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We investigate the collective density oscillations and dissipationless drag effect in bilayer structures of ultra-

cold bosons in the presence of counterflow. We consider different types of inter-particle interactions and obtain

the drag coefficient and effect of counterflow on the sound velocity. We observe that counterflow enhances

(suppresses) the energy of symmetric (asymmetric) density mode and drives the homogeneous system towards

instability. The dependence of the drag coefficient on the spacing between two layers is determined by the form

of particle-particle interaction.
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1. Introduction

Experimental advances in trapping and cooling atoms
and ions in low dimensional geometries together with the
ability to manipulate different system parameters have
provided a unique playground for the simulation of exotic
model systems [1-3]. In particular, the possibility of hav-
ing different types of particle-particle interactions together
with their tunability has made it possible to hunt for inter-
esting physical phenomena, hardly observable in natural
conditions [4].

If trapped particles are bosons, at low enough tempera-
tures one would expect Bose—Einstein condensation (BEC)
[5,6] to take place. Interesting phenomena are expected in
multi-component condensates due to the interplay between
superfluidity and inter-particle interactions.

In this paper, we have considered a bilayer system of
Bose gas at zero temperature. Bosons in each layer are in
the BEC state. Particles in two separated layers are coupled
through the interlayer interaction. The interaction induced
depletion of the condensate is not significant, as long as the
interlayer and intralayer interactions are not too strong. As
a two-component system, two collective density modes are
expected for the bilayer structure corresponding to the in-
phase and out-of-phase oscillation of density in two layers.
If the inter-particle interaction is long-ranged the in-phase
collective mode is a plasmon mode with the usual ® oc \/a
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long-wavelength dispersion [7], while the out-of-phase mode
is acoustic with the ® oc ¢ dispersion. For short-range interac-
tions both modes become acoustic. Driving one of the two
layers with a uniform background velocity, supercurrents flow
in both layers [8—18]. The relative velocity between two lay-
ers modifies the dispersions of collective modes, enhancing
the energy of in-phase oscillations and softening of the out-of-
phase mode. If the counterflow is strong enough, the energy
required to excite the out-of-phase mode becomes zero, indi-
cating the instability of homogenous Bose gas towards a den-
sity wave or a phase-separated state.

The rest of this paper is organized as follows. In Sec. 2.
we introduce our model of double-layer Bose gas and ex-
plain how it is possible to obtain its collective density
modes and superfluid drag response. In Sec. 3. we present
our results for the collective modes and drag effect consid-
ering three different forms of particle-particle interactions,
namely Coulomb, dipolar, and soft-core interactions. Final-
ly, we summarize and conclude our main findings in Sec. 4.

2. Density-density response function and collective
modes

We consider two identical two-dimensional planes of
ultra-cold bosons, separated by a distance d (see, Fig. 1).
No tunneling is allowed between two layers. Therefore,
layers are coupled together only through the inter-particle
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Fig. 1. Cartoon of two identical layers of ultra-cold bosons sepa-
rated by distance d. Particles in each layer interact through Vg(r),
while Vp(r) is interaction between two particle from different
layers, r being the in-plane distance between particles.

interaction. The density fluctuations O6n;(q,®) in layer
i=1,2,is given by [7]

S (q,0) = Y 1 (q. )V (q, 0), ()
J

where VjeXt (q, w) is the external potential applied to layer j
and x;;(q,©) is the density-density linear response func-
tion, written in the matrix form as

-1
1@.0)=[1-7" @o@e)| M. @)

Here, I is a 2x2 identity matrix, and W;ff (q,0) and
I (q,®) are the elements of the dynamical effective poten-
tial and non-interacting density-density response function,
respectively. The exact form of the effective potentials are
not known, and one has to resort to some approximations.
Within the random phase approximation (RPA) [7], one
replaces the effective interaction with the bare one Vij (9).
For a symmetric bilayer we have I1;;(q, ®) = §;I1(q, ®) and
Vi (9)= SijVS ()+(1- sz Wp(q), where Vg(q) and Vp(q)
are the bare interaction between bosons in the same and dif-
ferent layers, respectively. Eigenvalues of the density-density
response matrix (q,®) are

I1(q, ®)
1-Vo()T(q, )

where V. (q)=V¢(q)£Vp(q) are the symmetric and
antisymmetric components of the interaction, and the non-
interacting density-density response function of a two-
dimensional system of bosons at zero temperature is ana-
lytically known

RPA

X+ ()= (3)

2ng,
H(g,0) = ———F—, (4)
(ho+i07) —g

with n the particle density in each layer and ¢, = h2q2 /(2m)
the single-particle energy dispersion of bosons with mass
m. The dispersion of the collective modes could be ob-
tained from the singularities of the density-density re-
sponse functions y4(g,®) at finite frequency. Using the
analytic form of the non-interacting density-density re-
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sponse function, it is possible to find analytic expressions
for the collective modes’ dispersions

hzoﬁ_r (@)= 83] +2ne,V.(q), (%)

which correspond to the in-phase (+) and out-of-phase (-)
oscillations of the particle density in two layers.

2.1. Counterflow

If we consider background velocities of v; and v, in the
first and second layers, respectively the collective modes in
the presence of these background velocities could be easily
obtained from the poles of the total density-density re-
sponse, after replacing ® with w—v;-q in the non-
interacting density response of layer i: I1;(q, ®). The back-
ground flows could be decoupled into the center-of-mass
V =(v; +v;,)/2 and counterflow v=(v;-v,)/2 compo-
nents. As the effect of the center-of-mass flow could be
simply understood in terms of a Galilean boost, we focus
on the counterflow part, and look for the solutions of the
following equation

! (g,0-v-@)~Vs(q)
~Vp(q)
which after some straightforward algebra, for the disper-

sions of collective modes in the presence of finite counter-
flow result in

-V
. p(9) 0, (6)
IT (q,0+v-q)-Vs(q)

Wl (q,v) =& |:1+§—nVS (q):|+(hVoq)2 +
q

q

izgq\/n2V,%(q)+(hv.q)2 {l+z—nVs(q):|. (7

We note that the dispersions of collective modes become
anisotropic in the presence of finite counterflow and for
small counterflow velocities, to leading order in v we find

hoos (q,¥) ~ hos () +%Mi (.00, @®)
where
_ hg* cosX(9) gy 2n
M, (q,0) = 1+ 1+, 9
+(q,9) 02 (0) { v (q){ +8q s(q)} )

Here, o, (q) are the dispersions of collective modes in the
absence of counterflow, as given by Eq. (5) and ¢ is the
angle between the flow direction and the direction of wave
vector q.

2.2. Zero-point energy and drag effect

With the full dispersion relations of collective excita-
tions, we are able to find the change in the zero-point ener-
gy (per unit area), due to the finite counterflow [9]
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AE7p(v) = Y

Z [o)a(q,v)—coa(q)], (10)

g.0=%

in which the difference between collective modes with and
without counterflow are summed and 4 is the sample area.
For small counterflow velocities, we can write

AEzp(v) = -2y pv?, (11)
where
1
Yo =—= >, My(q.0). (12)
84 ~
q,0=1%

As we will see in the next section, the zero-point energy
AE7p(v) is negative which means that finite counterflow
lowers the free energy. We now construct the zero-
temperature free energy F, by adding the kinetic energies
of the bosons in each layer

= o)1 0, (13)

where we have reverted to use the individual velocities in
each layer. We find the current densities in layer 1 and
layer 2, calculated from j; = 0F/0v; (i=1,2), to be

i =(mm=yp)v +vpv,,

: (14)
72 :yDZJl+(nm—yD)02.

The expressions given in Eq. (14) demonstrate that the
superflow in the first (second) layer depends on the superflu-
id velocity on the same layer as well as that of the second
(first) layer. This is the dissipationless superfluid drag effect
well known in two-component superfluids [8—14,17,18]
which has been discussed for a variety of related systems.

In the following, we will investigate the long-wave-
length dispersion of collective modes and the drag coeffi-
cient yp for dipolar systems of bosons interacting with
different forms of interactions.

3. Results

3.1. Charged bosons

Bilayers of charged bosons interacting through Cou-
lomb potential has been extensively explored in the litera-
ture. Here, we reconsider this system as a matter of com-
pleteness and to compare its results with the ones we find
for other forms of interaction. For charged bosons, in the
real space, we have

62

Ve(r) =

>

15
2 (15)

Vp(r) =—F——,
\/r2 +d?

7
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where 7 is the in-plane distance between two bosons and
d is the layer separation. The Fourier transform of the
bare interactions read

2
2me
Vs(q) = ,
q

(16)
Vplg) =Vs(ge .

The full dispersion of collective modes in the presence
of counterflow is obtained from Eq. (7), after replacing the
specific form of intralayer and interlayer interactions there-
in. In Fig. 2 we have compared the dispersions of in-phase
and out-of-phase collective density modes at finite
counterflow with the ones in the absence of counterflow.
The dimensionless coupling strength is defined as
gc = Tcnalz;, where ap = n%/(me?) is the Bohr radius and
the dimensionless velocity is ¥ = magv/h.

In the long-wavelength limit and in the absence of
counterflow the dispersions of collective modes read

dnne®

0)+(q) ~ qy
a7

2nne’d

o_(q) = q =04,

where v, =+ 2mne’d/m is the sound velocity of the charged
system. With finite counterflow, the plasmon mode is not
affected by the counterflow to the leading order terms in ¢,
but the sound velocity is modified as

v, (0,9) = V7 — 07 cos). (18)
25
o+(q,0=0) —
0—(q3=0) — 3
20r 0+ (g, 9=05)- - - L’
oy o—-(q,0=05)= - = 7
g 15+ ’
N
g gc=1 ’
@ 10+ d=02ay,
3
Sk

Fig. 2. (Color online) Dispersions of in-phase and out-of-phase
collective density modes in a bilayer of charged bosons in the ab-
sence (solid lines) and presence (dashed lines) of finite counterflow
velocity. The dispersions are plotted along the flow direction i.e.,
q || v. The dimensionless density parameter is g¢ = nna123 and the
dimensionless velocity is defined as @ =maguv/h .
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Replacing the long wavelength dispersion of collective
modes in Eq. (9) the drag coefficient, to leading order in
the wave vector, reads

h
Yr———r (19
9671w .d

N

D= o,

where the expression in the second line is obtained after
integrating g up to 1/d. As v oc d"? ,we find yp o d77"?
at small layer separations. This agrees with the findings of
Tanatar and Das in Ref. 10.

3.2. Dipolar bosons

If we consider a bilayer loaded with dipolar bosons,
whose dipolar moments are aligned perpendicular to the
plane, the bare intralayer and interlayer interactions, re-
spectively read [19]

C1
Vs(r) = 4‘;‘1 3
(20)
C r? —2d?
Vp(r) =——94

where Cy; is the dipole-dipole coupling constant, and the
direction of polarization in two layers is considered appo-
site to each other, in order to avoid binding of dipoles from
different layers [25]. In practice, such a configuration could
be realized with ultra-cold polar molecules subjected to an
external static electric field applied to polarize the dipoles.
One would then excite molecules in two adjacent layers into
two different rotational states, such that their effective polar-
ization become respectively parallel and antiparallel to the
applied external electric field [19,26]. Upon the Fourier
transformation of Egs. (20), we find [20,21]

C >
Caa| 8 P /2erfc(ﬂj ,
4 | 32w V2

Vp(q) _qu 9

Vs(q) =
(21)

where erfc(x) is the complementary error function and w
is the short distance cut-off introduced to heal the diver-
gence of Fourier transform of the intralayer interaction. In
Fig. 3 we compare the full dispersions of collective density
modes of dipolar bosons in bilayer structure at finite and
zero counterflows. The dimensionless coupling strength is
defined as g = nnroz, where ry = mCyy /(4nh?) [22] is the
dipole length and the dimensionless velocity is © = mryv/h.

Note that in the long wavelength limit, we have
Ve(qg—>0)=Uy—-Cyyq/2 and  Vp(g—>0)=Cyq/2,
where Uy =~/2/nC,,/(3w). The dispersions of collective

modes at long wavelength read

04 (q) 2 vgq +-+, (22)
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Fig. 3. (Color online) Dispersions of in-phase and out-of-phase
collective density modes in a bilayer of dipolar bosons in the
absence (solid lines) and presence (dashed lines) of finite
counterflow velocity. The dispersions are plotted along the flow

qflv.
gD =rmrg, with 7, =mCdd/(4TCh2) and the dimensionless ve-

direction i.e., The dimensionless density parameter is
locity is defined as ©=mryu/h. Moreover, we have used
w=0.2ry as the cutoff parameter for the intralayer interaction.

where v = \/nUj/m . This shows that both symmetric and
asymmetric modes are sound waves with the same zero-
sound velocity within the RPA. Finite counterflow breaks
the degeneracy between two modes, and the sound veloci-
ties are modified as

U, +(0,¢) = v, tv[cosd|. (23)

The drag coefficient, to leading order in the wave vector, is

thd
=~ q co s
640 ul Z
(24)

thdl’l
1280mm°v0d>

where, again ¢ is integrated up to 1/d in the second line.

3.3. Soft-core interactions:

Now, we consider a bilayer system of particles interact-
ing through a soft-core short-range interaction. This form
of interaction is relevant e.g., for Rydberg-dressed particles
[23]. We model this interaction with a step function
UO(r, —r), where U is the strength of interaction and 7,
is its range. The intralayer and interlayer interactions read

Ve(r)y = U@(rc —r),

Vi (r) =U®(rc—\/r2+d2j.

Obviously, two layers are decoupled if d > r,, therefore
we consider only cases where the spacing between two
layers is smaller than the range of interaction. In the Fouri-
er space, we find

(25)
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Fig. 4. (Color online) Dispersions of in-phase and out-of-phase col-
lective density modes in a bilayer of soft-core bosons in the absence
(solid lines) and presence (dashed lines) of finite counterflow veloci-
ty. The dispersions are plotted along the flow direction, i.e., q || V.
The dimensionless density parameter is gg = 2nmnrc4U /h? and the
dimensionless velocity is defined as © = mr,v/h.

Jl (rcq)

n(\r2-d%q) 20

q

Vs(q) =2nUr,

Vp(q) = 27:U\/rcz ~d?

Here, J;(x) is the Bessel function of the first kind. In the long
wavelength limit we have Vg(¢=0)=Vgy= TEUI’C2 and

Vp(g=0)=Vpo = 7tU(rC2 - dz). The collective modes in the

absence of counterflow are acoustic with different sound ve-
locities

04 (q) = U5 +9, 27
with v, = [n[Vg g +Vp o)/m. It is interesting to note that

s— = dNnnU/m is independent of the soft-core radius 7,

and linearly increases with the layer spacing d for d <r..

0

With finite counterflow, to leading order contribution from
the flow velocity, we find

Vs.0
U3 (0,0) = Vs 4 +07 cos | 1222 . (28)
Vpo

Finally, the drag coefficient reads

hom /] m
= — |—G 2h~ —G, 29
YD i\ Eq gcos oo’ N " (29)

where
G = Vso=Vpo  2WsotVpo
VpoAVs0=Vpo VpoyVso+Vpo (30)
1 0
~ +0(d"),
JnUd
576

which means that we have

hre G1)

Yp=———7
967, od*

where v o = r.~/mnU/m is the sound velocity in an isolat-
ed single layer.

4. Summary and conclusions

We have studied the dispersions of collective density
oscillations in bilayers of ultra-cold Bose gases. Consider-
ing different types of inter-particle interactions, we have
investigated the long-wavelength behavior of collective
modes. For charged bosons, the collective modes are plas-
mon oscillations and zero sound waves. For dipolar bos-
ons, both modes are of the zero-sound type and the veloci-
ty of sound for both in-phase and out-of-phase oscillations
is the same within the random phase approximation. Many-
body correlations would break the degeneracy of these two
modes at strong couplings [24,25]. For soft-core short-
range interaction, again both density modes are linear at
long wavelengths but the velocity of two modes is different.

Finite counterflow between two layers enhances the en-
ergy of symmetric mode and reduces the energy of asym-
metric mode. It is expected that at large enough counterflow
velocities, the energy of asymmetric mode would become
negative, indicating instability of the homogenous gas phase.

Superfluid current in one layer would induce super-
current in the second layer. The drag coefficient is propor-
tional to 1/d*, where a. = 7/2, 5 and 4, for Coulomb, dipo-
lar and soft-core interaction, respectively.
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[BowwapoBuii 603e-ra3 B pexumi npoTutevii:
KOMeKTUBHi Moau Ta 6e3gucmnaTnBHE 3axXONeHHS

Saeed H. Abedinpour, B. Tanatar

JlocmipkeHo KONEeKTHBHI KOJNMBAHHS TYCTHHH Ta edekT Oe3-
JIMCHUIIATHBHOTO 3aXOIUICHHS Y JIBOLIAPOBUX CTPYKTYpax yJbTpa-
X0JI0OAHUX 0O030HIB MPH HASIBHOCTI mpoTtutedii. Po3risiHyTO pi3Hi
TUIH MDKYaCTHHKOBOI B3a€MOII1, 3HAWICHO KOS)III€HT OMOpy Ta
BH3HA4YEHO, SIK NPOTUTEYis BIUIMBAE HA LIBUAKICTb 3BYKY. IToka-
3aHO, IO MIPOTHUTEUis 30UIBIIYE (3MEHITYE) EHEePrilo CHMETPUIHOT
(acuMeTpHYHOI0) MOJM Ta NPHBOAUTH JIO TOTO, L0 OJHOPIJHUN
CTaH CTa€ HECTIMKMM. 3HaWAEHO, IO 3aJIEKHICTh KoedilieHTa
OIOpY Bij BiJCTaHI MK JBOMA LIapaMH BU3HAYAETHCS BUIIISIOM
MIDKYaCTHHKOBOI B3a€MOIi.

Kitro4oBi croBa: fBomrapoBuii 603e-ra3, KOJEKTHBHI MOAH, Oe3/1u-
CUIIATHBHE 3aXOIICHHS.

[ByxcnownHbl 603e-ra3 B pexunme NpoTMBOTOKA:
KONNEeKTMBHbIE MOl M Be3anccunaTmBHoe
COMpoTUBIIEHNE

Saeed H. Abedinpour, B. Tanatar

HccnenoBaHbl KOJUIEKTHBHEIE KOJIEOAHHS TUIOTHOCTH U d(PdeKT
0e3MCCUIIATUBHOTO CONPOTHBIICHUA B JBYXCIOHHBIX CTPYKTYpax
YIBTPaXOJIOMHBIX O030HOB IPU HAIMYUM NPOTUBOTOKA. PaccmoTpe-
Hbl Pa3/M4HbIC THIBl MEXYACTUYHOTO B3aUMOJCHCTBUA, HaiileH
KO3((UIMEHT CONPOTUBICHHS M OINpENeNieHO, KaK HPOTHBOTOK
BIIMSIET Ha CKOPOCTH 3ByKa. [T0Ka3aHO, YTO IPOTUBOTOK YBEJIMYMBACT
(YMEHbIIAeT) PHEPTUI0 CUMMETPUYHOM (ACHMMETPHYHOM) MOIBI U
HPUBOAUT K TOMY, YTO OJHOPOIHOE COCTOSIHME CTAQHOBUTCS HEYC-
ToiumBeIM. HaiineHo, 9To 3aBHCHMOCTH KOO((HUIEeHTa CONPOTHB-
JICHUS OT PACCTOSHHSA MEXAY IBYMs CIOSIMH ONPENEISACTCS BUIOM
MEXJaCTUIHOTO B3aHMO/ICHCTBHL.

KnroueBsle croBa: AByXCOiHBIN 003€-Ta3, KOJUIEKTUBHBIE MOJIBI,
0e3IMCCUTIATUBHOE COTIPOTHBIICHHE.
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