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Collective-mode dispersion of atomic Fermi gases
in a honeycomb optical lattice: speed of sound
of the attractive Kane—Mele—Hubbard model at half filling
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We examine the superfluid states that emerge in the Kane—-Mele model as a result of the on-site short-range
attractive interaction U. The collective-mode dispersion is defined by the solutions of the Bethe—Salpeter (BS)
equation in the generalized random phase approximation. The slope of the low-energy (Goldstone) mode and the
corresponding sound velocity at half filling, calculated within the BS formalism, has been compared with the
corresponding results obtained previously by the T-matrix approximation. The difference between the two ap-
proaches is that the T-matrix approximation takes into account only the ladder diagrams, and neglects the bubble
ones. For this reason, the sound velocity in the direction toward point M, calculated within the T-matrix approx-
imation, is about 4% less than the result obtained by employing the BS equation.
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1. Introduction

We consider the so-called Kane—-Mele—Hubbard (KMH)
model, which can be used as a tight binding model of fer-
mion atoms hopping in a honeycomb optical lattice (see
Fig. 1). As in the case of charge carriers in graphene, at
low energies the system admits an effective description in
terms of massless Dirac fermions. Originally, Kane and
Mele (KM) considered the Hamiltonian for the electrons
in a graphene, which consists of two copies of the Hal-
dane’s model [1], one for spin-up electrons and one for

Fig. 1. Honeycomb lattice (a) and its Brillouin zone (b).
81 = (1U2,~/3/2), 85 = (1/2,—~/312), 83 = (-1, 0) are the nearest
neighbor sites vectors, while dj o =+(3/2, V312), d34 =
=1(3/2,-+/3/2), and dsg=+£(0, v/3) are the next nearest
neighbor sites vectors. The lattice constant a = 1.
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spin-down electrons [2,3]. With Fourier transformation
into momentum space, the KM’s Hamiltonian can be
written as a 4x4 matrix in the four-component spinor basis
WAkt Vet Vakd Vak i)T, the Hamiltonian in the
momentum space is given by the following 4x4 matrix [4]:

~ Ha(k 0
Z(K)-A  h(K)
k) = . 1
a9 ( h* (k) —Z(k)—AJ .

Here h(k) = —t[x(k)-iy(k)], Z(k)=-2Az(k), t is the
nearest-neighbor hopping amplitude, and X is the strength
of the intrinsic spin-orbit (1ISO) interaction, and in the pres-
ence of time-reversal symmetry (TRS), Hy(K) = HI(—k).
The functions x(k), y(k), and z(k) are defined as follows:

(kxj (\Eky]
x(k) = cos(k, ) +2cos| — |cos ,
2 2
_ _ [kxj [ﬁky]
y(k) =sin(k,) —2sin| — |cos ,
2 2
2(k) = sin(v/3k,) —2cos(%)sin[€ky }
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A describes the possible energy offset between sites of A
and B sublattices. Since the different site energies on
sublattices A and B are controlled by the phases of the la-
ser beams, we shall assume the case of honeycomb lattice
with the same on-site energies (A = 0).

In the absence of I1SO interaction (A = 0), and if we take
into account also the next nearest-neighbor hopping ampli-
tude t', the eigenvalues of the Hamiltonian (1) are

£, (K) = —t'f (k) £t/3+ f (k), where

f(k) = 2cos (\/§ky) +4 cos (%) cos [‘/gzky J

The band structure is as that of graphene where the Dirac

2n 2w , [ 2n 21 .
conesat K =| —, —— |and K'=| —, ——— | are spin
3a’ 33a 3a’ 33a

degenerate.

The KM model of fermions on the honeycomb lattice is
a prototype for several phenomena in condensed matter
physics, such as the quantum spin Hall effect, the Klein
tunneling, the universal optical absorption, and a large
amount of theoretical works predicted the existence of
a number of exotic phases in the case of honeycomb lattice
geometry. It is worth mentioning that most of the new phases
in condensed matter physics are driven by the Coulomb
interactions, while the KM model predicted that the 1SO
coupling alone would turn graphene into a completely new
electronic state known as topological insulator. In other
words, the 1SO coupling makes graphene topologically
different from graphene without 1SO coupling.

In this paper, we examine single-particle and collective
excitations in a honeycomb optical lattice by employing
the attractive KMH model. In the presence of an attractive
on-site interaction between the fermions, no matter how
weak it is, the fermion atoms form bound (Cooper) pairs.
As a result, the system becomes unstable against the for-
mation of a s-wave spin-singlet superfluid ground state.

Turning our attention to the collective-mode dispersion
of the attractive KMH Hamiltonian, to the best of our
knowledge, there exists only one paper where the collec-
tive-mode spectrum at zero temperature has been examined
by employing the T-matrix approximation [5]. According
to this approximation, the excitation spectrum of collective
modes »(Q) was derived by calculating the roots of the
following secular 2x2 determinant:

det Uil—HAA((D!Q) _H*AB (CO,Q) =0 (2)
_HAB ((D, Q) U -1 - HBB ((D! Q)
where
_dQ d%k _km KM
= e oo e
614

Here A, are the sublattice indexes, and Gja,q (K, 0) is

the Fourier transforms of the KM single-particle Green’s
function GiN jo(t—t) = - Tt{Wiic W o E)}). 1t is
worth mentioning that the T-matrix approximation, also
known as the ladder approximation to the Bethe—Salpeter
(BS) equation [6] consists of the sum of ladder diagrams in
the perturbation expansion in terms of U where the corre-
sponding single-particle KM Green’s functions are inde-
pendent on the Hubbard interaction. The question that natu-
rally arises here is about the contributions due to the bubble
diagrams, neglected by the T-matrix approximation.

To answer the above question, we shall employ the
Hubbard-Stratonovich transformation (HST). If no ap-
proximations were made in evaluating the corresponding
functional integrals, it would not matter which of the pos-
sible HST is chosen. When approximations are taken, the
final result depends on a particular form chosen. A possi-
ble approximation is to introduce the energy gap as an or-
der parameter field, which allows us to integrate out the
fermion fields and to arrive at an effective action. Next
steps are to consider the state, which corresponds to the
saddle point of the effective action, and to write the effec-
tive action as a series in powers of the fluctuations and
their derivatives. The exact result can be obtained by explic-
itly calculating the terms up to second order in the fluctua-
tions and their derivatives. This approximation, known as
the Gaussian approximation, has been employed in the case
of square geometry [7], but to the best of our knowledge, it
has never been used in the case of honeycomb lattice.

Instead of introducing an order parameter field, we shall
transform the quartic terms to quadratic forms by introduc-
ing a boson field which mediates the interaction of fermi-
ons. This assumption is similar to the situation in quantum
electrodynamics, where the photons mediate the interaction
of electric charges, and it allows us to derive the Schwinger—
Dyson (SD) equation for the poles of the single-particle
Green’s function, as well as the BS equation in the general-
ized random phase approximation (GRPA) for the poles of
the two-particle Green’s function. In the GRPA, the single
particle excitations are replaced with those obtained by
diagonalizing the Hartree—Fock (HF) mean-field Hamilto-
nian, while the collective modes are obtained by solving
the BS equation in which the single particle Green’s func-
tions are calculated in HF mean-field approximation, and
the BS kernel is obtained by summing ladder and bubble
diagrams

2. Mean-field approximation
When the attractive Hubbard interaction
Hy =-U Z n, 40, | is taken into account, the basis of the
i

four-component wave function

t_ 1 T T T
Fr=Wakr Vakd Vet Vexd)
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becomes a basis of the eight-component wave function ~ AA ~ AB
(k) H (k)

t— o, t t t m -
Y= Wakt Yakt Vet Vekd YAk YAk Hwr (k) = st ces | ®)
Vg _k 1 Vp _k | )- We further assume that the BCS mean- k) (k)
field order parameters are real constants, i.e., Apg)(k)=  Where the corresponding 4x4 blocks are defined by the
< > he ord ; following block-matrices:
=U(y A = A. The order parameter A an
A(B), k,i- A(B),k,T- _ h(k) 0 0 0
the- corresponding (?hemlcal potentials pa =pug =p are AB 0 h(k) 0 0
defined by the solutions of the number and the gap equa- H (k)= 0 0 hik o |
tions. Thus, the mean-field Hamiltonian in the momentum ~h(k)
space on the basis of the eight-component wave function is 0 0 0 -h(k)

represented by the following 8 x8 matrix:

—tf(K)+Z(K)—p 0, 0 A
A% 0 = 0 —tf(K)-Z(K)—p -A 0
0 -A t'f (k) +Z(K)+p 0 ’

A 0 0 tf (K)—Z(K) +
—t'f (k) - Z(K)—p 0, 0 A
LI 0 —tF(K)+Z(K)—p -A 0
(k) = 0 —A tf (k)= Z(K) +p 0

A 0 0 tf (k) +Z(K) +

The single-particle excitations in the mean-field approximation manifest themselves as poles of the Matsubara single-
particle Green’s function, defined as é(k,iwm) = (immi— H MF (k))’l. Here, the Matsubara fermion energies are
oy = 2n/B)(m+1/2), m=0,1, 2..., B=1/(kgT), and kg is the Boltzmann constant (throughout this paper we have as-
sumed % = kg =1). The corresponding zero-temperature Green’s function é(k, ®) is an 8x8 matrix:

Gy (k, o) 0 0 Gy (k,0) Gys(k,0) 0 0 Gyig(k, )
0 G (k,m) Gys(k,0) 0 0 Gop(k,w) Gy (k, ) 0
0 Gpa(k,0) Gas(k, o) 0 0 Gzg (K, 0) Gz7(k,m) 0
Bik,o) = G (k, ) 0 0 Gua(k,0) Gys(k,0) 0 0 Gyg (K, 0) R
Gsy (k, @) 0 0 Gsy  Ggs(k,0) 0 0 Gsg (K, ©)
0 Gea(k, ) Gg(k, ) 0 0 Ges (K, ) Gz (K, ) 0
0 Gra(k,0) Grz(k,m) 0 0 Grg(k,0) Gr7(k,0) 0
Gg1 (k, ®) 0 0 Gga(k,®) Ggs(k,0) 0 0 Ggg (K, )

where the elements of the above matrix can be written in the following form:
Anny () Bay.n (K) Copny (K) Dy (K)
+ + + :
o-o;(K)+i0"  o+o(K)-i0" o-m,(K)+i0" o+ao,(K)-i0"
oy 5(K) = \/AZ +O2(K)+Q3(k),  QF(k) =[t'f (k) +u]? +t2[3+ f (K)]? + 1222 k), (5)

Gnl,nz k,w) = {m.n}=1 2,..8,

03 (k) = 2[t'f (k) + p]\/t2[3+ f(K)]? + 2222 (k).

The poles +ay ,(K) of the single-particle Green’s function describe the dispersion of the single-particle excitations in the
rnean-_field approx_imzfltiorl. The functions Aﬂynz (k), Bﬂlynz (k), Cn1’n2 (k) and Dnl’r12 (k) can be numerically calculated by
inverting the matrix (io,1—H mrF (K)).

The momentum distribution for the spin components M)y (k) can be evaluated using the corresponding elements of the
8x8 Green’s function matrix:
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M09 = (Wh Vakt )+ (Vh i1 Vek ) =B X (Gualkiion) + Ges (.ion)) =

IOJm

= fe_p (o (K)) (A (K) + Ass (K)) + (1— fr_p (@7 (K)) ) (By (K) + Bss (K)) =

= fe_p (@2 (K))(Cp1(K) +Cs5(K)) + (1 fr_p (@2 (K)) ) (Dy1(K) + Dss (K)),
(K= (Wi Wakd ) H(Wh g Vel ) =87 D (Goo (ki) + Ges k.ioom)) =

(6)

Iwm

= fe_p (0 (K))(Agp (K) + Agg (K)) +(1- fr_p (@1 (K))) (Bpp (K) + Bgg (K)) =
= fr_p (02 (K))(Cpa (k) +Cpg (K)) +(1- fr_p (2 (K))) (Dya (K) + Dgg (K)),

where fp_p(x) = (eﬁx +1)’l is the Fermi-Dirac distribution
: : 1
function. The symbol me is used to denote B . As-

suming the zero-temperature case, and by using the rela-
thﬂShlp A“ (k) + BIJ (k) +CI] (k) + DIJ (k) = Si,j' we find:

1
Ny (K) = 1_§[A11{22}(k) - Bl (k) +

+C114223(K) = Dr1g203 (K)] _%[ASS{GG}(k) - M
—Bss 663 (K) + Css 1663 (K) — Dssge63 (K)]-

By summing over all vectors from the first Brillouin
zone, we derive the number equation for the filing factor:

f= > (mK)+nyK)). (8)

keBZ

Very similarly, one can derive the gap equation

A=U{wa 1 ¥apt) =UB Y Gosliion),

oy
which at a zero temperature assumes the form:

A=U > (By(K)+Dy(k)). ©)
keBZ

At fixed filling factor f, one can obtain the chemical po-
tential and the gap by solving Egs. (8) and (9).

To compare our results with the T-matrix approxima-
tion, presented in Ref. 5, we have solved the gap equation
at half filling (u=0and f =1) setting U/t = 2.69, A/t =0.1
and t' = 0. The gap equation provides A/t = 0.151.

3. GRPA for the collective modes

The Green’s functions in the functional-integral ap-
proach are defined by means of the so-called generating
functional with sources for the boson and fermion fields. In
our problem, the corresponding functional integrals can-
not be evaluated exactly because the interaction part of
the KMH Hamiltonian is quartic in the Grassmann fermi-
on fields. We transform the quartic terms to a quadratic
forms by introducing a boson field which mediates the
interaction of fermions. The boson fields in square and
triangular lattices are four-component fields [8,9], but in
the honeycomb lattice we have to work with a model sys-

616

tem which consists of a eight-component boson field A, (z)
(a=1, 2, ..., 8) interacting with eight-component fermion

= ~ =1
spinor fields W(y) and ¥(x) =¥ (X):

W) = (Wl W Dt (DAL )

Ve L (D2 (D L (V).

Here, we have introduced composite variables, z = (r;,v) =
=(j,v), y={r,,u}={i,u} and x={r;;,u}={i",u’}, where
r;, ry are the lattice site vectors, and according to imagi-
nary-time (Matsubara) formalism the variable u, u’ and v
range from O to B.

The action of this model system is assumed to be of the
following form S = SéF) + SéB) +S(FB) where:

T U P
s =y(G T (yiw(x),

S =2 A, (DG 2. 2) 4 2),

SFB) =y ()Y (v, x| V() A, (2)

Here we use the summation-integration convention: that
repeated variables are summed up or integrated over. The
action S(F) describes the fermion part of the s stem The

inverse Green s function of free fermions G( (y X) is
given by the following matrix:
~(0)-1
G (ix)=
= 1 r (0)—1 H
= > explik(r; ;) —op (u-u )]Gnlnz (K,iop),
kanm

where the non-interacting Green’s function is defined as
()_l(k,imm) = (io1—Ho(k)). The non-interacting Ha-
milton Ho (k) is obtained from H mr (K), but with A = 0.

The action S(()B) describes the boson field which medi-
ates the fermion—fermion on-site interaction in the Hub-
bard Hamiltonian. The Fourier transform of the bare boson
propagator in S(()B) is defined as:

Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 5
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~(0) 1 {ilk(k j =k i)-on(0-v)} 2 (0)
D N = | p
(z,7) N Ek > e D (k)
®p

5% (k) = (10)

o 0o oo o o C o
O 0o o oo oo C

O 0O OO0 O o o o
O O OO0 0o o o o
o o C o oo o o
o o o C o o o o
O 0O OO0 o0 o o o
O O OO0 o o o o

Here, the Matsubara boson energies are w, =2mm/f;
p=0,1, 2.

The interaction between the fermion and the boson fields
is described by the action S(F~B) The bare vertex

~(0) ~(0) . . .
Fo (Y1:%2|2) =To (ig,Up3ip,Up | J,0) =

= 5(Uy —Up)3(Uy — )3, 5 (T

hip % j T
0 _ A(A) 0
is a 8x8 matrix I'q” = ta , Where the 4x4
5 B
0 To
~(A/B) L . A
blocks T'o, ~ are defined in terms of the Dirac matrix yq

and the matrices &; (&; matrices also appear in supercon-
ductivity [10]):

~(A) 1 -~

Fq ——(’YO +(Iz)8 1+ (’YO (Xz)6a2+
+—((Xx+i0ty)80_3 +—(O€x—i(ly)6a4,
~B) _ 1.
| Y ——(yo +Otz)6 5+— (yo O‘Z)8a6+ (12)
+§((lx+i0(,y)8a7 +E(0Lx—i(ly)6a8,
10 0 O
. 01 0 O . o 0 =y vz
= L (x’. = 1 = L 1 .
7o 00 -1 0 ' 0 oyojoy y
00 0 -1

The basic assumption in our BS formalism is that the
bound states of two Fermi atoms in an optical lattice at
zero temperature are described by the BS wave functions
(BS amplitudes). The BS amplitude determines the proba-
bility amplitude to find the first atom at the site i at the mo-
ment t; and the second atom at the site j at the moment t,.
The BS amplitude depends on the relative internal time
t, —t, and on the “center—of—@ags" time (t +t,)/2 [11].
Since the boson propagator D (k) is frequency inde-
pendent, the spectrum of the collective modes will be ob-
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tained by solving the foIIowing BS equation for the equal-

time BS amplitude ‘P {nl n}=12 ..,8:
Q -kO
¥ =K ( Y <Q>j

Ng n Ng n
{ld[ 3 5]+|exc( 3 5]} ¥e o (12
n4 n6 n4 n6 6'n5

In the GRPA the two-particle propagator K © s written in
terms of the mean-field single-particle Green’s functions:

KO (nl " |w(Q)] =K@ =
Ny

MN3ngny
J. I (2 ) n1nB k + Q' Q+ (’)(Q))Gn4n2 (k' Q) (13)

The kernel of the BS equation is a sum of the direct
Iq =55F /5G and exchange lexc = 521 /5G interactions,
written as derivatives of the Fock = and the Hartree ="
parts of the self-energy. This means that the BS equation
and the corresponding the SD equation for the self-energy
have to be solved self-consistently. In the Appendix A, we
have presented an approximation which allows us to de-
couple the BS and SD equations, and to obtain the follow-
ing expressions for the BS kernel:

M
dnz

m nNg)_1 0) (0
Iexc(n2 n4]:EFSS)(nlan)DéB)F[(?;)(n4-n3)-

n
nSj = 10 (m,15)DYr® (ng.ny),
4 (14)

Here Fg’)(nl,nz) is the corresponding matrix element of

(). The BS equation, written in the matrix form, is

(I +U Z)\I’ =0, where 1 is the unit matrix, and the condi-
tion for the existence of non-trivial solution requires the

64 x 64 determinant det ‘U N4z ‘: 0. By applying simple

matrix algebra, the 64 x 64 determinant can be simplified to
a 20x 20 one of the following form

A4><4 ((Dv Q) 0 0
det 0 B4><4 ((,O,Q) 0 =0. (15)
0 0 Ci2.12(0,Q)

The elements of the above blocks are given in the Appen-
dix B. The elements of the Ay, 4, and By, blocks are differ-
ent, but det| Ay4(0,Q)|=det|By,(m,Q)|. The above
20x20 determinant vanishing if det| Ay 4(®,Q)|=0, but
our numerical calculations at half filling show that
det | Ageq (@ =0, Q = 0) | 0, which means that the determi-
nant det| A4, Cannot provide the Goldstone mode disper-
sion. Therefore, the BS formalism provides only one secular
determinant Cj,,4,(®,Q). We have used the mean-field
system parameters at half filling, introduced in Sec. 2, to

617
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obtain the sound velocity u=caat/z in the direction of
point I" toward point M. The slope of the linear part of the
collective-mode dispersion has been calculated numerical-
ly by using four points with Qy =0 and aQx = 0, 0.0025x
and 0.0050r. The corresponding slope is o =1.45, and
therefore, the sound velocity becomes u/vg = 0.97, where
we have introduced the Fermi velocity vg = (3/2)ta/# in
a honeycomb lattice. For the similar system parameters,
the slope, obtained from Fig. 5(b) in Ref. 5, is o =1.34,
that is about 4% difference.

4, Conclusion

To summarize, we have examined the superfluid states
of the attractive Kane-Mele—Hubbard model. We have
obtained the spectrum of the single-particle excitations
within the mean-field approximation. We have also de-
rived the Bethe-Salpeter equation for the attractive Kane-
Mele—-Hubbard Hamiltonian based on the generalized ran-
dom phase approximation. The collective modes are de-
fined by the roots of the corresponding secular determi-
nant. The slope of the Goldstone sound mode has been
numerically calculated at half filling. Our numerical result
shows that the T-matrix approximation, which does not

take into account the exchange interaction, underestimates
the sound velocity by about 4%.

It is worth mentioning that the Gaussian approximation
also neglects the exchange interaction, but in square or
triangular lattices it overestimates the slop of the Gold-
stone mode compared with the BS formalism.This is be-
cause the Gaussian and the T-matrix approximation are
using different single-particle Green’s functions. The
Gaussian approximation uses mean-field single particle
Green’s functions, while in the T-matrix approximation the
KM single-particle Green’s functions are employed.

Although we restricted our numerical analysis to half
filling, we plan in a subsequent work to use our approach
in the case when the system is away from half filling. Our
preliminary results show that away from half filling, the sound
speed decreases. For example, for the following system pa-
rameters, U/t =3, f =0.93, A/t =0.2, and t'/t = -0.15, we
found p/t = -0.75, A/t = 0.65, and u/vg = 0.52.

Appendix A

There is one-to-one correspondence between the KMH
model and our model system, which is based on the fol-
lowing Hubbard-Stratonovich transformation for the fer-
mion operators:

JutAexo WO 13k 2500 0 = 50| - UL (x| DRI . W (X 12950 |

The functional measure Du[A] is chosen to be:

(o
u[A] = DAe ZA‘*( Paufp (:2)5()

Juiar=t

According to the field—theoretigal approach, the expec-
tation value of a general operator O(u) can be expressed as
a functional integral over the Poson field A and the
Grassmann fermion fields y and :

(Tu©©)) = 7537
Dl v, ABWexp| o (A, ()~ M Y |lsm=o,

where the symbol <...> means that the thermodynamic
average is made. The functional Z[J,M] is defined by

200,M1= [ Duly, v Alexp| 1, (DA, ()~ vy |

where the functional measure

Duly, v, Al = DADyDy exp (S)

618

satisfies the condition jDu[ﬁ,\T;, A]=1. The quantity J (z)

is the source of the boson field. The sources Mij (y; X) of the

fermion fields are included in the ?(y)l(/l\(y,x)@(x) term,

where M(y,x) isan 8x8 matrix:

My1(y;X) ... Mgg(y;x)

M (Y, X) = Mo (yiX) .. Mzs(y;x).

Mg (y;X) ... Mgg(y;X)

In what follows, we introduce complex indexes 1={rny, y; }.
and 2={n,, X}, so in short notations we have
n, (V1:%2) = M (1;2).

r%y means of the definition of the thermodynamic aver-
age, one can express all Green’s functions in terms of the
functional derivatives with respect to the corresponding
sources of the generating functional of the connected
Green’s functions W[J,M]=1InZ[J,M].

The boson Green’s function is D,g(z,2') is a 8x8 ma-
trix defined as

52w

Dyp(z,2') = —W-
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G(xy) =
—<fu @(x)@@(y)> includes all possible thermodynam-

The single-fermion Green’s function

ic averages. Its matrix elements are Gnn, (X5 y2) =
= =W /3Mpp, (Y23 %)- The Fourier transform of the sin-
gle-particle Green’s function is given by

G(1;2) =
:%ZZexp{ [k(rIl r,2) @ (U — Uz)J}G(k iop).

kK o

; . M,% N3, ¥3).
The two-particle Green’s function K( SRE y3j is

N2, Y2 Ng, %y
defined as
K[nrxl nsl)’s]:K(l 3j:
Ny, Yo Ny, X%y 2 4
82W _ 8Gnlnz (X3 Y2)

annl(YZ;Xl)SMn3n4(Y3;X4) 6Mn3n4 (YS;X4).

The vertex function fa(2;1| z) for a given o is a 8x8
matrix whose elements are:

5G 1 ('2 Uz, Uy)

BJB( D)

[}é(z',z).

Fa(ip,Up3k, U [0, Dnoy =

Since the single-particle and the two-particle (collec-
tive) excitations manifest themselves as poles of the corre-
sponding Green’s functions, our next step is to obtain
equations of the boson and fermion Green’s functions.
First, we shall obtain the SD equations, and they will be
used to define the fermion self-energy (fermion mass oper-
ator) 2(1;2). The simplest way to derive the SD equations
is to use the fact that the measure Du[y,y, A] is invariant
under the translations y — y + 3y and A — A+ 5A:

pi @ zr)RB(z’)+%Tr(é(1;2)f§?) 231 z))+ 3,(2)=0,

6 1:2-62 W)+ Sw )+ M) =0,

where R, (z) = W /3J, (z) is the average boson field. The

fermion self-energy %, is a 8x8 matrix which can be writ-
~H ~F

ten as a sum of Hartree ¥ and Fock X parts. The

Hartree part is a diagonal matrix whose elements are:

1~
=7 iy sy, Uz)nyny = ra ('1,U1 i2,Up | J,0)nyny %

<D (.01 11,00 (. Usiig,Ug | 11,0,

><Gn4n3 (ig,ug;i3,U3).
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The Fock part of the fermion self-energy is given by:

. . ~0),. . .
=F ('1,U1§|2,U2)nln =—Ta" (i, Ug;lg, Ug | J’v)n1n6 X

XD(O)(j v § v)F (|4 Ugsis,Us | J,0)nyng X

K(”s:fs,us

Ng.l4,Ug

The Fock part of the fermion self-energy depends on the

two-particle Green’s function K; therefore the SD equa-

tions and the BS equation for K have to be solved self-
consistently.

Our approach to the Hubbard model allows us to ob-
tain exact equations of the Green’s functions by using the
field-theoretical technique, in particular, the Legendre
transforms. We can go over from the functional W[J,M]
to a new functional V[R,G]=W[J[R,G],M[R,G]]-

-J,[R,G]IR, + Tr(M[R,G]G), such that the conjugate
equations hold:

N3, l3,U3

. Io,U Yo, U
neyleﬁue] gty (i3, U35z, Up).

3\

Gy 12

—(Z)—

5R. =34 (2);

Miyn, (1 2).

By means of the SD equations and the identity

12)
r‘1”2(
8(1-3)6(2-4)d

( ) ( ) n1n3 n2 n4 n3n4 (3 4)

SR, () N M My 1;2) 86”5”6 (5; 6)
oM N3ng (3:4) 6Gn5n6 (5;6) M 3 4)’

Maya, (13 2)
SRa(z)

n3n4

one sees that two-particle Green’s function satisfies the BS
N3, i3, U3 j _

equation
1(”2:5:“2
iU Ngig,Ug
=k O-1[N2ilaillz Mgz Ug) | [Maip,Up g3, Us
M, iU Ng,ig, Uy M, iU Ng,ig Uy
Here,
K(O)(nzlizyuz “3,i3,U3J:
iU Ngig,Ug
G ng (12, Us: iz, U) Gy, (i Ug sy, Uy)

is the two-particle free propagator constructed from a pair of
fully dressed generalized single-particle Green’s functions.
The kernel 1 = 8%/5G of the BS equation can be expressed as

a functional derivative of the fermion self-energy 3. Since
the BS kernel | =

~

~H oF .
=% +% , loxe + 14 is @ sum of func-

tional derivatives of the Hartree =M and Fock = contribu-
tions to the self-energy:
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. . Hp oo
| (nz,lz,UZ n3,|3,U3]_ 0% ('2!”2'|1lul)n2nl
exc - - - - - ’
Mt Ngulg Uy ) 8Gpn, (i3, Ugsis, Ug)
. . Froo
| (nz,lz,uz n3,|3,u3j_82 (i, g5y, Up)n,my
d . . = — .
MLl U Ng,lg,Ug 5Gn3n4(l3,u3,|4,u4)

The BS equation and the SD equations have to be
solved self-consistently. In order to decouple them, we
note that the identity

Ny,is,Us Na,ig,U
KO 2 _2 2 3.3 3|,
nl,ll,ul n4,|4,U4

x g (g, Ugs g, Ug [ 2)nyng Dpa (2',2) =

Ny,in,Us  Na,is,U
— kM2t Nalals )
MUy Ng,lg,Ug

A(O) - o: 13 0 ’
xIg (ig,Ug3i3. U3 | 2 )n4n3 Dé(z(z ,2)
allows us to rewrite the Fock term as
Fro _ O
27 (i, Ui, Up)yn, = —To” (i, U3 i3, Ug | §,0)nyng X
XDQB(]—,U; jl,U()Gn3n4 (i3,U3;i4,U4)><
xIp(ig,Ug3ip,Uz [ ], )0y, -

To decouple SD and BS equations, we replace D and r by

the free boson propagator DO and by the bare vertex f(o),

-1_kO ) ) 0
U-- K2211 _K6215 _K3214 _K7218
)~ -1_k© ©) ()
A4 ((9 Q) — _K6215 U - K6655 _K6345 _K7658
At _K _KO* 1O KO
3214 6345 3344 7348
) * O~ -1_k©
_K7218 _K7658 _K7348 U—- K7788
-1_k© (0) 0 (0)
U - K4433 _K8437 _K5436 _K4123
)~ -1_ k() (0) 0)
B ((D Q) - _K8437 U - K8877 _K8567 _K8127
b i _k© _KO* kO _KO
5436 8567 5566 5126
0 O~ O -1_k©)
_K4123 _K8127 _K5126 u—- K1122

respectively. In this approximation the Fock term assumes
the form:

. . ~0),. . .
Zg ('1,U1§|2,U2)nln2 =—Ta (ig,Ug;i3,U3 | J’v)nlng x

R
%D (1,2 1,005 (ig,Ugiip Uz | 1,0 nyn, X

xGngn, (i3, Uz;1q,Ug).

.o . aH . .
The total self-energy is =(ij,uq;ip,Up) =2 (ig,Up;ip,Us) +

+§F(i1,u1;i2,u2). The Hartree part of the fermion self-

energy is a diagonal 8x8 matrix, but in the mean-field
approximation, the elements on the major diagonal of

st (i, ug;i5,uy) will be included into the chemical poten-

tial. To obtain an analytical expression for the single-particle
Green’s function in the mean-field approximation, we ne-
glect the frequency dependence of the Fourier transform
of the Fock part of the fermion self-energy. In this approx-
imation, the Fock term is an 8x8 matrix with non-zero

elements 2(',: (i, Ug3ip,Up)nyn, = 6(Up —U)3(K — 1, )A /B for

{mn,y} = {14}, {23}.{32}, {41} for A, and {myn,} ={58},
{67}, {76}, {85} for Ag.

Appendix B

The blocks in Eg. (15) are given by the following ma-
trices:

;
The elements of Cyp,9,(0,Q) = [Cll CZlJ will be given by four 6x 6 blocks:

21 22
-1 0 0)* 0)* 0)*
U+ K1(1214 K1(4)14 Kélzls Ké1)48 0 0
©) -1, KO ) 0~
K1414 U™+ K4411 K8415 K5418 0 0
0 0 -1 0 0)*
Ci1(,Q) = Kg14s Kgals U™+ Keghs Kggss 0 0
s KO kO KO Utk 0 0 ’
5148 5418 5858 5588
-1 (0) 0)*
0 0 0 0 utekQ, k9
0 -1 0
0 0 0 0 k9, Uik,

620

Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 5



Collective-mode dispersion of atomic Fermi gases in a honeycomb optical lattice: speed of sound ...

0 0
o0 o0 KB, KO
0 0
o0 o0 K, KO,
0 0 0 0 0 0
o] K KD K KOy K, KO,
2 KO k@ O O O kO
8148 8418 8858 8588 6236 6326
0 0 0 0 0 0
_K11)14 _K1(4)11 _Ké1)15 _K51)18 Ka('z)ss K3(,3)23
0 0 0 0 0 0
Kl Qe K Ky K KO,
1, .,
U™+ K{ghe
0 1, (0
Kisr U +Kegh H.c.
0 0 0 0
c _ _ng)ze _Ké2)27 K§2)22+K¢(14)44
2@Q= | o K©) KO kO KO KO
—Re766 —Ree76 6226 T ga48 6666 T 838
0 0 1,0 0 0 0 0 0
K% Ker U7 K, -KQ, 0K -KPhg KD +K,
0 0 0 0 1 (O 0 0 0 0 0
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11.

[ucnepcis KONEKTUBHMX MOA B aTOMHUX (bepMi-rasax
B ONTUYHIN rpaTLi CTiNbHUKOBOrO TUMY: LUBUAKICTb
3ByKy B mofeni KenHa—Mene—Xa66apaa
3 NPUTAraHHSAM MPU NONOBUHHOMY 3aMOBHEHHI

Zlatko Koinov

JocnimpkeHo HaINIMHHKUN CTaH, 10 BUHUKae y monerni Keii-
Ha—Mee BHACIIIIOK JIOKJIBHOT IpHUTsATabHOI B3aemoxnii U. [luc-
Hepcist KOJIEKTUBHOI MOJM BU3HauaeThcs piBHAHHAM bere—Coi-
nirepa (BC) B y3aranbHeHOMYy HaOJIDKEHHI BHIAIKOBUX (as.
Haxun nusekoenepreruynoi Moxu (IonacroyHa) Ta BigmoBigHa
HOMy MIBUAKICTH 3BYKY IIPH IIOJIOBUHHOMY 3allOBHEHHI, SIKi PO3-
paxoBaHO y pamkax (opmanizmy BC, NOpiBHIOIOTBCS 3 BiAMOBII-
HHUMH pe3yJIbTaTaMH, 10 OTPUMAaHi paHinie B HaOmmkeHHi T-mat-
pui. Pi3Huus MK IMMH ABOMA ITiIXOAAMH TIOJISATAE B TOMY, 1O
HaOmoKeHHs T-MaTpuIli BpaxoBye TUIBKHM CXOMOBI Aiarpamu Ta
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HEXTy€e IyXUPLHEeBUMH. 3 i€l MPUYMHY IIBHIKICTH 3ByKYy B Ha-
npsAMKY 710 Toukd M, sika po3paxoBana B HabmmkeHHi T-marpuii,
npubmmsHo Ha 4% MeHIe, HDK pe3yibTarT, SKHH OTPHMAaHO 3a
nornomororo piBasHHs BC.

Kimro4oBi cnoBa: KOJEKTUBHI MOJH, NIBHIKICTH 3BYKY, HAJILIHH-
HHUM CTaH.

Odvcnepcus KONNEKTUBHBIX MO B aTOMHbIX
tepmu-razax B oNnTUHECKON peLleTke COTOBOro Tuna:
CKOpPOCTb 3BYyKa B Mogenu KertHa—Mene—Xabb6apaa
C NPUTSKEHMEM NPY NONOBUHHOM 3anOfTHEHU

Zlatko Koinov

HccnenoBaHo cBEpXTEKydee COCTOSIHUE, BO3HUKAIOLIEE B MO-
nemn KeitnHa—Merne B pesyibrare JOKaJIbHOTO IPHUTSATHUBAIOIIETO
B3aumozelicteua U. Jlucriepcusi KONJIEKTUBHOH MOJBI OIpene-
nsiercst ypaBHeHneM bere—Conmurepa (BC) B 06001mennoM mpu-
O6mmkeHnn ciiydaiHbIx (a3. HakioH HH3KO3HEpreTnveckoi mo-
161 (FonacroyHa) ¥ COOTBETCTBYIOIIAsE €My CKOPOCTh 3ByKa IIPH
MIOJIOBUHHOM 3allOJIHEHNH, PACCYMTaHHBIE B paMKax (hopMann3ma
BC, cpaBHMBAIOTCS C COOTBETCTBYIOIIMMHM pe3yJIbTaTaMH, IO-
Jy4eHHBIMH paHee B npuOmmwkeHun T-maTpuusl. PasHuma me-
KTy STHMH JIBYMsI IOJXOAAMH COCTOHT B TOM, UTO NPUOIIIKEHUE
T-MaTpuIpl yUUTHIBAET TOJNBKO JIECTHUYHBIE AUArpaMMBbI U Mpe-
HeOperaeT Iy3bIpbKOBEIMH. [10 3TO mpuYMHE CKOPOCTH 3BYKA 110
HaMpaBJICHUIO K Touke M, paccuntannas B npubmwkenuu T-mat-
PHIIBI, IPUMEPHO Ha 4% MeHbIIIe, YeM Pe3yNIbTaT, IOIyIeHHbIH C
nomouisio ypasaenus bC.

KiroueBwie ciioBa: KOJUIEKTHBHBIC MO/Ibl, CKOPOCTb 3BYKa, CBEPX-
TEKY4€C COCTOSAHHUE.
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