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1. Introduction 

The phenomenon of spin superfluidity [1–12] is based 
on the analogy of special cases of the Landau–Lifshitz–
Gilbert (LLG) theory in magnetism and superfluid hydro-
dynamics. This analogy was clearly formulated long ago by 
Halperin and Hohenberg [13] in their hydrodynamic theory 
of spin waves. While in a superfluid mass (charge in super-
conductors) can be transported by a current proportional to 
the gradient of the phase of the macroscopic wave function, 
in a magnetically ordered medium there are spin currents, 
which are proportional to the gradient of the spin phase. 
The latter is defined as the angle of rotation around some 
axis in the spin space. Strictly speaking this analogy is com-
plete only if this axis is a symmetry axis in the spin space. 
Then according to Noether’s theorem the spin component 
along this axis is conserved. But possible violation of the 
spin conservation law usually is rather weak because it is re-
lated with relativistically small (inversely proportional to 

the speed of light) processes of spin-orbit interaction. In fact, 
the LLG theory itself is based on the assumption of weak 
spin-orbit interaction [14]. 

The analogy of the LLG theory with the theory of su-
perfluidity suggests a new useful language for description 
of phenomena in magnetism, but not a new phenomenon. 
During the whole period of spin superfluidity investigations 
and up to now there have been disputes about definition 
what is spin superfluidity. There is a school of thinking that 
the existence of any spin current proportional to the spin 
phase (rotation angle) means spin superfluidity [5,15]. This 
definition transforms spin superfluidity into a trivial ubiqui-
tous phenomenon existing in any magnetically ordered me-
dium. A spin current proportional to the spin phase emerges 
in any domain wall and in any spin wave. Under this broad 
definition spin superfluidity was already experimentally de-
tected beyond reasonable doubt in old experiments of the 
middle of the 20th century detecting domain walls and spin 
waves. We use the term superfluidity in its original meaning 
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known from the times of Kamerlingh Onnes and Kapitza: 
transport of some physical quantity (mass, charge, or spin) 
over macroscopic distances without essential dissipation. 
This requires a constant or slowly varying phase gradient 
at macroscopic scale with the total phase variation along 
the macroscopic sample equal to 2π multiplied by a very 
large number. In examples of domain walls and spin waves 
this definitely does not take place. Gradients oscillate in 
space or time, or in both. The total phase variation is on the 
order of π or much less. Currents transport spin on distances 
not more than the domain wall thickness, or the spin wave-
length. Although such currents are also sometimes called 
supercurrents, we use the term supercurrent only in the case 
of macroscopic supercurrent persistent at large spatial and 
temporal scales. 

The possibility of supercurrents is conditioned by the spe-
cial topology of the magnetic order parameter space (vacuum 
manifold). Namely, this space must have topology of circum-
ference on the plane. In magnetically ordered systems this 
requires the presence of easy-plane uniaxial anisotropy. It is 
possible also in non-equilibrium coherent precession states, 
when spin pumping supports spin precession with fixed spin 
component along the magnetic field (the axis z). Such non-
equilibrium coherent precession states, which are called no-
wadays magnon BEC, were experimentally investigated in 
the B  phase of superfluid 3He and in YIG films [5,16].

Spin superfluid transport (in our definition of this phe-
nomenon) is possible as long as the spin phase gradient 
does not exceeds the critical value determined by the Landau 
criterion. The Landau criterion checks stability of super-
current states with respect to elementary excitations of all 
collective modes. The Landau criterion determines a thre-
shold for the current state instability, but it tells nothing 
about how the instability develops. The decay of the super-
current is possible only via phase slips. In a phase slip event 
a vortex crosses current streamlines decreasing the phase 
difference along streamlines. Below the critical value of 
supercurrent phase slips are suppressed by energetic barriers. 
The critical value of the supercurrent at which barriers va-
nish is of the same order as that estimated from the Landau 
criterion. This leads to a conclusion that the instability pre-
dicted by the Landau criterion is a precursor of the ava-
lanche of phase slips not suppressed by any activation barrier. 

The present paper reviews the three essentials of the spin 
superfluidity concept: topology, Landau criterion, and phase 
slips. The paper focuses on the qualitative analysis avoid-
ing details of calculations, which can be found in original 
papers. After the theoretical analysis the experiments sup-
porting the existence of spin superfluidity are discussed. 

2. Concept of superfluidity

Since the idea of spin superfluidity emerged from the 
analogy of magnetodynamics and superfluid hydrodynamics 
let us remind the concept of the mass superfluidity in the 
theory of superfluidity. In superfluid hydrodynamics there 

are the Hamilton equations for the pair of the canonically 
conjugate variables “phase–density”:  
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where 0 ( )E n  is the energy of the superfluid at rest, which 
depends only on the particle density n. Taking into account 
the gauge invariance (the energy does not depend on the 
phase directly, / = 0∂ ∂ϕ , but only on its gradient) the 
Hamilton equations are reduced to the equations of hydro-
dynamics for an ideal liquid:  
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is the chemical potential, and 
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∂ ϕ
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is the particle current. We consider the zero-temperature 
limit, when the superfluid velocity coincides with the cen-
ter-of-mass velocity  

= .
m

ϕv 

∇  (8) 

A collective mode of the ideal liquid is a sound wave. 
In the sound wave the phase varies in space, i.e., the wave 
is accompanied by mass currents (Fig. 1(a)). An amplitude 
of the phase variation is small, and currents transport mass 
on distances of the order of the wavelength. A real super-
fluid transport on macroscopic distances is possible in current 
states, which are stationary solutions of the hydrodynamic 
equations with finite constant currents, i.e., with constant 
nonzero phase gradients. In the current state the phase rotates 
through a large number of full 2π-rotations along streamlines 
of the current (Fig. 1(b)). These are supercurrents or persis-
tent currents. 

The crucial point of the superfluidity concept is the 
question why the supercurrent is a persistent current, which 
does not decay despite it is not the ground state of the system. 
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The answer to this question follows from the analysis of 
the topology of the order parameter space (vacuum mani-
fold). At the equilibrium the order parameter of a superfluid 
is a complex wave function 0= eiϕψ ψ , where the modulus

0ψ  of the wave function is a positive constant determined 
by minimization of the energy and the phase ϕ  is a dege-
neracy parameter since the energy does not depend on ϕ . 
Any from the degenerate ground states in a closed annular 
channel (torus) maps on some point at the circumference 

0| | =ψ ψ  in the complex plane ψ , while a current state with 
the phase change 2 nπ  around the torus maps onto a path 
(Fig. 2(a)) winding around the circumference n times. It is 
impossible to change the winding number n keeping the path 
on the circumference 0| | =ψ ψ  all the time. In the language 
of topology states with different n belong to different classes, 
and n is a topological charge. Only a vortex moving across 
the torus channel can change n to 1n − . This process is 
a phase slip. The phase slip costs energy, which is spent on 
creation of the vortex and its motion across current stream-
lines. The state with the vortex in the channel maps on 
the full circle 0| |ψ ≤ ψ  (Fig. 2(b)). Thus, phase slips are 
impeded by potential barriers, which make the current state 
metastable. 

According to the Landau criterion, the current state is 
metastable as long as any quasiparticle of the superfluid in 
the laboratory frame has a positive energy and therefore its 
creation requires an energy input. The Landau criterion 
checks the stability only with respect to weak elementary 
perturbations of the current state, while a vortex is a strong 

macroscopic perturbation. However, the Landau critical gra-
dients are of the same order as the gradients at which bar-
riers for phase slips disappear. The both are on the order of 
the inverse vortex core radius. 

3. Spin superfluidity

3.1. Ferromagnets 

The phenomenological description of magnetically or-
dered media is given by the LLG theory. For a ferromagnet 
with magnetization density M  the LLG equation is [17]  

[ ]eff= ,
t

∂
γ ×

∂
M H M (9) 

where γ  is the gyromagnetic ratio between the magnetic 
and mechanical moments. The effective magnetic field is 
determined by the functional derivative of the total energy:  

eff = = .i
i
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− − +∇
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H
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According to the LLG equation, the absolute value M  of 
the magnetization cannot vary. The evolution of M  is a pre-
cession around the effective magnetic field effH . 

We shall consider the case when spin-rotational invari-
ance is partially broken, and there is uniaxial crystal mag-
netic anisotropy. The phenomenological Hamiltonian is  

2

2= .
2 2
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If the anisotropy energy G  is positive, it is the “easy plane” 
anisotropy, which keeps the magnetization in the xy  plane. 
If the external magnetic field H is directed along the z axis, 
the z component of spin is conserved because of invariance 
with respect to rotations around the z  axis. Since the abso-
lute value M  of magnetization is fixed, the magnetization 
vector M  is fully determined by the z  magnetization com-
ponent zM  and the angle ϕ  showing the direction of M  in 
the easy plane xy :  

2 2= cos ,  = sin ,  = .x y zM M M M M M M⊥ ⊥ ⊥ϕ ϕ −  (12) 

In the new variables the Hamiltonian is 

2 2 2( )
= .

2 2
z

z
AM M HM⊥ ϕ

+ −
χ


∇
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Here we neglected gradients of zM . The parameter A  is 
stiffness of the spin system determined by exchange inter-
action, and the magnetic susceptibility 2= /M Gχ  along 
the z axis is determined by the uniaxial anisotropy energy G 
keeping the magnetization in the easy plane. The LLG equa-
tion reduces to the Hamilton equations for a pair of canoni-
cally conjugate continuous variables “angle–angular mo-
mentum”:  

Fig. 1. Phase (in-plane rotation angle) variation at the presence 
of mass (spin) currents. (a) Oscillating currents in a sound (spin) 
wave. (b) Stationary mass (spin) supercurrent. 

Fig. 2. Topology of the uniform mass current and the vortex 
states. (a) The current state in a torus maps onto the circumfer-
ence 0| | = | | = constψ ψ  in the complex ψ-plane, where 0ψ  is the 
equilibrium order parameter wave function of the uniform state. 
(b) The vortex state maps onto the circle 0| | | |ψ ≤ ψ . 
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where functional derivatives on the right-hand sides are 
taken from the Hamiltonian given by Eq. (13). Using the 
expressions for functional derivatives one can write the Ha-
milton equations as  
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z

M Hd AM
dt
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γ χ
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dt
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γ
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is the spin current. Although our equations contain not 
the spin density but the magnetization, the vector J is de-
fined as a current of spin with the spin density /zM γ . 

There is an evident analogy of Eqs. (16) and (17) with 
the hydrodynamic equations (4) and (5) for the superfluid. 
One of solutions of these equations describes the spin-wave 
mode. However, as well as the mass current in a sound 
wave, the small oscillating spin current in the spin wave 
does not lead to long-distance superfluid spin transport, 
which this review addresses. Spin superfluid transport on 
long distances is realized in current states with spin rotat-
ing in the plane through a large number of full 2π-rotations 
as shown in Fig. 1(b). In the current state with a constant 
gradient of the spin phase = ϕK ∇ , there is a constant mag-
netization component along the magnetic field (the z axis): 

2= .
1

z
HM
AK

χ

−χ
 (19) 

Like in superfluids, the stability of current states is con-
nected to the topology of the order parameter space. In iso-
tropic ferromagnets ( = 0G ) the order parameter space is 
a spherical surface of radius equal to the absolute value of 
the magnetization vector M  (Fig. 3(a)). All points on this 
surface correspond to the same energy of the ground state. 
Suppose we created the spin current state with monoto-
nously varying phase ϕ  in a torus. This state maps on the 
equatorial circumference in the order parameter space. The 
topology allows to continuously shift the circumference 
and to reduce it to a point (the northern or the southern 
pole). During this process shown in Fig. 3(a) the path re-
mains in the order parameter space all the time, and there-
fore, no energetic barrier resists to the transformation. 
Thus, the metastability of the current state is not expected 
in isotropic ferromagnets. 

In a ferromagnet with easy-plane anisotropy ( > 0G ) 
the order parameter space reduces from the spherical sur-
face to the equatorial circumference in the xy  plane 
(Fig. 3(b)). This makes the order parameter space topologi-
cally equivalent to that in superfluids. Now the transforma-
tion of the circumference to the point costs the anisotropy 
energy. This allows to expect metastable spin currents 
(supercurrents). The magnetic field along the anisotropy 
axis z  shifts the easy plane either up (Fig. 3(c)) or down 
away from the equator. 

The current states in easy-plane ferromagnets relax to 
the ground state via phase slips events, in which magnetic 
vortices cross spin current streamlines. States with vortices 
map on a surface of a hemisphere of radius M  either above 
or below the equator [18] as shown in Fig. 3(d). 

Up to now we considered states close to the equilibrium 
(ground) state. In a ferromagnet in a magnetic field the 
equilibrium magnetization is parallel to the field. However, 
by pumping magnons into the sample it is possible to tilt 
the magnetization with respect to the magnetic field. This 
creates the state with the coherent spin precession around 
the magnetic field (the magnon BEC [5,16]). Although the 
state is far from the true equilibrium, but it, nevertheless, is 
a state of minimal energy at fixed magnetization zM . Be-
cause of inevitable spin relaxation the state of uniform pre-
cession requires permanent pumping of spin and energy. 
However, if processes violating the spin conservation law 
are weak, one can ignore them and treat the state as a qua-

Fig. 3. Mapping of spin current states on the order parameter 
space (vacuum manifold). (a) Spin currents in an isotropic 
ferromagnet. The current state in torus maps on an equatorial 
circumference on the sphere of radius M  (top). Continuous shift 
of mapping on the surface of the sphere (middle) reduces it to 
a point at the northern pole (bottom), which corresponds to the 
ground state without currents. (b) Spin currents in an easy-plane 
ferromagnet. The easy-plane anisotropy reduces the order param-
eter space to an equatorial circumference in the xy  plane topolo-
gically equivalent to the order parameter space in superfluids. 
(c) Spin currents in an easy-plane ferromagnet in a magnetic field 
parallel to the z  axis. Spin is confined in the plane parallel to 
the xy  plane but shifted closer to the northern pole. (d) The vor-
tex state maps on the surface of the upper or the lower semisphere 
in the vacuum manifold. 
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si-equilibrium state. The state of uniform precession maps 
on a circumference parallel to the xy  plane. One can con-
sider also a current state, in which the phase (the rotation 
angle in the xy  plane) varies not only in time but also in 
space with a constant gradient. In this case the easy plane 
for the magnetization is not related to the crystal anisotropy 
but created dynamically. However, in the quasi-equilibrium 
coherent precession state demonstration of the long-distance 
superfluid spin transport is problematic (see Sec. 8). 

3.2. Antiferromagnets 

Long time ago it was widely accepted to describe the 
dynamics of a bipartite antiferromagnet by the LLG equa-
tions for two spin sublattices coupled via exchange interac-
tion [19]: 

 [ ]= .i
i i

d
dt

γ ×
M

H M  (20) 

Here the subscript = 1, 2i  indicates to which sublattice 
the magnetization iM  belongs, and  

 = =i j
i i j i

δ ∂ ∂
− − +∇
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H
M M M
    (21) 

is the effective field for the i th sublattice determined by 
the functional derivative of the Hamiltonian H . For an iso-
tropic antiferromagnet the Hamiltonian is  

 1 1 2 21 2 ( )
=

2
i i i iA ∇ ⋅∇ +∇ ⋅∇⋅

+ +
χ

M M M MM M
   

 12 1 2 .j jA+ ∇ ⋅∇ − ⋅M M H m  (22) 

In the uniform ground state the total magnetization  

 1 2= +m M M  (23) 

is equal to = χm H, while the staggered magnetization  

 1 2= −L M M  (24) 

is normal to m. Without the magnetic field the two sub-
lattice magnetizations are antiparallel, and the total magne-
tization m vanishes. The first term in the Hamiltonian (22), 
which determines the susceptibility χ, originates from the 
exchange interaction between spins of the two sublattices. 
This is the susceptibility normal to the staggered magneti-
zation L . Since in the LLG theory absolute values of sub-
lattice magnetizations 1M  and 2M  are equal to M  and do 
not vary in space and time, the susceptibility parallel to L  
vanishes. 

Let us consider a uniform state but not necessary 
the ground state. There are no currents in this state, and 
the gradient-dependent terms in the Hamiltonian (22) can 
be ignored. Rewriting the Hamiltonian in terms of m and 
L  one obtains  

 
2 2 2 2

= = .
4 2

L m M m−
− − ⋅ − + − ⋅

χ χ χ
H m H m  (25) 

Minimizing the Hamiltonian with respect to the absolute 
value of m (at it fixed direction) one obtains  

 
2 22 2 2

= = ,
2 2 2

m LH HM M Hχ χχ
− − − − +

χ χ
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where = ( ) /mH m⋅H m  and = ( ) /LH L⋅H L  are the pro-
jections of the magnetic field on the total magnetization m 
and on the staggered magnetization L . The first two terms 
are constant, while the last term plays the role of the easy-
plane anisotropy energy confining L  in the plane normal to 
H . For H  parallel to the z  axis the anisotropy energy (the 
last term on the right-hand side of Eq. (26)) is  

 
2 2

2= .
2

z
a

H LE
L

χ
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In the analogy to the ferromagnetic case, one can de-
scribe the vectors of sublattice magnetizations iM  with 
the constant absolute value M  by the two pairs of the con-
jugate variables ( , )iz iM ϕ , which are determined by the two 
pairs of the Hamilton equations:  

 1 = = ,i

iz iz

d
dt M M
ϕ δ ∂

− −
γ δ ∂
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 1 = = .iz

i i i

dM
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Let us consider the axisymmetric solutions of these equa-
tions with 1 2= =ϕ ϕ π−ϕ  and 1 2= = / 2z z zM M m . Then 
there is only one pair of the Hamilton equations for the pair 
of the conjugate variables ( , )zm ϕ :  
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z zA m m Hd

dt
− ϕ −χϕ

−
γ χ
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 1 = 0.zdm
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γ

J∇  (31) 

Here  
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A L−∂
− − ϕ
∂ ϕ

J 
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∇
 (32) 

is the spin current and 12=A A A− − . These equations are 
identical to Eqs. (16) and (17) for the ferromagnetic after 
replacing the spontaneous magnetization component zM  
by the total magnetization component zm , A  by / 2A− , and 
M⊥  by L . In the stationary current state there is a constant 
gradient = ϕK ∇  of the spin phase and a constant total 
magnetization  

 2= .
1 / 2

z
Hm

A K−

χ

−χ
 (33) 

While in ferromagnets the current state is a spiral spin 
structure with the spatial precession of the in-plane sponta-
neous magnetization along current streamlines, in antifer-
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romagnets the current states are related to the spatial pre-
cession of the staggered magnetization. 

The order parameter space for the isotropic antifer-
romagnet in the absence of the external magnetic field is 
a surface of a sphere. However, the order parameter is not 
the total magnetization but the unit Néel vector = / Ll L . 
While in the ferromagnet the magnetic field produces 
an easy axis for the total magnetization, in the antiferro-
magnet the magnetic field produces the easy plane for the 
order parameter vector l  with the anisotropy energy given 
by Eq. (27). Thus, the topology necessary for the spin super-
fluidity in antiferromagnets does not require the crystal 
easy-plane anisotropy. 

4. Spin currents without spin conservation law 

Though processes violating the spin conservation law 
are relativistically weak, their effect is of principal import-
ance and cannot be ignored in general. The attention to su-
perfluid transport in the absence of conservation law was 
attracted first in discussions of superfluidity of electron-hole 
pairs. The number of electron-hole pairs can vary due to 
interband transitions, and the degeneracy with respect to 
the phase of the pair condensate is lifted. On the basis of it 
Guseinov and Keldysh [20] concluded that the existence of 
spatially homogeneous stationary current states is impossible 
and there is no analogy with superfluidity. This phenome-
non was called “fixation of phase”. However some time 
later it was demonstrated [21] that phase fixation does not 
rule out the existence of weakly inhomogeneous stationary 
current states analogous to superfluid current states [22]. 
This analysis was extended on spin superfluidity [1,23]. 

One can take into account processes violating the spin 
conservation law by adding the n-fold in-plane anisotropy 
energy inG∝  to the Hamiltonian (13):  

2 2 2

in
( )

= [1 cos ( )].
2 2

z
z

M AMM H G n⊥ ϕ
− γ + + − ϕ

χ


∇
 (34) 

Then the spin continuity equation (17) becomes  

2 2
in 2

sin ( )= sin ( ) = ,zdM nnG n AM
dt l

⊥
ϕ 

− ⋅ + ϕ ϕ− 
 
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where  

 
2

in
=

AMl
nG

⊥  (36) 

is the thickness of the wall separating domains with n 
equivalent easiest directions in the easy plane. We focus on 
stationary states when / = 0zdM dt . The phase ϕ  is a peri-
odical solution of the sine-Gordon equation parametrized 
by the average phase gradients 〈∇ϕ〉 . At small 1/ l〈∇ϕ〉  
the spin structure constitutes the chain of domains with the 
period 2 / nπ 〈∇ϕ〉. Any domain corresponds to some of 
the n equivalent easiest directions in the easy plane. Spin 
currents (gradients) inside domains are negligible but there 

are essential spin currents inside domain walls where 
1/ l∇ϕ . This hardly reminds the superfluid transport on 

macroscopic scales: spin is transported over distances on 
the order of the domain-wall thickness l . With increasing 
〈∇ϕ〉  the density of domain walls grows, and at 1/ l〈∇ϕ〉  
the domains coalesce. Deviations of the gradient 〈∇ϕ〉  from 
the constant average gradient 〈∇ϕ〉  become negligible. 
This restores the analogy with the superfluid transport in 
superfluids. The transformation of the domain wall chain 
into a weakly inhomogeneous current state at growing 〈∇ϕ〉  
is illustrated in Fig. 4. 

An important difference with conventional mass super-
fluidity is that the existence of conventional superfluidity 
is restricted only from above by the Landau critical gradi-
ents, while the existence of spin superfluidity is restricted 
also from below: gradients should not be less than the value 
1/ l . Since the upper Landau critical value is determined by 
the easy-plane uniaxial anisotropy G  and the lower critical 
value is determined by the in-plane anisotropy energy inG , 
spin superfluidity is possible only if inG G . The exist-
ence of the lower critical gradient for spin superfluidity is 
important for spin superfluidity observation discussed in 
Sec. 9. However, in the further theoretical analysis we ig-
nore processes violating the spin conservation law assum-
ing that the phase gradients essentially exceed the lower 
threshold for spin superfluidity. 

5. Collective spin modes and the Landau criterion 

5.1. Ferromagnets 

In order to check the Landau criterion, one should know 
the spectrum of collective modes in the current state with 
the constant value of the spin phase gradient = ϕK ∇  and 
with the longitudinal (along the magnetic field) magnetiza-
tion given by Eq. (19). It is necessary to solve the Hamil-
ton equations (16) and (17) linearized with respect to weak 
perturbations of the current state. We skip the standard 
algebra given elsewhere [24]. Finally one obtains [11,24] 
the spectrum of plane spin waves ei i t⋅ − ω∝ k r :  

 = .swc kω+ ⋅w k   (37) 
Here  

 2= 1sw swc AK c−χ  (38) 

is the spin-wave velocity in the current state and  

Fig. 4. The nonuniform spin-current states with 1 / l〈∇ϕ〉  and 
1 / l〈∇ϕ〉 . 
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=sw
Ac M⊥γ
χ

(39) 

is the spin velocity in the state without spin currents. The ve-
locity  

= 2 zM Aγw K  (40) 

can be called Doppler velocity because its effect on the 
mode frequency is similar to the effect of the mass velocity 
on the mode frequency in a Galilean invariant fluid (Doppler 
effect). However, our system is not Galilean invariant [11], 
and the gradient K  is present also on the right-hand side of 
the dispersion relation (37). 

We obtained the gapless Goldstone mode with the sound-
like linear in k spectrum. The current state becomes unstable 
when at k  parallel to w  the frequency ω becomes nega-
tive. This happens at the gradient K  equal to the Landau cri-
tical gradient  

2

1= .
4 3

c
MK

AM M
⊥

⊥
χ−

(41) 

In the limit of weak magnetic fields when zM M  the Lan-
dau critical gradient is  

1= = .c
sw

MK
cA
γ
χχ

 (42) 

In this limit the pseudo-Doppler effect is not important, 
and the Landau critical gradient cK  is determined by the con-
dition that the spin-wave velocity swc  in the current state 
vanishes. 

In the opposite limit zM M→  ( 0M⊥ → ) the Landau 
critical gradient,  

1= ,
2c
MK

M A
⊥

χ
(43) 

decreases, and the spin superfluidity becomes impossible 
at the phase transition to the easy-axis anisotropy ( = 0M⊥ ). 

Deriving the sound-like spectrum of the spin wave we 
neglected in the Hamiltonian terms dependent on gradients 

zM∇ . Taking these terms into account one obtains quad-
ratic in k  corrections to the spectrum. These corrections 
become important at 01/k ξ , where 

0 = M A
M⊥

ξ χ (44) 

can be called the coherence length. The coherence length 
0ξ  determines the core radius of vortices just because the 

gradients zM∇  are important in the vortex core. On the 
other hand, the calculation of the energy of the vortex in 
the current state (Sec. 6) indicates that potential barriers for 
phase slips disappear at the gradients of the order 01/ ξ . 
Since the 01/ ξ  is of the same order of magnitude as the 
Landau critical gradient (41), the instability with respect to 
elementary excitations (the Landau instability) and the 

instability with respect to macroscopic excitations (vortices 
participating in phase slips) start at approximately the same 
gradients. 

5.2. Antiferromagnets 

Directions of the sublattice magnetizations in a bipartite 
antiferromagnet are determined by the two pairs of polar 
angles iθ , iϕ  ( = 1, 2i ):  

= cos cos ,ix i iM M θ ϕ   = cos sin ,iy i iM M θ ϕ  

= sin .iz iM M θ  (45) 

In the further analysis it is convenient to use other angle 
variables:  

1 2 1 2

1 2 1 2

= ,  = ,
2 2

= ,  = .
2 2

π+ θ − θ π− θ − θ
θ Θ

ϕ +ϕ ϕ −ϕ
ϕ Φ

(46) 

The polar angle Θ for the staggered magnetization L  and 
the canting angle θ are shown in Fig. 5 for the case when 
the both magnetizations are in the plane xz  ( = = 0ϕ Φ ). In 
these angle variables the equations for two collective 
modes in antiferromagnets are decoupled. 

In the stationary current state the total magnetization 
= 2 sinzm M θ is given by Eq. (33) and =ϕ K∇ , while 

= = 0Θ Φ . In a weakly perturbed current state small but 
nonzero Θ and Φ  appear. Also the angles θ and ϕ  differ 
from their values in the stationary current state: ′θ → θ+ θ , 

′ϕ → ϕ+ϕ . As in the ferromagnetic case, we skip the al-
gebra of the linearization and the solution of linearized 
equations (see Ref. 24 for a detailed calculation) and give 
the resulting spectra of two spin-wave modes. 

The equations for the pair of perturbations ( , )′ ′θ ϕ  de-
scribe the Goldstone mode with the spectrum of the plane 
spin waves  

= .swcω+ ⋅w k   (47) 

Fig. 5. Angle variables θ and Θ  for the case when the both mag-
netizations are in the plane xz  ( = = 0ϕ Φ ). 
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Here the spin-wave velocity in the ground state without 
spin currents, the spin-wave velocity in the current state, 
and the Doppler velocity are given by  

 = ,
2sw
A

c L −
⊥γ

χ
  

2
 = 1 ,

2sw sw
A K

c c −χ
−   = ,zm A−γw K   

  (48) 

where = cosL L⊥ θ. The gapless Goldstone mode in an an-
tiferromagnet does not differ from that in a ferromagnet, if 
one replaces in the expressions for the ferromagnet A  by 

/ 2A−  and M  by 2M . 
The equations for the pair of perturbations ( , )Θ Φ  de-

scribe the gapped mode with the spectrum  

 2 2
0= ,swc kω+ ⋅ ω +w k  (49) 

where the gap is given by  

 
2 2

2 2
0 2= .z

sw
m

c K
γ

ω −
χ

 (50) 

For better understanding of the physical nature of the 
two modes, let us consider variations of the Cartesian com-
ponents of the total and the staggered magnetizations pro-
duced by these perturbations in the uniform ground state 
without current and with L  parallel to the axis x  ( = 0ϕ ):  

= 2 sin ,  = 2 cos ,  = 2 cos ,

= 2sin ,  = 2 cos ,  = 2 cos .
x y z

x y z

m M m M m M

L L M L M

′ ′ ′ ′θΘ θΦ θθ

′ ′ ′ ′ ′− θθ θϕ − θΘ
 (51) 

From these expressions one can see that the pair of pertur-
bations ( , )′ ′θ ϕ  is related to the Goldstone mode and pro-
duces rotation of the staggered magnetization L  by the 
angle ′ϕ  around the axis z  and the oscillation of the total 
spin component zm′  along the same axis. On the other 
hand, the pair of perturbations ( , )Θ Φ  produces rotation of 
all spins by the angle Θ around the axis y  and the oscilla-
tion ym′  of the total spin component along the same axis. 
This is connected to the degree of freedom described by 
the pair of conjugate variables ( , )ym Θ . In the presence of 
the magnetic field the rotational invariance for the axis y  
is broken, and the mode must have a gap. In the current 
state with the gradient of the angle ϕ  the gapped mode is 
connected with the rotation of L  around the axis which 
itself rotates in the easy-plane xy  along the current stream-
lines. Two modes are illustrated in Fig. 6. 

In the past decades there were numerous calculations of 
the spin-wave spectrum both in ferro- and antiferromag-
nets. However, the spin-wave spectra discussed in the pre-
sent paper were calculated not for the ground state, but for 
the metastable current states. In the magnetodynamics of 
antiferromagnets it was usually assumed that the spin po-
larization is weak and the canting angle is small. Then 

the magnetodynamics can be reduced to the single equation 
for the Néel vector equivalent to that in the sigma model 
(see the recent review by Galkina and Ivanov [25] and re-
ferences therein). The derivation of spectra presented in 
this paper did not use the assumption of small canting angles. 
Therefore, the obtained dispersion relations are valid up to 
the magnetic field at which the sublattice magnetizations 
become equal, and the staggered magnetization L  vanishes. 
This makes the spin superfluidity impossible. However, this 
magnetic field is on the order of the exchange field, which 
is usually very strong. 

Applying the Landau criterion to the gapless mode at 
small canting angles θ, one obtains the critical gradient  

 2= ,cK
A−χ

 (52) 

similar to the value (42) obtained for a ferromagnet. How-
ever, in contrast to a ferromagnet where the susceptibility 
χ is connected with weak anisotropy energy, in an anti-
ferromagnet the susceptibility χ is determined by a much 
larger exchange energy and is rather small. As a result, in 
an antiferromagnet the gapless Goldstone mode becomes 
unstable at the very high value of K . At much lower val-
ues of K  the gapped mode loses its stability when the gap 
becomes negative and the mode frequency becomes com-
plex. According to the spectrum (49), the gap in the spec-
trum vanishes at the critical gradient  

 1= = = .z
c

s s

mHK
c c

γγ
ξ χ

 (53) 

Here we introduced a new correlation length  

 = ,sc
H

ξ
γ

 (54) 

which is connected to the effective easy-plane anisotropy 
energy (27). The instability of the gapped mode is a pre-
cursor of the instability with respect to phase slips with 
vortices, which have the core radius of the order of ξ . 

Fig. 6. The schematic picture of the two spin-wave modes in the 
bipartite antiferromagnet in the plane xz . (a) The gapless Gold-
stone mode. There are oscillations of the canting angle and of the 
total magnetization component zm  and rotational oscillations 
around the axis z . (b) The gapped mode. There are oscillations of 
the total magnetization component ym  and rotational oscillations 
around the axis y . 
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6. Phase slips and barriers for vortex motion across 
streamlines 

For the estimation of barriers for phase slips one must 
consider the interaction of vortices with spin currents. The 
total energy of the vortex is mostly determined by the area 
outside the core (the London region) where one must take 
into account the interaction of vortices with spin currents. 
In the London region the main contribution to the energy is 
the first term in the Hamiltonian (13) proportional to 2)ϕ(∇  
(we consider now a ferromagnet). This term plays the role 
of the kinetic energy of spin currents. The other terms are 
constants. The spin phase gradient in the current state with 
a straight vortex parallel to the axis z  is  

 
2

ˆ[ ]= ,×
ϕ +

z r K
r

∇  (55) 

where the first term is the spin phase gradient introduced 
by the vortex, ẑ  is the unit vector along the z  axis, r is 
a 2D position vector with the origin at the vortex axis, and 
the gradient K  is related to the spin current. Substituting 
this into the kinetic energy and integrating the energy over 
the whole space occupied by the ferromagnet one obtains 
a logarithmically divergent integral, which depends on the 
sample geometry. We consider a 2D problem of the straight 
vortex at the distance R  from the plane border. The gradient 
K  is parallel to the border. Then the energy of the straight 
vortex per unit length in the presence of currents is  

 2= ln 2 .
c

RE AM KR
r⊥

 
π − 

 
v  (56) 

The lower cutoff of the logarithm is the core radius cr . The 
vortex energy has a maximum at = 1/ 2R K . The energy at 
the maximum is a barrier preventing phase slips:  

 2 1= ln .
2b

c
E AM

Kr⊥π  (57) 

The barrier vanishes if K  becomes of the order of the in-
verse vortex core radius. This conclusion is applicable also 
to antiferromagnets. 

The core radius cr  is of order of the coherence length 
determined from the spin-wave spectrum as was indicated 
earlier. However, different modes have different coherence 
lengths, and it is necessary to understand which kind of 
a vortex corresponds to which spin-wave mode. In vortex 
cores spins form skyrmions. Variation of magnetization vec-
tors in the skyrmion vortex core as a function of the dis-
tance r from the vortex axis is shown schematically in Fig. 7. 
In the ferromagnet (Fig. 7(a)) there is only one spin-wave 
mode, and the radius of the core is determined by the co-
herence length 0ξ  for this mode (see Eq. (44)). In the an-
tiferromagnet there are two spin-wave modes and, corre-
spondingly, there are two types of vortices. The skyrmion 
core connected to the Goldstone mode is illustrated in 
Fig. 7(b). Only the pair of the angle variables (θ,ϕ) vary 

inside the core, while = = 0Θ Φ . Figure 7(c) illustrates the 
skyrmion core connected to the gapped mode. The magnet-
ization vectors 1M  and 2M  rotate around the axis normal 
to the magnetic field, and there are nonzero Θ and Φ . The 
core radius is determined by the coherence length ξ  given 
by Eq. (54). 

7. Long-distance superfluid spin transport 

From the time when the concept of spin superfluidity 
was suggested [1], it was debated about whether the super-
fluid spin current is a “real” transport current. As a response 
to this concern, in Ref. 1 a Gedanken (at that time) expe-
riment for demonstration of reality of superfluid spin tran-
sport was proposed (see also more recent Refs. 4, 6, and 7). 

The spin is injected to one side of a magnetically or-
dered layer of thickness d  and spin accumulation is checked 
at another side (Fig. 8). For the analysis of spin transport in 
this set up we must modified the continuity equation (17) for 
the ferromagnet adding two dissipation terms:  

 
1

1 =z z
d

dM M
dt T

′
− ⋅ − ⋅ −

γ γ
J J∇ ∇ . (58) 

Here =z zM M H′ − χ  is the non-equilibrium magnetization 
and the superfluid spin current J is given by Eq. (18). The 
first dissipation term is the spin diffusion current  

 = .d z
D M−
γ

J ∇  (59) 

Fig. 7. Skyrmion cores of vortices. Variation of magnetization 
vectors (M  in a ferromagnet, 1M  and 2M  in an antiferromagnet) 
in the vortex core as a function of the distance r  from the vortex 
axis is shown schematically. (a) The vortex in the ferromagnet 
corresponding to the single spin wave mode with the coherence 
length 0ξ  given by Eq. (44). (b) The vortex in the antiferromagnet 
corresponding to the Goldstone mode spin-wave mode with the 
coherence length 0ξ  given by Eq. (44), where the order parameter 
stiffness A in the ferromagnet is replaced by the stiffness / 2A−  
in the antiferromagnet. (c) The vortex in the antiferromagnet 
corresponding to the gapped mode with the coherence length ξ 
given by Eq. (54). 
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Spin diffusion does not violates the spin conservation law. 
The second dissipation term is connected with the longitu-
dinal spin relaxation. It is characterized by the Bloch time 
1T  and does violate the spin conservation law. 

In the absence of spin superfluidity ( = 0J ) Eq. (16) for 
the spin phase is not relevant, and Eq. (58) describes pure 
spin diffusion (Fig. 8(a)). Its solution, with the boundary 
condition that the spin current 0J  is injected at the interface 

= 0x , is  

 /
0= e ,x LddJ J −  /1

0= e ,x Ldz
TM J
D

−′ γ  (60) 

where  
 1=dL DT  (61) 

is the spin-diffusion length. Thus, the effect of spin injec-
tion exponentially decays at the scale of the spin-diffusion 
length, and the density of spin accumulated at the other side 
of the layer decreases exponentially with growing distance d. 

However, if spin superfluidity is possible, the spin pre-
cession equation (16) becomes relevant. According to this 
equation, in a stationary state the magnetization zM ′  cannot 
vary in space (Fig. 8(b)) since according to Eq. (16) the 
gradient zM ′∇  is accompanied by the linear in time growth 
of the gradient ϕ∇ . The right-hand side of Eq. (16) is an 
analog of the chemical potential, and the requirement of 
constant in space magnetization zM  is similar to the re-
quirement of constant in space chemical potential in super-
fluids, or the electrochemical potential in superconductors. 
As a consequence of this requirement, spin diffusion cur-
rent is impossible in the bulk since it is simply “short-cir-
cuited” by the superfluid spin current. The bulk spin diffu-
sion current can appear only in ac processes. 

If the spin superfluidity is possible, the spin current can 
reach the spin detector at the plane =x d  opposite to the 
border where spin is injected. As a boundary condition at 

=x d , one can use a phenomenological relation connecting 

the spin current with the magnetization: ( ) = ( )z dJ d M d′ v , 
where dv  is a phenomenological constant. This boundary 
condition was confirmed by the microscopic theory of Takei 
and Tserkovnyak [6]. Together with the boundary condi-
tion 0(0) =J J  at = 0x  this yields the solution of Eqs. (16) 
and (58):  

 1
0 0

1 1
= ,  ( ) = 1 .z

d d

T xM J J x J
d T d T

 
′ γ − + + v v

 (62) 

Thus, the spin accumulated at large distance d  from the spin 
injector slowly decreases with d  as 1/ ( )d C+  (Fig. 8(b)), in 

contrast to the exponential decay /e d Ld−∝  in the spin-dif-
fusion transport (Fig. 8(a)). The constant C  is determined by 
the boundary condition at =x d . 

8. Experimental detection of spin superfluidity 

A smoking gun of the possibility of spin supercurrents 
in the B phase of superfluid 3He was an experiment with a 
spin current through a long channel connecting two cells 
filled by the superfluid 3He (Fig. 9) [26]. The quasi-equi-
librium state of the coherent spin precession (later rebrand-
ed as magnon BEC [5]) was supported by spin pumping. 
The magnetic fields applied to the two cells were slightly dif-
ferent, and therefore, the spins in the two cells precessed with 
different frequencies. A small difference in the frequencies 
leads to a linear growth of difference of the precession phases 
in the cells and a phase gradient in the channel. When the 
gradient reached the critical value, 2π phase slips were de-
tected in the experiment. The sharp 2π phase slip was relia-
ble evidence of non-trivial spin supercurrents at phase gradi-
ents restricted by finite critical values. 

It was important evidence that persistent spin currents 
are possible. However, real long-distance transportation of 
spin by these currents was not demonstrated. Moreover, it 
is impossible to do in the non-equilibrium magnon BEC, 
which was realized in the B  phase of 3He superfluid [5] 

Fig. 8. Long distance spin transport. (a) Spin injection to a spin-
nonsuperfluid medium. (b) Spin injection to a spin-superfluid 
medium.  

Fig. 9. Spin transport through a channel connecting two cells 
filled by the B  phase of superfluid 3He. The horizontal arrow 
shows the direction of the spin current in the channel [26]. 
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and in yttrium–iron–garnet magnetic films [16]. The non-
equilibrium magnon BEC requires pumping of spin in the 
whole bulk for its existence. In the geometry of the afore-
mentioned spin transport experiment this would mean that 
spin is permanently pumped not only by a distant injector 
but also all the way up the place where its accumulation 
is probed. Thus, the spin detector measures not only spin 
coming from the distant injector but also spin pumped close 
to the detector. Therefore, the experiment does not prove 
the existence of long-distance spin-superfluid transport. 

The experiment suggested for detection of long-distance 
superfluid spin transport [1] was recently done by Yuan 
et al. [27] in antiferromagnetic Cr2O3. In the experiment of 
Yuan et al. [27] the spin is created in the Pt injector by 
heating (the Seebeck effect) on one side of the Cr2O3 film 
and spin accumulation is probed on another side of the film 
by the Pt detector via the inverse spin Hall effect (Fig. 10). 
In agreement with theoretical prediction, they observed spin 
accumulation inversely proportional to the distance from the 
interface where spin was injected into Cr2O3. 

In Fig. 8 the spin flows along the axis x , while the spin 
and the magnetic field are directed along the axis z . In the 
geometry of the experiment of Yuan et al. [27] the spin 
flows along the spin axis z  parallel to the magnetic field. 
This geometry is shown in Fig. 10. The difference between 
two geometries is not essential if spin-orbit coupling is ig-
nored. In our theoretical analysis we chose the geometry 
with different directions of the spin current and the spin in 
order to stress the possibility of the independent choice of 
axes in the spin and the configurational spaces. 

There were other reports on experimental detection of 
spin superfluidity in magnetically ordered solids. Bozhko 
et al. [15] declared detection of spin superfluidity at high 
temperatures in a decaying magnon condensate in a YIG 
film. In their experiment the phase gradient emerged because 
of spin precession difference produced by a temperature 
gradient. However, the estimate made in Ref. 10 showed 
that the total phase difference across the magnon cloud in 
the experiment did not exceed about 1/3 of the full 2π rota-
tion. Thus Bozhko et al. [15], could detect only microscopic 

spin currents emerging in any spin wave. As explained 
above, “superfluidity” connected with such currents was 
well proved by numerous half-a-century old experiments 
on spin waves at all temperatures and does not need new 
experimental confirmations. 

Observation of the long-distance superfluid spin trans-
port was also reported by Stepanov et al. [28] in a gra-
phene quantum Hall antiferromagnet. However, the discus-
sion of this report requires an extensive theoretical analysis 
of the = 0ν  quantum Hall state of graphene, which goes 
beyond the scope of the present review. A reader can find 
this analysis in Ref. 29. 

9. Discussion and conclusions 

The paper addressed the basics of the spin superfluidity 
concept: topology, Landau criterion, and phase slips. Meta-
stable (persistent) superfluid current states are possible if 
the order parameter space (vacuum manifold) has the to-
pology of a circumference on a plane like in conventional 
superfluids. In ferromagnets it is the circumference on the 
spherical surface in the space of spontaneous magneti-
zations M . In antiferromagnets it is the circumference on 
the unit sphere in the space of the unit Néel vector / LL , 
where L  is the staggered magnetization. The topology ne-
cessary for spin superfluidity requires the uniaxial easy-
plane anisotropy in ferromagnets, while in antiferromagnets 
this anisotropy is provided by the Zeeman energy, which 
confines the Néel vector in the plane normal to the magnetic 
field. 

The Landau criterion was checked for the spectrum of 
elementary excitations, which are spin waves in our case. 
In ferromagnets there is only one Goldstone spin wave 
mode. In bipartite antiferromagnets there are two modes: 
the Goldstone mode in which spins perform rotational os-
cillations around the symmetry axis and the gapped mode 
with rotational oscillations around the axis normal to the 
symmetry axis. At weak magnetic fields the Landau insta-
bility starts not in the Goldstone mode, but in the gapped 
mode. In contrast to superfluid mass currents in conven-
tional superfluids, metastable spin superfluid currents are 
restricted not only by the Landau criterion from above but 
also from below. The restriction from below is related to 
the absence of the strict conservation law for spin. 

The Landau instability with respect to elementary exci-
tations is a precursor for the instability with respect to 
phase slips. The latter instability starts when the spin phase 
gradient reaches the value of the inverse vortex core radius. 
This value is on the same order of magnitude as the Landau 
critical gradient. Vortices participating in phase slips have 
skyrmion cores, which map on the upper or lower part of 
the spherical surface in the space of spontaneous magneti-
zations in ferromagnets, or in the space of the unit Néel 
vectors in antiferromagnets. 

It is worthwhile to note that in reality it is not easy to 
reach the critical gradients discussed in the present paper 

Fig. 10. Long distance spin transport in the geometry of the ex-
periment by Yuan et al. [27]. Spin is injected from the left Pt wire 
and flows along the Cr2O3 film to the right Pt wire, which serves 
as a detector. The arrowed dashed line shows a spin-current 
streamline.  
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experimentally. The decay of superfluid spin currents is 
possible also at subcritical spin phase gradients since the 
barriers for phase slips can be overcome by thermal activa-
tion or macroscopic quantum tunneling. This makes the very 
definition of the real critical gradient rather ambiguous and 
dependent on duration of observation of persistent currents. 
Calculation of real critical gradients requires a detailed dy-
namical analysis of processes of thermal activation or mac-
roscopic quantum tunneling through phase slip barriers, 
which is beyond the scope of the present paper. One can find 
examples of such analysis for conventional superfluids with 
mass supercurrents in Ref. 30. 

Although evidence of the existence of metastable super-
fluid spin currents in the B  phase of superfluid 3He were 
reported long ago [26] the first experiment demonstrating 
the long-distance transport of spin by these currents in the 
solid antiferromagnet was done only recently [27]. This is 
not the end but the beginning of the experimental verifica-
tion of the long-distance superfluid spin transport in magne-
tically ordered solids. In the experiment of Yuan et al. [27] 
spin injection required heating of the Pt injector, and the 
spin current to the detector is inevitably accompanied by 
a heat flow. Lebrun et al. [31], argued that probably Yuan 
et al. [27] detected a signal not from spin coming from the 
injector but from spin generated by the Seebeck effect at 
the interface between the heated antiferromagnet and the Pt 
detector. Such effect has already been observed for antifer-
romagnet Cr2O3 [32]. If true Yuan et al. [27], observed not 
long-distance spin transport but long-distance heat transport. 
However, it is not supported by the fact that Yuan et al. 
observed a threshold for superfluid spin transport at low 
intensity of injection, when according to the theory (see 
Sec. 4) the absence of the strict spin conservation law be-
comes important. With all that said, the heat-transport in-
terpretation cannot be ruled out and deserves further inves-
tigation. According to this interpretation, one can see the 
signal observed by Yuan et al. [27] at the detector even if 
the Pt injector is replaced by a heater, which produces the 
same heat but no spin. An experimental check of this pre-
diction would confirm or reject the heat-transport interpre-
tation. 

The present paper focused on spin superfluidity in mag-
netically ordered solids. Recently investigations of spin su-
perfluidity were extended to spin-1 BEC, where spin and 
mass superfluidity coexist and interplay [33–36]. This inter-
play leads to a number of new nontrivial features of the 
phenomenon of superfluidity. The both types of superflui-
dity are restricted by the Landau criterion for the softer 
collective modes, which are the spin-wave modes. As a re-
sult, the presence of spin superfluidity diminishes the po-
ssibility of the conventional mass superfluidity. Another con-
sequence of the coexistence of spin and mass superfluidity 
is phase slips with bicirculation vortices characterized by 
two topological charges (winding numbers) [36]. 
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Надплинне перенесення спіна 
в магнітовпорядкованих твердих тілах 

(Огляд) 

E.B. Sonin 

Представлено огляд теорії надплинного перенесення спі-
на на великі відстані в твердих феро- та антиферомагнетиках, 
яка грунтується на аналізі топології, критерію Ландау та про-
ковзуваннях фази. Обговорюються також експерименти, які 
свідчать про існування спінової надплинності. 

Ключові слова: спін, спінова надплинність, феро- й антифе-
ромагнетики. 

Сверхтекучий перенос спина 
в магнитоупорядоченных твердых телах 

(Обзор) 

E.B. Sonin 

Представлен обзор теории сверхтекучего переноса спина 
на большие расстояния в твердых ферро- и антиферромагне-
тиках, которая основывается на анализе топологии, критерия 
Ландау и проскальзываний фазы. Обсуждаются также экспе-
рименты, свидетельствующие о существовании спиновой сверх-
текучести. 

Ключевые слова: спин, спиновая сверхтекучесть, ферро- и ан-
тиферромагнетики. 
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