 
form as  

 
0 0

= , = 0 , = 1 ,
0 0

A B A B
M

C D D C
     

ε ε     
     

 (12) 

and the supertrace (the graded trace) of this matrix is de-
fined as  

 str = tr tr ,M A D−  (13) 

where the traces on the right hand side are the usual opera-
tor traces in ( )nV  and ( )mV , respectively. The graded ten-
sor product ( | ) ( | )n m n mV V⊗  in terms of its basis vectors 
{ }a be e⊗  (where , = 1, ,a b m n+ ) can be defined as  

= ( ) ( ) = ( ) ( 1) ,v baa a b b a b a bv w e v e w e e v w⊗ ⊗ ⊗ −
   (14) 

i.e., the additional factor ( 1) v ba−
   occurs comparing to the 

standard tensor product. This factor originates from pass-
ing av  past be . The action of the right linear operator 
F G⊗  on the vector v w⊗  in ( | ) ( | )n m n mV V⊗  has the form 
( )( ) = ( ) ( )F G v w F v G w⊗ ⊗ ⊗  with its matrix elements  

 ( ) ( )= ( 1) .ab c a bab cdcdF G F G +⊗ −     (15) 

The unity operator in ( | ) ( | )n m n mV V⊗  is , ,
ˆ =ab
cd a b c dI δ δ  and 

the permutation operator is , ,
ˆ = ( 1)ab b dcd a d c bP δ δ −   . One 

can show that the operator ˆ ˆ( ) = ( ) ( )R u b u I c u P+ , with 
( ) = / ( )c u u u i+ η  and ( ) = / ( )b u i u iη + η  satisfies the YBE 

for R -matrices Eq. (4) acting in ( | ) ( | )n m n mV V⊗ . Grading 
is used when one considers a system of n species of bosons 

and m species of fermions. In such a case ( | )n m
jV  denotes 

the quantum Hilbert space of configurations at every site of 
the lattice. For the supersymmetric t–J  model we have one 
boson (an empty state) and two fermions (electrons with 
spins directed upward and downward) at each site. Then 
the quantum space for each site for such a model can be 
considered as (1|2)

jV . For such a model nine operators at 
each site j  exists. The first of these operators is the unity 

operator 1 =j jJ I , and the second one is related to the oper-

ator of the number of electrons in site j , =j j jn n n↑ ↓+ , as 

2 = 1 (1/ 2)j j jJ N n≡ − . Three other operators, 3 = z
j jJ S ≡ 

(1/ 2)( )j jn n↑ ↓≡ − , †4 =j j jjJ S a a+
↓↑

≡ , and 5 =j jJ S− ≡  

†
jja a ↑↓

≡ , form the SU(2) sub-algebra. Here † ( )jja a σσ  cre-

ates (destroys) the electron with spin = ,σ ↑ ↓ at the site j . 

Four more operators are †6 = (1 )j j j jJ Q n a↑ ↓ ↑
≡ − , 

†7 = (1 )j j j jJ Q n a↓ ↑ ↓
≡ − , †8 = (1 )j j jjJ Q n a↓ ↑↑

≡ −  and 

†9 = (1 )j j jjJ Q n a↑ ↓↓
≡ − . These operators are the genera-

tors of the algebra gl(1|2) which can be written in the form  

 ( 1) = ,j jj j jJ J J J f Jβ β γ γα αα β
αβ− −

 
 (16) 

where f γαβ are the structure constants of gl(1|2), and = 0α  
for the first five generators (i.e., they are bosonic opera-
tors), and = 1α  for the last four (fermionic) operators. The 
fundamental matrix representation of the generators is in 
the basis, in which the fermionic states are 1 = (1 0 0)Tj je  
for the electron with spin down, 2 = (0 1 0)T

j je  for the elec-
tron with spin up, and the bosonic state is 3 = (0 0 1)T

j je  
(empty state) is:  

 2 3
1 0 0 1 0 0

1 1= 0 1 0 , = 0 1 0 ,
2 2

0 0 2 0 0 0
j jJ J

−   
   
   
   
   

  

 4 5
0 1 0 0 0 0

= 0 0 0 , = 1 0 0 ,
0 0 0 0 0 0

j jJ J
   
   
   
   
   

  

 6 7
0 0 0 0 0 1

= 0 0 1 , = 0 0 0 ,
0 0 0 0 0 0

j jJ J
   
   
   
   
   

  

 8 9
0 0 0 0 0 0

= 0 0 0 , = 0 0 0 .
0 1 0 1 0 0

j jJ J
   
   
   
   
   

 (17) 

We can introduce the invariant nondegenerate bilinear 
form Kαβ , given as the supertrace over two generators 

1= ( ) = str j jK K J Jβαβ − α
αβ . It is easy to show that using 
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these operators we can re-write the Hamiltonian of the 
supersymmetric t–J  chain [21]  

 ( )
1

†
1,,

=1
= H.c.

L

tJ jj
j

H t P a a P
−

+ σσ
σ


− + +


∑ ∑   

 1 , 1,2 (1/ 2) ,j j j jt n n+ σ + σ
σ


+ − 


∑S S  (18) 

as  

 
9

1
=1 , =1

= 2 1 =
L

tJ j jj
j

H t K J J nβαβ α
+

α β

 
 − − +
 
 

∑ ∑   

 , 1
=1

2 1 ,
L

j j j
j

t n+ = − Π − + ∑  (19) 

where the graded operator , 1j j+Π  permutes the three pos-
sible configurations (empty state and states with electrons 
with spins up or down) between sites j  and 1j + , picking 
up a minus sign if both of the permuted configurations are 
fermionic. This Hamiltonian is obviously supersymmetric, 
because it is the quadratic form of the generators of the 
gl(1|2) algebra with the coefficients being the invariant 
nondegenerate bilinear form of those generators. Notice that 
the sums of all nine generators over all sites of the lattice 
commute with the Hamiltonian of the supersymmetric t–J  

model, 
=1, = 0L

tJ jjH Jα 
  ∑  for = 1, ,9α  . 

Let us now consider the algebraic Bethe Ansatz for the 
glq( |n m)-symmetric (i.e., the q-deformed gl( |n m), uniax-
ial case) correlated electron chain. For the glq (1|2)-symmetric 
chain the Hilbert space at each site is isomorphic to C3 and 
is spanned by the above mentioned three basis vectors. In 
the FFB grading, i.e., in which 1je  and 2je  are fermionic 

(the Grassmann parities are 1,2 = 1ε ) and 3je  is bosonic 

(the Grassmann parity is 3 = 0ε ) we can start from the 

mathematical vacuum state 3=1| 0 = L
jj e〉 ∏ . This choice of 

the grading implies that R -matrix for the glq(1|2)-symmetric 
chain has the form  

 ( ) =R u bI +   

 

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

,0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

x
c

c
c

x
c

c
c

y

−

−

+

−

+

+

 
 − 
 
 

− 
 +
 
 
 
 
 
 
 

 (20) 

where = sin ( )b iη , = sin ( ) sin ( )x u i i+ η − η , = sin ( )y u i− + η − 
sin ( )i− η , and = exp ( )sin ( )c i i± ± η η . Also the function 
( ) = sin ( ) / sin ( )c u u u i+ η  will be useful. It is possible to 

check that such R -matrices satisfy the YBE. Performing 
then the procedure of the QISM described above, we ob-
tain the Hamiltonian of the anisotropic glq(1|2)-symmetric 
correlated electron chain as the logarithmic derivative of 
the transfer matrix taken at zero value of the spectral pa-
rameter (see above), namely , 1=an j jjH t H +′∑ ,  

 ( )†
, 1 ,1,= H.c.j j j j jjH P a a P+ σ+ σ

σ
− + +∑   

 ( )† † † †
1, , 1, ,, 1, , 1,j j j jj j j ja a a a a a a a+ ↑ ↓ + ↓ ↑↓ + ↑ ↑ + ↓

+ + −  

 ( ), 1, , 1, .j j j je n n e n nη −η
↑ + ↓ ↓ + ↑− +  (21) 

For small 0η→  we obtain the R -matrix of the gl(1|2)-
symmetric chain (i.e. the supersymmetric t–J  model). 
Then, according to the above mentioned procedure, we 
construct the Hamiltonian Eq. (1) of the two-chain aniso-
tropic glq(1|2)-symmetric chain as the logarithmic deriva-
tive of the two-chain transfer matrix, see above. One can 
check that at half-filling (one electron per site) the model 
reduces to the two-chain spin-1/2 model with the uniaxial 
anisotropy [22]. 

2.4. Eigenvalues and eigenfunctions 
for the supersymmetric correlated electron model 

To find eigenvalues and eigenfunctions of the Hamilto-
nian (1) let us consider the monodromy matrix ( )T u  for the 
glq( |n m) symmetric model as the ( ) ( )n m n m+ × +  matrix 
in the auxiliary subspace  

 
ˆ ˆ

( ) = ,
ˆ ˆ
A B

T u
C D

 
  
 

 (22) 

where Â  is n n×  matrix, D̂  is m m×  matrix, B̂  is n m×  
matrix and Ĉ  is m n×  matrix. For the glq(1|2)-symmetric 
chain we have  

 11 12

21 22

ˆ ˆ
ˆ( ) = ,

ˆ ˆ
A A

A u
A A

 
  
 

 (23) 

and  

 1 2 1 2
ˆ ˆ ˆˆ ˆ ˆ= ( ) , = ( ) .TB B B C C C  (24) 

Hence, the transfer matrix ˆ( )uτ  is  

 ˆ ˆˆ( ) = str ( ) = tr tru T u A Dτ − +  (25) 

where for the glq(1|2)-symmetric chain we have  

 11 22
ˆ ˆ ˆˆ( ) = .u A A Dτ − − +  (26) 
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Determine the action of the monodromy matrix on the mathe-
matical vacuum so that the action of diagonal matrix ele-
ments Tαα  produces c-numbers, i.e., ( ) | 0 = ( ) | 0T u a uαα α〉 〉  
and the mathematical vacuum is the eigenstate for these 
diagonal components, and the action of all upper elements 
Tαβ  with <α β is zero, i.e., ( ) | 0 = 0T uαβ 〉  for <α β. Then 
the monodromy matrix has the triangular form. Such a 
monodromy matrix satisfies the intertwining relation for 
monodromy matrices with our R -matrix in the graded space. 
Then one can show that transfer matrices with different 
spectral parameters commute, which constitutes the exact 
integrability of the problem. The action of the L-operator of 
the considered model on our mathematical vacuum | 0〉  is  

 
† †

( ) 0 0
( ) | 0 = 0 ( ) 0 ,

( ) ( ) 1
j

j j

c u
L u c u

b u Q b u Q
↑ ↓

 
 
 〉
 
 
 

 (27) 

i.e., it has the triangular form, which implies  

 

1 2

( ) 0 0

( ) | 0 = 0 ( ) 0 .
( ) ( ) 1

L

L

c u

T u c u
C u C u

 
 
 〉
 
 
 

 (28) 

Equation (28) means the triangular action of the monodromy 
matrix on the mathematical vacuum. This choice of the L-
operator can be used for the above described scheme for the 
two-chain model, yielding 1 2( ) = ( ) = ( ) ( )L La u a u c u c u −θ  
and 3( ) = 1a u . Applying the machinery of the QISM for the 
anisotropic supersymmetric t–J  model we obtain the 
eigenvalue of the transfer matrix  

 ( ) ( )1 0 1 0

=1 =1
( ) = ( )

N N
L

j j
j j

u c u c u c u− −Λ λ − − λ − ×∏ ∏   

 ( ) ( )1 1

=1 =1
( ) .

M M
Lc u c u c u− −

γ γ
γ γ

× −Λ − Λ −∏ ∏  (29) 

Here the quantum numbers 0
=1{ }N

j jλ  and =1{ }M
γ γΛ  satisfy the 

set of equations, known as the BAE  

( )1 0

=1=1

( )
= , = 1, , ,

( )

N M

j
j

c
c M

c
γ β−

γ
β γβ

β≠γ

Λ −Λ
λ −Λ γ

Λ −Λ∏ ∏   (30) 

and  

 ( ) ( )0 1 0

=1
= , = 1, , .

M
L

j jc c j N− −
γ

γ

λ λ −Λ∏   (31) 

The numbers N  and M  (the number of electrons, and the 
number of electrons with down spins) are related to the 
values of the chemical potential µ and the magnetic field 
H , directed along the anisotropy axis. 

One can obtain the BAE for periodic correlated electron 
integrable models under the non-force action of external 
electro-magnetic fluxes by introducing the operator  

 ( ) ( )0 0 0 0
1 1= e e
2 2

i iz zT I IΦ Φ↑ ↓+ σ + −σ  (32) 

into the monodromy operator of the associated problem 
(recall, subscript 0 denotes the auxiliary subspace). 

2.5. Bethe Ansätze for rapidities 

Changing the variables 0 / 2j ji vλ − η →  we obtain the set 
of the BAE for the two-chain anisotropic supersymmetric 
t–J  model 

 
sin( / 2) sin( / 2)
sin( / 2) sin( / 2)

L
j j

j j

v i v i
v i v i

 + η − θ+ η
× 

− η − θ− η  
  

 ( )0 0exp 2 [( / ) ( / ) ] =i F F× − π Φ Φ + + φ   

 
=1

sin( / 2)
, = 1,..., ,

sin( / 2)

M
j

j

v i
j N

v i
α

αα

−Λ + η
=

−Λ − η∏   

 ( )0
=1

sin( / 2)
exp 4 [( / ) ] =

sin( / 2)

N
j

jj

v i
i F F

v i
α

α

Λ − + η
− π + φ

Λ − − η∏   

 
=1

sin( )
, = 1,... .

sin( )

M i
M

i
α β

α ββ
β≠α

Λ −Λ + η
= − α

Λ −Λ − η∏  (33) 

The energy of the state, characterized by the set of rapidities 
jv  and αΛ  can be obtained as the logarithmic derivative of 

the transfer matrix with respect to the spectral parameter, 
then taking = 0u ; we obtain  

 
=1

1 cos( )cosh( )
= 2

cosh( ) cosh(2 )

N
j

jj

v
E N t

v

 − η
′′−µ − +

η −
∑   

 
1 cos( ) cosh( ) ( 2 )

.
cosh( ) cosh(2 2 ) 2

j e

j

v H N M
v

− − θ η µ −
+ −

η − − θ 
 (34) 

We see that the BAE are periodic in θ, i.e., it is enough to 
consider θ in the domain −π ≤ θ ≤ π. 

3. The ground state of the model 

It can be shown that the ground state is described by 
2N M−  unbound electron states with the real rapidities jv  

and M  spin-singlet Cooper-like pairs (bound states) for 
which charge rapidities are complex conjugated pairs. To 
the exponential accuracy exp ( )L− , the rapidities of pairs 
can be written as = / 2v iα αΛ ± η , and for unbound elec-
tron states and Cooper-like pairs the BAE (up to the phase 
shifts, related to the AB and AC effects) and the expression 
of the energy coincide with the ones written in [8]. Taking 
the logarithm of the obtained that way BAE we get  
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 ( , / 2) ( , / 2) =j jv vΘ η +Θ −θ η   

 1

0 0
2 j

FL I
F

−   Φ
= π + + + φ +  Φ  

  

 ( )
=1

, / 2 , = 1,... ,
M

jv j Nα
α


+ Θ −Λ η 


∑   

 1

0

2( , ) ( ) = 2L J−
α α α

  Φ
Θ Λ η +Θ Λ −θ π + +  Φ  

  

 
2

=1 =1
( , / 2) ( , ) ,

N M M

j
j

v
−

α α β
β


+ Θ Λ − η + Θ Λ −Λ η


∑ ∑   

 = 1,..., ,Mα  (35) 

where numbers jI  and Jα  arise, because the logarithm is a 
multivalued function, and 1( , ) = 2 [tan( )coth( )]tanx y x y−Θ . 
Equations (35) are periodic in F  with the period 0F  and in 
Φ  with the periods 0Φ  and 0 / 2Φ . Hence, they remain 
invariant under the replacements 0 0( / ) {{ / }}F F F F→ , 

0 0( / ) {{ / }}Φ Φ → Φ Φ  and 0 0(2 / ) {{2 / }}Φ Φ → Φ Φ , 
where {{ }}x  denotes the fractional part of x to the nearest 
(half) integer (i.e., to the nearest jI  and Jα ). Spin and charge 
rapidities parametrize each eigenvalue and eigenfunction of 
the Schrödinger equation, and, therefore, all characteristics 
of the model in the ground state reveal those periodicities 
also. In particular, the ground state charge and spin persis-
tent currents manifest such periodicities. The phase φ, 
caused by the SOI, can be considered as the initial phase 
for those periodic persistent currents. The energy the state 
is given by  

 
2

=1

1 cos(2 )cosh( )
= 2

cosh( ) cos(2 )

N M
j

jj

v
E t

v

−  − η
′′− + η −
∑   

 
1 cos(2 2 )cosh( )

( 2 )
cosh( ) cos(2 2 ) 2

j e

j

v H
N M

v

− − θ η µ
+ − − −η − − θ 

  

 
2

2 2
=1

( )sinh2 cosh( ) 4
( ) ( )sin sinh

M
t

αα

 η′′− η − − λ + η
∑   

 
2

2 2
( )sinh .

( ) ( )sin sinh
N

α

η
− −µλ − θ + η 

 (36) 

Then we can use the fact that the ground state energy of 
a one-dimensional metallic system (i.e., the system which 
has gapless low-lying excitations, the considered model 
belongs to this class) can be presented as the series 

1
0 1 2=E L E L E−

∞ + + + , where ∞  determines thermo-
dynamic properties of the host, 1E  describe the thermody-
namic behavior of an impurity (or edges of an open chain), 
and 2E  describes the behavior of excitations, etc. Notice 

that for systems with gl(2|1) (or SU(N)) symmerties loga-
rithmic corrections of order of 1( ln )L L − , etc. exist. The 
ground state of the studied model is organized by the fill-
ing of Fermi seas (i.e., states with negative energies) with 

2N M−  unbound electron states with real jv  rapidities, 
and M  Cooper-like pairs with complex conjugated αΛ  
rapidities. In the thermodynamic limit , ,L N M →∞ with 
fixed ratios /N L  and /M L  the ground state is given by 
the solution of two Fredholm integral equations for the 
density of unbound electron states ( )vρ  ( ( )h vρ  is the densi-
ty of the holes) and density of pairs ( )σ Λ  ( ( )hσ Λ  is the 
density of holes for pairs)  

 [ ]2 ( ) ( ) = ( , / 2) ( , / 2)h v v f v f vπ ρ +ρ η + −θ η −  

 ( , / 2) ( ) ,d f v− Λ −Λ η σ Λ∫   

 [ ]2 ( ) ( ) = ( , ) ( , )h f fπ σ Λ +σ Λ Λ η + Λ −θ η −   

 ( , ) ( ) ( , / 2) ( ) ,dzf z z dvf v v− Λ − η σ − Λ − η ρ∫ ∫  (37) 

where ( , ) = 2sinh(2 ) / [cosh(2 ) cos(2 )]f x y y y x− . The in-
tegrations in Eqs. (37) is over the values of Λ , v, and z , for 
which energies of states are negative. In the thermodynamic 
the energy of the system is  

 1 cos(2 )cosh( )= 2 ( )
cosh( ) cos(2 )

vt dv v
v∞

 − η′′− ρ + η −∫   

 1 cos(2 2 )cosh( ) ( 2 )2
cosh( ) cos(2 2 ) e

v H N M L
v

− − θ η
+ −µ − −η − − θ 

  

 
2

2 2
( )sinh2 cosh( ) ( ) 4

( ) ( )sin sinh
t d

 η′′− η Λσ Λ − −
Λ + η

∫   

 
2

2 2
( )sinh .

( ) ( )sin sinh
N
L

η µ
− −

Λ −θ + η 
 (38) 

4. Finite size corrections and persistent currents 

One can clearly see that these equations do not depend on 
Φ  and F  explicitly. It respects the fact that ∞  does not de-
pend on external electro-magnetic fluxes and the AB and 
AC quantum topological effects reveal themselves in the 
(highest) corrections of order of 1L−  etc. The calculations of 
those corrections can be performed in the framework of the 
method, based on the use of the Euler–MacLaurin formula 
[23]. The finite size (mesoscopic) correction to the energy, 

2E  , for the simplest case of only two Fermi seas for un-
bound electron states and spin-singlet pairs (i.e., for the spa-
tially homogeneous distributions of charge and spin densi-
ties in the ground state; due to nonzero θ there can be more 
than one Fermi sea for each of eigenstates [8] for some 
ranges of the chemical potential and the external magnetic 
field, see below), are given by [24]  
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2

2 ,
= , = ,

= 2 ( )l q l q q
l u p q u p

E v z D
    π − φ +    

∑ ∑   

 

2
1

,
= ,

1 ˆ( ) ,
12 2

l
l l l q q

q u p

v
n n z N+ − −

     + + − + ∆      
∑  (39) 

where lv  are the Fermi velocities  

 
= =0 0

0 0

( ) / ( ) /
= , = ,

2 ( ) 2 ( )
v v

u p
d v dv d d

v v
v

Λ Λε Ψ Λ Λ

πρ πσ Λ
 (40) 

of the unpaired electron states and pairs, respectively,  

 = ( 2 ), = ,u pN N M N M∆ ∆ − ∆ ∆   

 1= ( ) mod 1,
2u u pD N N∆ + ∆   

 1= mod 1 .
2p pD N∆  (41) 

and 0 0= ( / ) ( / )u F Fφ Φ Φ + + φ, 0= 2 /pφ Φ Φ . Here we 
have introduced the “dressed” energies for unpaired elec-
tron states ( )vε  and pairs ( )Ψ Λ , which are determined 
from the following set of integral equations,  

 ( ) = ( , / 2) ( , / 2)
2
eH

k t f v t f v
µ

′′ ′′ε η + − θ η −µ − −  

 ( ) ( , / 2) ,
2
t d f v
′′

− ΛΨ Λ −Λ η
π ∫   

 ( ) = ( , ) ( , ) 2t f t f′′ ′′Ψ Λ Λ η + Λ −θ η − µ −  

( , ) ( ) ( , / 2) ( ) .
2 2
t tdzf z z dvf v v
′′ ′′

− Λ − η Ψ − Λ − η ε
π π∫ ∫  (42) 

The expression for the momentum is  

 
= ,

2= ( )l l l l l
l u p

P D N n n
L

+ −π  ∆ − φ ∆ + − +  
∑   

 2 ( ) .F
l l lp D + − φ 


 (43) 

The quantum numbers ,u pN∆  refer to the change in the 
number of states in each Fermi sea by the low-energy exci-
tation and ,u pD  are the corresponding backscattering quan-
tum numbers (transfer from the left Fermi point to the right 
Fermi point). The number of particle-hole excitations 
about each Fermi point is denoted by ,u pn± . The backscat-
tering quantum numbers are shifted by the phases related 
to the SOI (internal phase) and the AB and AC effect (ex-
ternal phases). The Fermi momenta corresponding to the 
Fermi seas are = ( 2 ) /F

up N M Lπ −  and = /F
pp M Lπ . The 

generalized dressed charges, = ( )lq lq qz Bξ , where 0=qB v  
and 0=pB Λ , are obtained from the solution of the follow-
ing set of integral equations ( = ,l u p)  

 ,( ) = ( , / 2) ( ) ,lu l u lpv d f vξ δ − Λ −Λ η ξ Λ∫   

 ,( ) = ( , ) ( )lp l p lpdzf z zξ Λ δ − −Λ η ξ −∫   

 ( , / 2) ( ) .ludvf v v− −Λ η ξ∫  (44) 

Equations for the components of the dressed charge de-
pend on θ via the limits of integration. In the ground state 
there are no excitations, and we can use the expression (39) 
with = = = 0l l lN D n∆ . Persistent currents are related to 
the first term in Eq. (39), and their magnitudes are propor-
tional to the Fermi velocities of the low-energy states (un-
bound electrons and Cooper-like pairs), and dressed charge 
components. 

5. Analysis 

Depending on the values of the chemical potential µ and 
the external magnetic field H  there can be two, four, or no 
Fermi seas. Respectively, persistent spin and charge currents 
manifest the behavior, connected with the states, which form 
Fermi seas. The magnetic field behavior of the persistent 
currents is reminiscent of the type II superconductor. There 
exist two critical fields, cH , below which only Cooper-like 
singlet pairs exist in the ground state, and sH , above which 
only unbound electron states have the Fermi sea [8]. On the 
other hand, the magnitudes of persistent currents strongly 
depend on the band filling. Magnitudes are zero for the emp-
ty chain, and increase with the growth of the band filling, 
being maximal at the half-filling. Depending on the value 
of θ there can exist additional Fermi seas [8], which are 
responsible for the formation of the CDW and/or SDW 
(charge and spin density wave) like incommensurate states. 
Notice that additional Fermi seas are related to the same 
kind of low-energy states (either unbound electrons, or 
pairs). At the critical values of θ, µ, and H , the magnitudes 
of persistent currents manifest features of their behavior: 
Fermi velocities of related low-energy states become zero. 

The oscillations of persistent currents have the saw-tooth 
like form, which is usual for any system with a large number 
of particles in it. Fermi velocities of low-lying excitations ,lv  
and dressed charge matrix (which determine magnitudes of 
persistent currents) explicitly depend on the parameter of the 
inter-chain interaction.  

It is not so for φ, caused by the SOI: Only initial shifts of 
persistent currents are determined by the SOI phase in the 
main ( 1L− ) approximation. Initial phases of oscillations of 
persistent currents also depend on the parity of the number 
of electrons N  and down-spin electrons M  mod (4). The 
nonzero θ determines the nonzero ground state momentum 
of the system (due to topological charge and spin currents, 
i.e., three-site terms, caused by the inter-chain coupling), 
which is nothing else than the nonzero charge and spin chi-
rality (or Noethers topological currents). 

From the above obtained finite size corrections we see 
that the spin persistent current reveals oscillations, caused 
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by the external electric flux F , with the period of oscilla-
tions 0F  and the initial phase φ. The period of oscillations 
manifests that unbound electron excitations carry fractional 
spin 1/2, i.e., the model belongs to the class of quantum 
spin liquids. That current is connected with unbound elec-
tron states. Hence, for < cH H  such oscillations are absent. 
For > sH H  the spin persistent current manifest properties 
of the one for the non-interacting one-dimensional system 
(notice that for this gapped state the magnitude of the spin 
persistent current is exponentially small with L). On the 
other hand, for c sH H H≤ ≤  spin persistent current exists, 
however, its magnitude depends on the value of the mag-
netic field and the band filling. The magnitude is maximal 
for the half-filled band, reminiscent to the one of the zig-
zag spin chain. 

The charge persistent current in general situation mani-
fests the interference of oscillations caused by the external 
magnetic flux Φ  with two periods: 0Φ  and 0 / 2Φ , related 
to unbound electron states, and Cooper-like pairs, respec-
tively. For < cH H  it only oscillates with the period 0 / 2,Φ  
characteristic for Cooper-like pairs. For > sH H  only oscil-
lations with the period 0Φ  survive, with the properties, 
characteristic for the non-interacting electrons, however 
with the exponentially small with L  magnitude. For 

c sH H H≤ ≤  oscillations with two periods exist. 
In the zero-anisotropy limit we have 0cH → . For the 

half-filling at = 0H  the magnitudes of oscillations of per-
sistent currents with the periods 0Φ  and 0 / 2Φ  become 
equal to each other, however, the initial phases of those 
oscillations are different due to the SOI. However, for any 
nonzero H  and non-half filled case the magnitudes of os-
cillations with periods 0Φ  and 0 / 2Φ  become different 
from each other, and the interference of those two periodic 
functions has to manifest itself in the ground state. 

Oscillations of charge and spin persistent currents are 
maximal in the ground state, their main effect is of order of 

1L− . However, for 0T ≠  persistent currents become expo-
nentially small with L  [25]. The saw-tooth like form of 
oscillations is related to only the ground state. Any nonzero 
temperature > /lT v L  strongly reduces the magnitudes of 
the most of harmonics, and sinusoidal-like oscillations result. 

6. Summary 

In summary, we have considered persistent currents in 
the integrable two-chain correlated electron ring with the 
anisotropy of electron-electron interactions. We have shown 
that the model belongs to the class of quantum spin liquids, 
because it does not have any ordering even in the ground 
state, and has emergent excitations, which carry fractional 
spin 1/2. We have shown how and at which conditions 
such fractional spin can be measured in the periodicity of 
spin persistent currents. On the other hand, the considered 
correlated electron model in the ground state manifests 
features, characteristic for type II superconductors (notice 
that in one space dimension quantum and thermal fluctua-

tions destroy the superconducting ordering). The periodicity 
of the charge persistent current can manifest the interfere-
nce of oscillations, related to the charges of Cooper-like 
pairs and unbound electron states, which form the ground 
state Fermi seas of the model. 
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Персистентні струми у двохланцюжковій моделі 
корельованих електронів 

A.A. Звягін 

Розраховано персистентні струми в основному стані для 
нещодавно запропонованої точно розв’язуваної двохланцюж-
кової моделі корельованих електронів з анізотропією спін-
спінової взаємодії між електронами та спін-орбітальною взає-
модією. Модель описує квазіодновимірний надпровідник II 
роду. Показано, що спін-орбітальна взаємодія визначає поча-
ткові фази осциляцій зарядових та спінових персистентних 
струмів, які визначаються непов’язаними електронними ста-
нами. З іншого боку, спін-синглетні пари типу Купера визна-
чають осциляції тільки зарядових персистентних струмів з 
періодом, характерним для пар. Залежно від величин зовніш-
нього магнітного поля та заповнення зони, в системі може 
проявлятися складна картина інтерференції декількох типів 
осциляцій. 

Ключові слова: моделі, що інтегруються, анізотропія, перси-
стентні струми.  

Персистентные токи в двухцепочечной модели 
коррелированных электронов 

A.A. Звягин 

Рассчитаны персистентные токи в основном состоянии 
для недавно предложенной точно решаемой двухцепочечной 
модели коррелированных электронов с анизотропией спин-
спинового взаимодействия между электронами и спин-
орбитальным взаимодействием. Модель описывает квазиод-
номерный сверхпроводник II рода. Показано, что спин-
орбитальное взаимодействие определяет начальные фазы 
осцилляций зарядовых и спиновых персистентных токов, 
которые определяются несвязанными электронными состоя-
ниями. С другой стороны, спин-синглетные пары типа Купе-
ра определяют осцилляции только зарядовых персистентных 
токов с периодом, характерным для пар. В зависимости от 
величин внешнего магнитного поля и заполнения зоны, в 
системе может проявляться сложная картина интерференции 
нескольких типов осцилляций. 

Ключевые слова: интегрируемые модели, анизотропия, пер-
систентные токи.  

 

https://doi.org/10.1103/PhysRevB.12.3795
https://doi.org/10.1103/PhysRevB.12.3795
https://doi.org/10.1103/PhysRevB.36.5177
https://doi.org/10.1016/0375-9601(93)90624-9
https://doi.org/10.1142/p364
https://doi.org/10.1142/p364
https://doi.org/10.1017/CBO9780511628832
https://doi.org/10.1017/CBO9780511628832

	1. Introduction
	2. The Hamiltonian and the exact integrability
	2.1. Algebraic Bethe Ansatz and exact integrability
	2.2. Integrable two-chain models
	2.3. Supersymmetric electron model with anisotropic interactions
	2.4. Eigenvalues and eigenfunctions for the supersymmetric correlated electron model
	2.5. Bethe Ansätze for rapidities

	3. The ground state of the model
	4. Finite size corrections and persistent currents
	5. Analysis
	6. Summary

