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For the recently proposed exactly solvable two-chain correlated electron model with the anisotropic spin-spin
interaction between electrons and the spin-orbit interaction the ground state persistent currents are calculated.
The model describes the quasi-one-dimensional type Il superconductor. It is shown, that the spin-orbit coupling
determines the initial phase of oscillations of charge and spin persistent currents, related to unbound electron
states. On the other hand, Cooper-like singlet pairs define oscillations of only charge persistent currents with the
period, characteristic to pairs. Depending on the value of the external magnetic field and the band filling, the sys-

tem can reveal the complicated picture of the interference of several kinds of oscillations.
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1. Introduction

Persistent currents are caused by the Aharonov-Bohm
(AB) phase shift. The AB effect [1] appears when charges
move along a loop, pierced by a magnetic flux. The AB ef-
fect manifests the force-free topological influence of electro-
magnetic interaction on quantum dynamics of charged par-
ticles in a non-simply connected geometry. For any closed
path around a solenoid the phase change is equal to
dap = 2n® /Dy, where @ is the magnetic flux within the
solenoid, and @ = 2n#ic / e, where ¢ is the speed of light in
vacuum, and e is the charge of a particle. In classics the AB
effect does not occur for any value of the flux, because the
motion of particles takes place in the region outside the so-
lenoid, where electric and magnetic fields are zero. In con-
densed matter the Aharonov-Bohm effect manifests itself as
magnetic oscillations of kinetic and thermodynamic charac-
teristics of samples in extremely weak magnetic fields, when
field-induced forces can be disregarded. Aharonov—-Bohm
oscillations can serve as a testing ground for investigations
of electron-electron correlations in conducting loops via the
period, the initial phase shift and the magnitude of oscilla-
tions. For example, for superconductors the Aharonov—
Bohm effect manifests oscillations with the period twice
smaller than the one for a normal metal, describing that way
the doubled charge of the Cooper pair, with respect to the
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charge of an electron. An external magnetic flux produces
nonzero momentum of charged particles. The persistent
current is the derivative of the energy of a system in equi-
librium with respect to the applied magnetic flux: J(®) =
=—C(0F (@) / 0@, where F is the Helmholtz free energy of
the total ring; in the ground state it reduces to the deriva-
tive of the ground state energy Ej. The Aharonov—-Casher
(AC) effect [2] is dual to the AB one. It is related to the
movement of a particle with a magnetic moment around an
electric flux, e.g., the electric flux F = 4nt generated by a
string passing through the center of a ring with linear charge
density <. It produces the phase shift of a particle with spin
dac = 2nF | Ry, where Fy =2nhc/p, is the unit electric
flux, p, is effective magneton related to the (quasi)particle.
Then the spin persistent current is Jg(F) = —coF (F)/oF.
Electro-magnetic fluxes @ and F can be included in the
Hamiltonian via the Peierls factors @4 =n[(®/dg)+(F /Fy)]
and @ =n[(®/dy)-(F/Fp)] for electrons with spins up
and down, respectively. Then a gauge transformation can
move those phase shifts into twisted boundary conditions.
Obviously, spin and charge persistent current can serve as a
useful tool to measure the charge and spin of elementary
excitations of the studied system.

Unlike higher-dimensional correlated electron models,
their low-dimensional quantum counterparts permit to ob-
tain exact (non-perturbative) results [3]. The necessity of
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non-perturbative studies in one-dimensional quantum sys-
tems is caused by the enhanced quantum and thermal fluctu-
ations there, due to the features in the density of states [4]. It
is known that the one-dimensional quantum models can de-
scribe not only real one-dimensional correlated electron sys-
tems, but also topological superconductors [5], and ultracold
atoms in one-dimensional optical traps [6]. Low-dimen-
sional quantum correlated electron models often reveal
properties of quantum spin liquids. In the latter the order is
suppressed down to the lowest temperatures due to the
frustration of spin-spin interactions and/or enhanced quan-
tum fluctuations in low-dimensional systems [7]. In many
guantum spin liquids emergent magnetic excitations are
fermions (as a rule they carry fractionalized charge or spin),
instead of, e.g., magnons (bosons, which carry spin 1) for
ordered magnetic systems. Namely because of that the in-
vestigation of the periodicity of AB and AC oscillations
can provide information, whether emergent excitations carry
fractional charges or spins.

In this work, we propose to study persistent currents in
the recently proposed exactly solvable correlated electron
model, which describes electrons living in two coupled
chains, which interact at nearest and next nearest neighboring
sites via the anisotropic exchange interaction and possessing
the spin-orbit interaction (SOI) [8]. The model reveals the
properties reminiscent of the type Il superconductor, be-
cause its low-energy excitations are Cooper-like spin singlet
pairs and unbound electron excitations [9]. Persistent charge
[10] and spin [11] currents were first studied in exactly
solvable correlated electron models like the Hubbard chain
with the attraction of electrons. For the system with local
pairs (the Hubbard model with the attraction between elec-
trons sitting at the same site) the features of persistent cur-
rents were studied in Ref. 12. The goal of the work is to
understand how the magnitudes and periods of the oscilla-
tions of charge and spin persistent currents can reveal the
features of the ground state structure of the two-chain cor-
related electron system with superconducting correlations
caused by the anisotropic spin-spin interaction of electrons
on neighboring sites. Using the opportunity, we describe
how the Hamiltonian and the exact solution of the station-
ary Schrodinger equation was obtained for the model [8].

2. The Hamiltonian and the exact integrability

The Hamiltonian of the considered model can be writ-
ten as [8]

: 2
H:tz Hj,j+2+ sinh (n)Z X
J- sin®(6) +sinh“(n)

A . tan(0)
X{_Hj,j+2 +B(Hj ji1+Hijug jr2) - Sinh(n)

X

X(Hj,j+1lHj+1,j+2)}}’ 1)
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where [.,.] denotes the commutator, and the operator B
modifies the hopping and the transverse interaction ampli-
tudes by the factor cos(6). Here we denote

— t
Hj,j+1 = —Z Pj (aj_*_lyo_aj’cy +H.C.) Pj +
(e}

t t t t
+(aj,¢aj+maj+1,¢aj,¢ +aj,¢aj+1,¢aj+1,¢am)‘
n -n
—(e NjtNjl Te ”j,i“j+1,T)- )
In this expression a}c (aj,c) creates (destroys) the elec-
tron with the spin o ="1,{ at the site j, n;, =a] ,a; .
P = (1-n J-’_G)(l— nj +1-¢) Projects out states with the double

occupation of each site, the parameter n defines the anisot-

ropy of the interactions, and the parameter 0 defines the
inter-chain coupling. We can also include the spin-orbit
interaction, which distinguishes the same axis, as the ani-
sotropy of the exchange interaction. For that we change

t—>t', where t' = 4/t? + g? /4 exp(i2nod), (let us denote

t":«/t2+gzl4), and  the factor ¢ =

= (1/m)arctan (g / 2t) is caused by the spin orbit interac-
tion, SOI (with the SOI coefficient g) [8]. That phase fac-

tor can be transferred to the twisted boundary conditions
[8]. We see that the Hamiltonian contains three groups of
terms. The first group describes coupling and hopping be-
tween nearest neighbors (NN). The second group defines
the coupling and the hopping between the next nearest
neighbors (NNN). Obviously the model of the chain with
interactions and hoppings for NN and NNN is totally
equivalent to the two-chain zigzag model. Finally, there
are three-site terms. The analysis of the effect of the latter
is given in [8]. The presence of three-site terms is the nec-
essary condition for the exact integrability of the model,
see below.

phase

2.1. Algebraic Bethe Ansatz and exact integrability

The method to solve the Schrodinger equation for the
considered in [8] model and related class of models was
pioneered by H. Bethe [13]. It is known as the Bethe Ansatz.
It can be applied to models, in which the scattering between
(quasi)particles is only elastic and non-dispersive. The con-
dition of elasticity was formulated in the form of the well-
known Yang-Baxter equations (YBE). Consider, e.g., sever-
al interacting (quasi)particles. Then the YBE for their two-
particle scattering matrices can be written in the form [14]

S12(Ug,Up)Sp3 (U, U3)Sp3(Up, Ug) =
= S53(Ug, Ug)Sy3 (U, Us) Sy (U, Uy) , ®3)

where indexes j =1,2,3 numerate (quasi) particles with the
quantum numbers (called rapidities) uj, which parametrize
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eigenfunctions and eigenvalues of the Schrédinger equation
for the considered model. According to the YBE each scat-
tering process produces only a phase shift (no reflection),
and the order of scatterings is not essential. As a result of
the YBE fulfillment, any multi-scattering process can be
considered as the product of two-scattering processes.
Rapidities satisfy the so-called Bethe Ansatz equations
(BAE) [13]. The algebraic version of the Bethe Ansatz is
known as the quantum inverse scattering method (QISM)
[15,16]. This method is based on the mapping of a one-
dimensional quantum problem onto the associated two-
dimensional statistical problem. Within the QISM, for a
large class of integrable models the R -matrices (their con-
struction is related to one of the two-particle scattering
matrices) satisfy the YBE

Ri2 (U=V)R3(U)Rp3(V) = Rpz (V)Ryz (U)Ryp (U—V), (4)

where the indexes denote the Hilbert spaces in which the
R matrix acts, and u(v) is the spectral parameter. Define an
L-operator acting on the tensor product between the “matrix-
space” V; (it is often called the auxiliary subspace) and the
quantum space V,, which is identified with the Hilbert
space over the nth site of the lattice. The following YBE for
L-operators (they are often called intertwining relations) hold:

RU=v)(Ly ()@ Ly (V) = (La () ® Ly (W))R(u-v), (5)

where the tensor product is between quantum spaces, i.e.,
these YBE are nontrivial over the space Vy ®Vy ®V,,. The
intertwining relations determine the structure of L-operators,
if one already knows R -matrices. Then we can introduce the
monodromy matrix acting in the space Vo ®V; ®---®V,| as

7oL () = L (u)-- Ly (u) =

Gl,...,GL,T
_etn eViiy. oYLt
—861,ci(u) Scjc,j () SGL’U,L w, (6)

where L is the length of the chain. Due to the definition
and intertwining relations for L-operators the monodromy
matrices also satisfy YBE

RU-V)(TUWTW)=(TV)®TU))RU-V). (7)

Tracing the monodromy matrix over the auxiliary space V
we obtain the transfer matrix

T or W) =Trig () Ly (u) =

Sous; (W8I T (1) S I (). ®
From Egs. (7) and (8) it follows that [T(u),7(v)] =0, i.e.,
transfer matrices with different spectral parameters com-
mute. This property is the fundamental property, which
means the exact integrability of a system: There exist infi-
nitely many (for a system with infinitely many degrees of
freedom) integrals of motion, which commute mutually,
and, hence, have the common set of eigenfunctions. Then
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one can construct any function of the transfer matrix, and
due to the commutation of transfer matrices with different
spectral parameters, all such functions commute mutually,
and with the transfer matrix. The following series is used for
the determination of integrals of motion in Bethe Ansatz-
solvable models [17] (the Hamiltonian from this series was
first introduced in [18])

"t Int(u)
W |u=0 ’ (9)

QnlU) = A,
where finally, after taking derivatives, the spectral parame-
ter is taken to be equal to its value, at which the R-matrix
is unity (or the two-particle scattering matrix is the permu-
tation operator), and A, are constants. This series is chosen
because of the locality property: The integral of motion Qj,
acts nontrivially only on n sites of a chain.

We summarize the idea of the QISM: Starting with the
solution of the YBE for R-matrices, then using that solu-
tion for the construction of L-operators and monodromy
operators of a Bethe Ansatz-integrable system, we can ob-
tain the trace of the monodromy operator over the auxiliary
subspace, the transfer matrix. As the consequence of the
YBE for L-operators and monodromies (intertwining rela-
tions), transfer matrices with different spectral parameters
commute, which constitutes the exact integrability of the
model. Finally, the integrals of motion (including the oper-
ator of the energy, the Hamiltonian) can be constructed
from the expression for the transfer matrix.

2.2. Integrable two-chain models

Consider now the two-chain L-operator for the site j of
the form [19]
Lj) =Ly, 6, U+B)®L (W)®

292, ©1,a:91, j

®L62'a,0'2’j (u) ® Lo‘ J (u _9) ’ (10)

2,a:01,
where the index | denotes the quantum space, and a denotes
the auxiliary space. It is the product of four L-operators with
the structure of L-operators of a single Bethe Ansatz-solvable
chain, each of which satisfies the YBE. The parameter 6
determines the strength of coupling between the chains. By
construction L-operators also satisfy the YBE. The structure
of L-operator is very clear. There are two chains, hence,
we have to consider two quantum spaces and two auxiliary
spaces (one set for each chain). The R-operator for the
two-chain problem can be constructed similarly to a single
chain case. The normalization for R-matrices implies
F?(u)I:A’Fi(—u)I3 =1. The monodromy for this two-chain con-
struction is the ordered product of L L-operators

TL(,0)= L (U.0)L 4 (u,0)---L(u,6).  (11)

The monodromy shows the result of scatterings of two
auxiliary particles off two sets of physical particles in each
of chains. Such a monodromy also satisfies the YBE by
construction. The transfer matrix ©(u,0) = Tr[T, (u,0)] is
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the trace over two auxiliary spaces of the monodromy. The
associated two-dimensional statistical vertex problem is,
naturally, the two-layered one. Defined that way transfer
matrices with different u and 6 commute (with 6 and u
being fixed, respectively). Hence 7(u,0) can be used as a
generating functional for an infinite number of conserva-
tion laws. Hence, the problem is also integrable. It is inte-
resting to point out [19] that the transfer matrix of the two-
chain problem can be written as 7(u,0) = t(u) ® t(u +0).
The Hamiltonian for the two-chain problem can also be
determined as the logarithmic derivative of the transfer
matrix T(u,0) taken at u = 0.

2.3. Supersymmetric electron model with anisotropic
interactions

To study the correlated supersymmetric electron model
within the QISM it is convenient to use the graded version
of the QISM [20]. Consider the graded linear space
v M =y (™ @v (M \where n and m denote the dimen-
sions of the parts of this space and @ denotes the direct
sum. Let {e},....e .n} be a basis of V("™ such that
{e,...,e,} is a basis of v and {enits--- Enam} IS @ basis
of V(m) The Grassmann parities of the basis vectors can
be givenby ¢ =---=¢, =0 and ¢4 = = ¢zm =1. Any
linear operator on V(“|m) can be represented in a block
form as

A B A0 0 B
M= =0,¢ =1, (12)

C D 0 D cC o0
and the supertrace (the graded trace) of this matrix is de-

fined as

strM =trA-trD, (13)
where the traces on the right hand side are the usual opera-
tor traces in V(" and V(m), respectively. The graded ten-

sor product V"™ @v (M in terms of its basis vectors
{e, ®ey} (where a,b =1,...,m+n) can be defined as

VOW = (B3V,) ® (ByWy ) = (65 @y Vawp (-1)"2 P, (14)

i.e., the additional factor (—-1)“2® occurs comparing to the
standard tensor product. This factor originates from pass-
ing v, past e,. The action of the right linear operator
F ®G on the vector v@w in V™ @V (M) has the form
(F®G)(vew) = F(v) ®G(w) with its matrix elements

(F®G)™ = FppGeq (-1) @™ (15)

The unity operator in v "™ @v (1M js 8 =5 5 and
the permutation operator is P& =8, 48, (1) One
can show that the operator R(u) = b(u)f+c(u)F3, with
c(u)=u/(u+in) and b(u) =in/(u+in) satisfies the YBE

for R-matrices Eq. (4) acting in V™™ @V (1M Grading
is used when one considers a system of n species of bosons

606

and m species of fermions. In such a case Vj(n|m) denotes

the quantum Hilbert space of configurations at every site of
the lattice. For the supersymmetric t—J model we have one
boson (an empty state) and two fermions (electrons with
spins directed upward and downward) at each site. Then
the quantum space for each site for such a model can be

considered as Vj(JJZ). For such a model nine operators at
each site j exists. The first of these operators is the unity
operator J% =1, and the second one is related to the oper-
ator of the number of electrons in site j, Nj =Njp+Nj,as

32 =N =1-(1/2)n;.
5(1/2)(nj¢—n-¢), 3=

135 form the SU(2) sub-algebra. Here a +(@jc) cre-

Three other operators, J]?’ = SJz =

5 _o- _
SJ‘aT il and J--S-=

ates (destroys) the electron with spin o =T, at the site j.

Four more operators are J?:QjTE(l_”ji)a}w

7 _ _ t -0t =
Jj—Qj¢=(1—an)aj¢, ‘QjT=(1_nj¢)ajT and

J? = Q}f$ = (1—an)aj¢. These operators are the genera-

tors of the algebra gl(1/2) which can be written in the form

€

3998 — (0P ooy = 1197, (16)
where f(Z are the structure constants of gl(1/2), and ¢, =0
for the first five generators (i.e., they are bosonic opera-
tors), and ¢, =1 for the last four (fermionic) operators. The
fundamental matrix representation of the generators is in
the basis, in which the fermionic states are eJl =(10 O)J
for the electron with spin down, e;, = (010)J for the elec-
tron with spin up, and the bosonic state is ej3 = (001)J
(empty state) is:

100 -100

JJZ:%01O,JJ3:%Olo,
00 2 0 00
010 0 0 0

Jj‘:{o 0|, 33=[1 0 0f,
000 000
000 00 1

J?:[001,JJ7:000,
000 000
00 0 000

3¥=lo 0 0| J={0 0 0] @
010 100

We can introduce the invariant nondegenerate bilinear
form K,g, given as the supertrace over two generators

Kop = (K*Py? :strJ?J?. It is easy to show that using
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these operators we can re-write the Hamiltonian of the
supersymmetric t—J chain [21]

L1
Hy =t {ZP(a}GajH'CT + H.c.) P+

j=1L o
+2tSij+1—(1/2)anlcnj+1lc}, (18)
(e

as

L 9
Hy :—tz[ > KPIgab  —2n; +1]:

j=1\ a,p=1
L
=—t3[ T juy —2nj +1], (19)
j=1

where the graded operator IT; j,; permutes the three pos-
sible configurations (empty state and states with electrons
with spins up or down) between sites j and j+1, picking

up a minus sign if both of the permuted configurations are
fermionic. This Hamiltonian is obviously supersymmetric,
because it is the quadratic form of the generators of the

gl(1]2) algebra with the coefficients being the invariant

nondegenerate bilinear form of those generators. Notice that
the sums of all nine generators over all sites of the lattice
commute with the Hamiltonian of the supersymmetric t—J

model, [Hw ,Z?zl\]ﬂzo foro=1,...,9.

Let us now consider the algebraic Bethe Ansatz for the
glg(n| m)-symmetric (i.e., the g-deformed gl(n | m), uniax-
ial case) correlated electron chain. For the glq (1/2)-symmetric

chain the Hilbert space at each site is isomorphic to c®and
is spanned by the above mentioned three basis vectors. In
the FFB grading, i.e., in which ej; and ej, are fermionic

(the Grassmann parities are &, =1) and e;3 is bosonic
(the Grassmann parity is e3 =0) we can start from the

mathematical vacuum state | 0) = Hlj_:]_ej3' This choice of

the grading implies that R -matrix for the glg(1/2)-symmetric
chain has the form

R(u) = bl +
x 0 0 0O 0 0 O 0 O
0 O 0 -c. 00 0 0O
0 O 0 0 0 0 c 0 O
0 —, O 0 00 O 0O
+0 0 0 0 x 0 0 0 O0f, (20)
0 0 0 O OO0 O c_.oO
0 0 ¢cgcb 0 OO O OO
0 O 0 0 O0c O O O
0 0 0 O OO0 0 0 vy
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where b =sin(in), x =sin(u+in)—sin(in), y =sin(-u+in) -
—sin(in), and c; =exp(£in)sin(in). Also the function
c(u) =sin(u)/sin(u+in) will be useful. It is possible to
check that such R-matrices satisfy the YBE. Performing
then the procedure of the QISM described above, we ob-
tain the Hamiltonian of the anisotropic glq(1/2)-symmetric
correlated electron chain as the logarithmic derivative of
the transfer matrix taken at zero value of the spectral pa-
rameter (see above), namely H,, = t’zj Hj s

— T
Hj,j+1 = —z Pj (aj_*_lycaj’(T +H.C.) Pj +
(e}

t t t t
+(aj,¢aj+maj+1,¢aj,¢ +aj,¢aj+1,¢aj+1,¢aj,T)‘

—(e”nj’Tnjﬂ’i +e‘”nj’¢nj+m). (21)

For small n— 0 we obtain the R-matrix of the gl(1]2)-
symmetric chain (i.e. the supersymmetric t—J model).
Then, according to the above mentioned procedure, we
construct the Hamiltonian Eq. (1) of the two-chain aniso-
tropic glg(1/2)-symmetric chain as the logarithmic deriva-
tive of the two-chain transfer matrix, see above. One can
check that at half-filling (one electron per site) the model
reduces to the two-chain spin-1/2 model with the uniaxial
anisotropy [22].

2.4. Eigenvalues and eigenfunctions
for the supersymmetric correlated electron model

To find eigenvalues and eigenfunctions of the Hamilto-
nian (1) let us consider the monodromy matrix T (u) for the
glg(n|m) symmetric model as the (n+m)x(n+m) matrix
in the auxiliary subspace

T(U){f\ B] (22)
C D

where A is nxn matrix, D is mxm matrix, B is nxm
matrix and C is mxn matrix. For the glg(1]2)-symmetric
chain we have

A(u):[f‘“ f‘”], (23)
A1 Ay
and

B=(8 B,)", C=(GCy). (24)

Hence, the transfer matrix T(u) is
T(U) =strT(u) = —tr A+trD (25)
where for the glg(1|2)-symmetric chain we have

tu) = ~Ay Ay +D. (26)
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Determine the action of the monodromy matrix on the mathe-
matical vacuum so that the action of diagonal matrix ele-
ments T, produces c-numbers, i.e., T, (u)|0) = a, (u)|0)
and the mathematical vacuum is the eigenstate for these
diagonal components, and the action of all upper elements
Ty With o < is zero, i.e., T,g(u)[0) =0 for o <. Then
the monodromy matrix has the triangular form. Such a
monodromy matrix satisfies the intertwining relation for
monodromy matrices with our R -matrix in the graded space.
Then one can show that transfer matrices with different
spectral parameters commute, which constitutes the exact
integrability of the problem. The action of the L-operator of
the considered model on our mathematical vacuum | 0} is

c(u) 0 0
L; w0y = 0 c(u) 01, (27)

t t
bu)Q]; bW)Q], 1
i.e., it has the triangular form, which implies

ctuwy 0 0
Twlo=[ o ctw) ol. (28)
Ci(u) Co(u) 1

Equation (28) means the triangular action of the monodromy
matrix on the mathematical vacuum. This choice of the L-
operator can be used for the above described scheme for the
two-chain model, yielding a;(u) = a,(u) = cL(u)cL(u—e)
and ag(u) =1. Applying the machinery of the QISM for the
anisotropic supersymmetric t—J model we obtain the
eigenvalue of the transfer matrix

Au) = ﬁc‘l(x? —u)—c"(u)lﬂ[c_l(k? —u)x
j=1 j=1

M M
ch‘l(u—Ay)—c"(u)Hc‘l(Ay —u). (29)
y=1 y=1

Here the quantum numbers {k?}’j\‘zl and {Ay}y'=1 satisfy the
set of equations, known as the BAE

. M c(A, —Ag)
-1(,0 _ — y—ﬁ _
E[lc (7»1 /\v) QC(AB‘AYV y=1,...,M, (30)
By
and
M
(1) =TT (*-4,). i=L...N. ()
y=1

The numbers N and M (the number of electrons, and the
number of electrons with down spins) are related to the
values of the chemical potential p and the magnetic field
H , directed along the anisotropy axis.
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One can obtain the BAE for periodic correlated electron
integrable models under the non-force action of external
electro-magnetic fluxes by introducing the operator

T=e"12(1g+of)re™ Llg-oh) (@)

into the monodromy operator of the associated problem
(recall, subscript 0 denotes the auxiliary subspace).

2.5. Bethe Ansatze for rapidities

Changing the variables x‘} —in/2—v; we obtain the set
of the BAE for the two-chain anisotropic supersymmetric

t—J model

sin(v; +in/2) sin(vj —0+in/2) |
X

sin(vj —in/2) sin(v; —0-in/2)
xexp(—i2a[(®/ ®g)+(F I Fo)+9]) =

M sin(vi —A, +in/2
[0 Z A2y N
uzlsln(vj -A,—in/2)

N sin(Ag —Vj+in/2)

L_[lsin(Aa -Vj-in/2)

exp(—i4n[(F / Fy)+¢]) =

M sin(A, —Ag +i
I o e
Esm(Aa —Ag —in)

B=a

The energy of the state, characterized by the set of rapidities
vj and A, can be obtained as the logarithmic derivative of
the transfer matrix with respect to the spectral parameter,
then taking u = 0; we obtain

N {1—cos(vj)cosh(n)
+

E=-uN-2t"
H JZ:; cosh(n) —cosh(2v;)

(34)

. 1—cos(vj —0)cosh(n) ~ ueH(N -2M)
cosh(n) —cosh(2v; —26) 2 '

We see that the BAE are periodic in 0, i.e., it is enough to
consider 6 in the domain -t <0 <.

3. The ground state of the model

It can be shown that the ground state is described by
N —2M unbound electron states with the real rapidities v;
and M spin-singlet Cooper-like pairs (bound states) for
which charge rapidities are complex conjugated pairs. To
the exponential accuracy exp(-L), the rapidities of pairs
can be written as v, = A, £in/2, and for unbound elec-
tron states and Cooper-like pairs the BAE (up to the phase
shifts, related to the AB and AC effects) and the expression
of the energy coincide with the ones written in [8]. Taking
the logarithm of the obtained that way BAE we get
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@(VJ,T‘[/Z)-{-@(VJ—G,]’]/Z):
:L_l{Zn[lj+2+i+¢J+
Dy Ry
M
+Z®(vj—/\a,n/2), j=1,.N,
=1

O(Ay,m)+O(A, —6) = L_l[Zn[Ja +(2D£J+

0
N-2M M
+ Y O(Ag —Vjn/2)+ Y O(A, —Ag.m) |,
j=1 p=1
a:ll"'7M ) (35)

where numbers Ij and J,, arise, because the logarithm is a
multivalued function, and ©(x, y) = 2tan Ytan(x) coth(y)].
Equations (35) are periodic in F with the period Fy and in
@ with the periods @ and ®q /2. Hence, they remain
invariant under the replacements (F/Fy) —>{{F/F}}.
(D/Dg) >{{D/Dp}} and (2D/Dg) »>{{2D/Dy}},
where {{x}} denotes the fractional part of x to the nearest
(half) integer (i.e., to the nearest | ; and J,, ). Spin and charge
rapidities parametrize each eigenvalue and eigenfunction of
the Schrédinger equation, and, therefore, all characteristics
of the model in the ground state reveal those periodicities
also. In particular, the ground state charge and spin persis-
tent currents manifest such periodicities. The phase ¢,
caused by the SOI, can be considered as the initial phase
for those periodic persistent currents. The energy the state
is given by

E=-2t" Z

NZM (1-cos(2v)cosh(n)
cosh(n) —cos(2v;)

=1
1-cos(2v; —20)cosh
Lcos@v; ~20)cosh()) e (o
cosh(n) —cos(2v; —26) 2
sinh?(n)

M
—2t"cosh(n) Y (4 -

a=1

sin?(Ay) +sinh?(m) B

B sinh?(n)
sin?(Ay, —0) +sinh?(n)

j —uN. (36)

Then we can use the fact that the ground state energy of
a one-dimensional metallic system (i.e., the system which
has gapless low-lying excitations, the considered model
belongs to this class) can be presented as the series
Ep = Le, +E1 + L‘1E2 +..., where ¢, determines thermo-
dynamic properties of the host, E; describe the thermody-
namic behavior of an impurity (or edges of an open chain),
and E, describes the behavior of excitations, etc. Notice

that for systems with gl(2|1) (or SU(N)) symmerties loga-
rithmic corrections of order of (LIn L)’l, etc. exist. The
ground state of the studied model is organized by the fill-
ing of Fermi seas (i.e., states with negative energies) with
N —2M unbound electron states with real v; rapidities,
and M Cooper-like pairs with complex conjugated A,
rapidities. In the thermodynamic limit L,N,M — o with
fixed ratios N/L and M /L the ground state is given by
the solution of two Fredholm integral equations for the
density of unbound electron states p(v) (pp (V) is the densi-
ty of the holes) and density of pairs o(A) (o (A) is the
density of holes for pairs)

Zﬁ[ph(V)+p(V)] =f(yn/2)+f(v-6,n/2)—
—jdAf (v—A,n/2)c(A),
2n[o(A)+on(A)]= f(Am)+ f(A-6,1m)-

- j dzf (A - 2,m)5(2) - j dvf (A-v,n/2)p(v), (37)
where f(X,y) = 2sinh(2y)/[cosh(2y)—cos(2x)]. The in-
tegrations in Egs. (37) is over the values of A, v, and z, for

which energies of states are negative. In the thermodynamic
the energy of the system is

e 1-cos(2v)cosh(n)
& = =2 [dvp (V)[ cosh() —cos(2v)
N 1—cos(2v —26) cosh(n)
cosh(n) —cos(2v—26)

j—ueH(N—ZM)ZL—

sinh?(m)
sin2(A) +sinh?(n)

~2t"cosh(n) j dAc(A) [4 -

~ sinh?(n) N 38
sinZ(A—9)+sinh2(n)J L 39

4. Finite size corrections and persistent currents

One can clearly see that these equations do not depend on
@ and F explicitly. It respects the fact that ¢, does not de-
pend on external electro-magnetic fluxes and the AB and
AC quantum topological effects reveal themselves in the
(highest) corrections of order of L etc. The calculations of
those corrections can be performed in the framework of the
method, based on the use of the Euler—-MacLaurin formula
[23]. The finite size (mesoscopic) correction to the energy,
E, , for the simplest case of only two Fermi seas for un-
bound electron states and spin-singlet pairs (i.e., for the spa-
tially homogeneous distributions of charge and spin densi-
ties in the ground state; due to nonzero 6 there can be more
than one Fermi sea for each of eigenstates [8] for some
ranges of the chemical potential and the external magnetic
field, see below), are given by [24]
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2
Ep=m ) 2y [ )3 Zq,l(Dq‘d’q)J *

I=u,p g=u,p

2
+n|++n|‘—$ +VE'[ > (2_1)|,qANqJ . (39)

q=u,p

where v; are the Fermi velocities
d.s(v)/dv\,z\,0 d‘{’(A)/dAAzAO

VvV, = \Y ) 40
) T 2metng) 0
of the unpaired electron states and pairs, respectively,
ANy =A(N-2M), AN, =AM,
D, = L AN, + AN dl
u _E( utANp) modl,
D, = L N dl 41
D _EA p modl. (41)

and ¢, =(®/Pg)+(F/Fy)+d, ¢y =20/Dy. Here we
have introduced the “dressed” energies for unpaired elec-
tron states g(v) and pairs W(A), which are determined
from the following set of integral equations,

e(k)=t"f(v,n/2)+t" f(v_e,n/z)_H_HeZH _

t//
—ZIdAT(A)f(v—A,nIZ),
W(A) =t" f(A,m)+t" F(A—0,1)—2u—

v [[dzf (A~ z.m) ¥ (2) -
TC

2 t; [avt (A-vin/2)e(0) (42)

2

The expression for the momentum is

ap=% (Z_L“[(D, ~0)AN; 0 =y |+
I=u,p

+2pf (D) —¢|)j- (43)

The quantum numbers ANy, , refer to the change in the
number of states in each Fermi sea by the low-energy exci-
tation and Dy , are the corresponding backscattering quan-
tum numbers (transfer from the left Fermi point to the right
Fermi point). The number of particle-hole excitations
about each Fermi point is denoted by njp. The backscat-
tering quantum numbers are shifted by the phases related
to the SOI (internal phase) and the AB and AC effect (ex-
ternal phases). The Fermi momenta corresponding to the
Fermi seas are p; = n(N—2M)/L and pp =M /L. The
generalized dressed charges, z4 = €jq(By), where By =V
and B, = Ay, are obtained from the solution of the follow-
ing set of integral equations (I = u, p)

610

Euv) = 81,y — [AAF (V= A1/ 2Ep (A)
Eip(A) = 8y p — [ def (2— A, M)y (2) -

~[avf (v—An/2)5,(v). (44)

Equations for the components of the dressed charge de-
pend on 6 via the limits of integration. In the ground state
there are no excitations, and we can use the expression (39)
with AN, = Dy = n; = 0. Persistent currents are related to
the first term in Eq. (39), and their magnitudes are propor-
tional to the Fermi velocities of the low-energy states (un-
bound electrons and Cooper-like pairs), and dressed charge
components.

5. Analysis

Depending on the values of the chemical potential p and
the external magnetic field H there can be two, four, or no
Fermi seas. Respectively, persistent spin and charge currents
manifest the behavior, connected with the states, which form
Fermi seas. The magnetic field behavior of the persistent
currents is reminiscent of the type 11 superconductor. There
exist two critical fields, H., below which only Cooper-like
singlet pairs exist in the ground state, and Hg, above which
only unbound electron states have the Fermi sea [8]. On the
other hand, the magnitudes of persistent currents strongly
depend on the band filling. Magnitudes are zero for the emp-
ty chain, and increase with the growth of the band filling,
being maximal at the half-filling. Depending on the value
of 0 there can exist additional Fermi seas [8], which are
responsible for the formation of the CDW and/or SDW
(charge and spin density wave) like incommensurate states.
Notice that additional Fermi seas are related to the same
kind of low-energy states (either unbound electrons, or
pairs). At the critical values of 0, u, and H, the magnitudes
of persistent currents manifest features of their behavior:
Fermi velocities of related low-energy states become zero.

The oscillations of persistent currents have the saw-tooth
like form, which is usual for any system with a large number
of particles in it. Fermi velocities of low-lying excitations v;,
and dressed charge matrix (which determine magnitudes of
persistent currents) explicitly depend on the parameter of the
inter-chain interaction.

It is not so for ¢, caused by the SOI: Only initial shifts of
persistent currents are determined by the SOI phase in the
main (~ L_l) approximation. Initial phases of oscillations of
persistent currents also depend on the parity of the number
of electrons N and down-spin electrons M mod (4). The
nonzero © determines the nonzero ground state momentum
of the system (due to topological charge and spin currents,
i.e., three-site terms, caused by the inter-chain coupling),
which is nothing else than the nonzero charge and spin chi-
rality (or Noethers topological currents).

From the above obtained finite size corrections we see
that the spin persistent current reveals oscillations, caused
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by the external electric flux F, with the period of oscilla-
tions Fy and the initial phase ¢. The period of oscillations
manifests that unbound electron excitations carry fractional
spin 1/2, i.e., the model belongs to the class of quantum
spin liquids. That current is connected with unbound elec-
tron states. Hence, for H < H, such oscillations are absent.
For H > Hy the spin persistent current manifest properties
of the one for the non-interacting one-dimensional system
(notice that for this gapped state the magnitude of the spin
persistent current is exponentially small with L). On the
other hand, for H, < H < Hg spin persistent current exists,
however, its magnitude depends on the value of the mag-
netic field and the band filling. The magnitude is maximal
for the half-filled band, reminiscent to the one of the zig-
zag spin chain.

The charge persistent current in general situation mani-
fests the interference of oscillations caused by the external
magnetic flux © with two periods: @y and ®q /2, related
to unbound electron states, and Cooper-like pairs, respec-
tively. For H < H, it only oscillates with the period ®g /2,
characteristic for Cooper-like pairs. For H > H, only oscil-
lations with the period @ survive, with the properties,
characteristic for the non-interacting electrons, however
with the exponentially small with L magnitude. For
H. < H < H oscillations with two periods exist.

In the zero-anisotropy limit we have H. — 0. For the
half-filling at H = 0 the magnitudes of oscillations of per-
sistent currents with the periods ®, and @ /2 become
equal to each other, however, the initial phases of those
oscillations are different due to the SOI. However, for any
nonzero H and non-half filled case the magnitudes of os-
cillations with periods ®y and ®/2 become different
from each other, and the interference of those two periodic
functions has to manifest itself in the ground state.

Oscillations of charge and spin persistent currents are
maximal in the ground state, their main effect is of order of
L. However, for T =0 persistent currents become expo-
nentially small with L [25]. The saw-tooth like form of
oscillations is related to only the ground state. Any nonzero
temperature T > 7v; / L strongly reduces the magnitudes of
the most of harmonics, and sinusoidal-like oscillations result.

6. Summary

In summary, we have considered persistent currents in
the integrable two-chain correlated electron ring with the
anisotropy of electron-electron interactions. We have shown
that the model belongs to the class of quantum spin liquids,
because it does not have any ordering even in the ground
state, and has emergent excitations, which carry fractional
spin 1/2. We have shown how and at which conditions
such fractional spin can be measured in the periodicity of
spin persistent currents. On the other hand, the considered
correlated electron model in the ground state manifests
features, characteristic for type Il superconductors (notice
that in one space dimension quantum and thermal fluctua-
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tions destroy the superconducting ordering). The periodicity
of the charge persistent current can manifest the interfere-
nce of oscillations, related to the charges of Cooper-like
pairs and unbound electron states, which form the ground
state Fermi seas of the model.
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[MepCcUCTEHTHI CTPYyMUM Yy ABOXNAHLIKOXKKOBIA Moaeni
KopesibOBaHWX €NeKTPOHIB

A.A. 3B4riH

Po3paxoBaHO MEPCUCTEHTHI CTPyMH B OCHOBHOMY CTaHi s
HEIO/IaBHO 3aIPONIOHOBAHOI TOYHO PO3B’SI3yBaHOI JBOXJIAHLIFOXK-
KOBOI MOJIeNi KOPEJIbOBAHHX €JIEKTPOHIB 3 aHI30TPOIIEI0 CIIiH-
CIIIHOBO B3a€MOJIi MK €JICKTPOHAMH Ta CIIH-OpOITAIBHOIO B3ae-
Moziero. Mojenb onucye KBa3iogHOBUMIpHHI HammpoBigHuk 11
pony. IToka3ano, 1o criH-opOiTalbHa B3a€MO/Iisl BU3HAYAE TIOYa-
TKOBI (pa3u OCHWIISILIN 3apsSJOBHX Ta CIIHOBHX MEPCUCTCHTHHX
CTpyMIB, sIKi BU3HAYAIOThCS HEMOB’I3aHUMH CJICKTPOHHHMH CTa-
HaMmiu. 3 iHIIOTro OOKY, CiH-CHHIJIeTHI napu tumy Kymnepa Bu3Ha-
YaKTh OCLMJIALII TUIBKH 3aps/0OBHX HMEPCHCTCHTHHX CTPYMIB 3
nepiosoM, XapakTepHUM UIsl Tap. 3aleKHO Bil BEIMIMH 30BHiLI-
HBOTO MArHiTHOTO IOJIS Ta 3allOBHEHHS 30HH, B CHCTEMi MOXeE
NPOSIBIISATHCS CKJIAJHA KapTUHA iHTepdepeHwii IeKiIbKOX THIIiB
OCIMIIALIH.

KutrouoBi croBa: Mogerni, 0 iHTerpyIOThCs, aHi30TPOITis, HePCH-
CTEHTHI CTPYMH.

612

[MepCUCTEHTHbIE TOKM B ABYXLIENOYEYHON MOAENN
KOPPENMPOBAHHbIX 31IEKTPOHOB

A.A. 3BSAMVH

PaccunTanel HepcUCTEHTHbIE TOKM B OCHOBHOM COCTOSIHUH
JUISL HEITaBHO MPEUIOKEHHOM TOYHO pelaeMoil IByXLENoueuHON
MOJENM KOPPEIUPOBAHHBIX 3JEKTPOHOB C aHM30TPONMEH CHHH-
CIIMHOBOTO B3aMMOJICHCTBHS MEXAY OJCKTPOHAMH W CIIHH-
opOUTaANBHBIM B3auMoOJeiicTBUEM. Moenb ONMUCHIBAET KBAa3HO.-
HoMepHBIH cBepxnpoBogHuK I poma. Ilokazano, yTto crnmH-
opOuTanbHOE B3aUMOIEHCTBHE ONpEeAeIsieT HadanbHble (a3bl
OCHMIUTALUIA 3apsIOBBIX M CIIMHOBBIX IEPCHUCTECHTHHIX TOKOB,
KOTOpBIE ONpPENeNsIloTCS HECBI3aHHBIMU 3JIEKTPOHHBIMU COCTOSI-
Husimu. C Ipyroil CTOPOHBI, CIIMH-CHHIJICTHRIE TTaphl THa Kyme-
pa ONpenessIoT OCHUIUISALMU TOJIBKO 3apsAI0BBIX IIEPCUCTEHTHBIX
TOKOB C MEPUOAOM, XapaKTepHBIM Ui map. B 3aBHCUMOCTH OT
BEJUYMH BHEIIHETO MArHMTHOI'O IOJISI M 3alOJHEHHUS 30HBI, B
CHCTEME MOXKET MPOSIBIISATHCS CI0XKHAS KapTHHA HHTEPPEPEHIUU
HECKOJIbKHX THUIIOB OCLMJIISIIHMA.

Kuroueswie criosa: HUHTETpUPYEMBIC MOJACIN, aHU30TPONNA, IICP-
CUCTCHTHBIC TOKH.
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