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Magnetoconductivity oscillations and absolute negative conductivity induced by nonequilibrium populations
of excited subbands in a degenerate multisubband two-dimensional electron system are studied theoretically. The
displacement from equilibrium, which can be caused by resonant microwave excitation or by any other reason, is
assumed to be such that electron distributions can no longer be described by a single Fermi level. In this case, in
addition to the well-known conductivity peaks occurring at the Shubnikov—de Haas conditions and small peaks
of normal intersubband scattering, sign-changing oscillations with a different shape are shown to be possible. We
found also that even a small fraction of electrons transferred to the excited subband can lead to negative conduc-
tivity effects.
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1. Introduction

The transport properties of a 2D electron gas in a perpen-
dicular magnetic field have attracted much interest [1,2]
because of unexpected discoveries and new physics. In addi-
tion to the amazing quantum Hall effects observed in a de-
generate 2D electron gas under equilibrium conditions [3,4],
new experiments revealed resistivity oscillations [5,6] and
zero-resistance states [7,8], if a 2D electron gas formed is
GaAs/AlGaAs heterostructures is exposed to microwave
(MW) radiation. These oscillations are controlled by the
ratio of the radiation frequency, m, to the cyclotron frequen-
cy, m¢. The zero-resistance states (ZRS) are assumed [9] to
be caused by instability of an electron system with absolute
negative conductivity, o,, <0, regardless of the actual
mechanism of MW-induced resistance oscillations (MIRO)
which is still under debate (for a review, see Ref. 10).

Among different theoretical mechanisms proposed for
the explanation of MIRO, here we would like to highlight
the displacement [11,12] and inelastic [13] models. The dis-
placement mechanism is based on a peculiarity of orbit cen-
ter migration (X — X') when an electron absorbs a photon
and simultaneously is scattered off impurities. The authors
of the inelastic mechanism noticed that photon-assisted scat-
tering affects the distribution function of electrons f () in
such a way that it acquires a nonequilibrium oscillating cor-
rection (a sort of population inversion) whose derivative
leads to a sign-changing contribution to oy .
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MW-induced magnetoconductivity oscillations similar to
MIRO and even ZRS were observed in a nondegenerate 2D
electron gas formed on the free surface of liquid helium
[14,15]. The important distinction of these new oscillations
is that they are observed only if the excitation energy of the
second surface subband A,q = A, — A is tuned to the reso-
nance with the MW field (A, = 7o) by varying the press-
ing electric field (a sort of Stark effect in the 1D potential
well formed at the surface). It should be noted also that the
shape of these oscillations strikingly differs from the usual
shape of magnetointersubband oscillations described theo-
retically [16] and observed [17] for semiconductor hetero-
structures under conditions that two subbands are occupied.
Instead of simple peaks of o, expected at the conditions of
alignment of Landau levels belonging to different subbands,
the shape of MIRO observed in a 2D electron gas on liquid
helium represents rather a derivative of peaks.

The oscillations reported for electrons on liquid helium
were explained [18-20] by a nonequilibrium population of
the excited subband which triggers quasi-elastic intersub-
band scattering of electrons with the same peculiarity of
orbit center migration as that noticed in the displacement
model. Thus, the intersubband mechanism of MIRO and
ZRS has something in common with the both displacement
and inelastic mechanisms though it does not use the concept
of photon-assisted scattering which is important for these
two models. Extensive studies of MIRO in a nondegenerate
2D electron gas on liquid helium have revealed a number
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of remarkable effects associated with the ZRS regime: in-
plane redistribution of electrons [21], self-generated audio-
frequency oscillations [22], and incompressible states [23].
An explanation of these novel observations is based on the
concept of electron density domains [24]: regions of dif-
ferent densities appear to eliminate the regime of negative
conductivity.

It should be noted also that even the delicate theoretical
predictions reported for the intersubband mechanism of Ml-
RO [20] which concern the effect of Coulomb interaction on
conductivity extrema were clearly observed in the experi-
ment [25]. Still, this mechanism of MIRO was described
only for a nondegenerate multisubband electron system
using an important simplification: f(g)«cexp (—e/T,),
where ¢ is the in-plane energy, and T, is the electron tem-
perature. It is not clear how the Pauli exclusion principle
affects this mechanism; and the theory does not indicate in
what respect the results obtained for electrons on liquid
helium can be applied to a degenerate 2D electron system
similar to those investigated in semiconductor structures.

In this work we develop a theory of magnetoconductivity
oscillations in a degenerate 2D electron gas which are in-
duced by nonequilibrium population of excited subbands.
We introduce a new definition of the extended dynamic
structure factor of a multisubband 2D electron system which
incorporates the concept of quasi-Fermi levels (imref) and
describes the contribution of elastic inter-subband scattering
to the momentum relaxation rate under conditions that
electron distribution is strongly displaced from equilibrium
and cannot be attributed to simple heating of electrons. We
demonstrate that nonequilibrium populations of excited
subbands can lead to magnetointersubband oscillations
whose shape differs from the shape of usual oscillations
caused by the equilibrium population of the second subband
and the alignment of staircases of Landau levels [16]. This
induces important changes in quantum magnetotransport of
a degenerate 2D electron system and can even lead to neg-
ative linear response conductivity.

2. Magnetotransport in multisubband 2D systems

Electrons formed on the free surface of liquid helium
have a rather low density n, < 2-10%cm™2, therefore at
temperatures which are comparable with the Fermi tem-
perature they are already localized in sites of the Wigner
lattice [26]. Above the Wigner solid transition temperature
this system can be considered as a nondegenerate Coulomb
liquid where the Pauli exclusion principle is unimportant.
Electrons on a liquid helium film represent a remarkable
exception: for a special arrangement of various substrates
[27] they can form a 2D Fermion system evenat T = 0.

Electrons in semiconductor structures usually have the
effective mass which is much smaller than the free electron
mass. Therefore, at low temperatures these electrons can
be described as a 2D Fermi gas. A 2D electron system
formed in a semiconductor device can have more than one

Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 6

subband [1,28,29]. There is a number of experiments
demonstrated importance of intersubband scattering for elec-
tron transport in a 2D system [17,30]. These results repre-
sent properties of an equilibrium system, when the gate po-
tential and the Fermi level position in a GaAs/AlGaAs
heterostructure provide the second subband occupancy.
There is also a possibility of changing carrier density by
illuminating samples with light due to electron-hole pair
generation [31]. In this work, we shall focus on magneto-
transport properties of a 2D electron system under condi-
tions that electron populations of excited subbands deviate
substantially from equilibrium and cannot be described by
a single chemical potential.

The energy spectrum of a multisubband 2D electron
system in crossed magnetic (B) and electric (EH) fields is
described by three quantum numbers (I, n, and X; here we
shall ignore the spin variable):

g|,n,X = A| +&p +9EHX, (1)

where A, is the subband energy (I =1,2,...), X is the coor-
dinate of the center of the cyclotron motion, €, is the usual
Landau spectrum

en = hog (n+1/2), )

(n=0,1,..), and o, =eB/myC is the cyclotron frequency.
In the center-of-mass reference frame moving with regard
to the laboratory frame with the drift velocity uy, the elec-
tric field E|] — 0 and the in-plane electron motion is de-
scribed by the pure Landau spectrum of Eq. (2). The de-
generacy of each Landau level is given by SAIZnZZB,
where (g =+/fic/eB is the radius of the cyclotron orbit at
n=0, and S, is the surface area.

The schematic view of Landau levels of a two-subband
system is shown in Fig. 1. The Landau levels of the excited
subband are up-shifted by Ap; =A; —A; as compared to
respective levels of the ground subband. In contrast with the
model considered previously [16], the equilibrium Fermi
energy eg is assumed to be smaller than the intersubband
excitation energy hw,; = Ay (here o5 is the excitation
frequency). It is obvious that at certain magnetic fields
defined by the condition wy;/w, =m (here m=1,2,...)
Landau levels of the excited subband becomes completely
aligned with high enough Landau levels of the ground
subband which triggers elastic intersubband scattering.

At strong magnetic fields directed perpendicular to the
electron layer, magnetotransport of a 2D electron gas is
well described [32] by the center-migration theory [33,34],
if the collision broadening of Landau levels is taken into
account. For semiconductor electrons, there are two scatter-
ing mechanisms important at low temperatures: Coulomb
scattering from charged centers and surface roughness scat-
tering [1]. Both of them represent essentially elastic scat-
tering process. Each experimental realization of a 2D elec-
tron system has its own specific nature of scatterers. The
details of this nature are not important for the effect consid-
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Fig. 1. (Color online) Schematic illustration of a two-subband 2D
electron system in a magnetic field. The energy spectrum of the
ground (blue) and the first excited (red) subbands represents a
staircase of Landau levels. The position of the Fermi-level at
equilibrium is shown by the pink horizontal line.

ering in this work, and they can be incorporated in the theory
by changing the matrix elements of electron scattering. As
we shall see, the important parameters of the theory are the
Landau level broadening and the momentum collision rate at
zero magnetic field. Therefore, here we shall model the scat-
terers by artificial heavy atoms interacting with electrons by
an arbitrary potential Vip (R —R,|) (here R and R, are
radius vectors of an electron and an atom, respectively).

In the model considering here, the interaction Hamilto-
nian can be represented in terms of creation (aJ() and de-
struction (ay ) operators of atoms as

Hint :Qiz D exp [-i(K'-K)Rg ]x

V e KK’

XVK’fK‘ar('aK y (3)

where Q, =S, L, is the volume containing these atoms, K
represents a 3D wave vector of an atom, and VKLK‘ is a
Fourier-transform of the potential Vj; (R). For the effective
potential V,8(R, —R,), conventionally describing interac-
tion with short-range scatterers, Vo =V,. Static defects
resulting in elastic electron scattering are described by the
limiting case M, — o (here M is the mass of an artificial
atom). Surface defects can be modeled by a 2D layer of
artificial atoms. Similar modeling can be considered for a
description of remote scatterers.

In the case of a nondegenerate 2D electron gas, the prob-
lem of finding the nonequilibrium magnetoconductivity o,
can be equally well solved by considering the momentum
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exchange at a collision in the laboratory [18,20,35] or in
the center-of-mass [19] reference frames. For nondege-
nerate electrons, a great simplification appears because
[1- f(ey x)]~1, and the quantity to be averaged in the
laboratory frame is independent of X. This allows one to
restrict the averaging procedure to the Landau level index
n only, assuming the distribution function f(g,) <
o exp(—e, / Tg) with an effective temperature Ts.

Magnetoconductivity o, of a degenerate 2D electron
system can be found from the average friction force Fg
acting on electrons due to interaction with scatterers (the
momentum balance method [36-39]) or using a direct ex-
pression for the current j, and calculating probabilities of
electron scattering from X to X' (a version of the Titeica’s
method [40]). In order to avoid complications with the field
term eE”X in the energy spectrum of degenerate electrons,
it is convenient to consider scattering processes in the cen-
ter-of-mass reference frame moving with the drift velocity
uy with regard to the laboratory reference frame. In this
moving frame, the driving electric field E|] is zero [39], and
the electron spectrum coincides with the Landau spectrum
gy It is important that the momentum exchange at a colli-
sion Q = K'—K in the center-of-mass frame is the same as
in the laboratory frame because of the linear relationship
between a momentum and the respective velocity. At the
same time, one have to keep in mind that in the center-of-
mass reference frame the energy exchange at an elastic
collision acquires a Doppler shift correction [39],

ES) —EQ) =-nQ-ug =-hq-ug, @)

due to the quadratic dependence of the energy of an atom
on its velocity. Here E,((a) = 1n’K?/2M, and we used the
notation Q ={q,«} with g and « standing for the in-plane
and vertical components, respectively. It is quite obvious
that scattering probabilities should not depend on a choice
of an inertial reference frame. Physically, the correction of
Eqg. (4) is equivalent to the energy exchange for the elec-
tron spectrum considered in the laboratory frame
eE|(X'~X)=nqyVy, here we have taken into account
that X'—X = qyfé due to the momentum conservation
and used the notation Vi =cE /B for the Hall velocity
(uéy) ~ V).

The momentum balance approach [38,39] allows ob-
taining the effective collision frequency of electrons v
from the kinetic friction acting on the whole electron sys-
tem F . In the linear transport regime, F, is proportional
to ugy, and conventionally it can be written as [41]
Fr = —NgMgVesUy, Where the proportionality factor veg
defines electron magnetoconductivity

2
CWRSLALL 8 ©)

and n, = N /S, is electron density.
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The simplest way of obtaining veg is to consider the
momentum balance along the vy axis, Ff(ry) =
:—Nemeveﬁuéy) Assuming u((jy) ~ -V and using the
Born approximation for scattering probabilities in the cen-
ter-of-mass frame, one can find

F) (Vig ) = =Ng > hayWey (Vi ), (6)
q
where

2ne0)

NS 1LI'nn

fi (en )[1_ fir (e )} x

Wq (Vi) =

xlﬁvnr (Xq )U|2r’| (q)S(sn! —&n+Ap) +hquH ) @)

is the probability of electron scattering with the in-plane
momentum exchange equal #q, and A'('s Ay —Ay. Here
we have used the foIIowmg notations: ny ) is the density
of scatterers, n = ZMBne is the filling factor fi (an) is the
electron distribution function, the functions U, 1(q) and
n w (Xq) are defined by matrix elements of the interaction
Hamlltonlan

2
2wl MR
_ 2
‘(e_lqre)n',x';n,x =5, 42qy'2,n'(xq)* ©)
[min(n,n")]!

12 (x) = XIn—n'le—x[ Igm?(ln " (X)J
Xq = qué /2, and L] (x) are the associated Laguerre poly-
nomials. When obtaining Eq. (7), we used the advantages of
describing scattering probabilities in the moving frame —
the summations over indexes X, X' and K are trivial lead-
ing to the factors ng =1/ 2n£% and nSD).

Comparing the right side of Eq. (6) with the result ex-
pected for the linear regime NoMg V¢V , one can find that

[max(n,n")]!

Veff = — thyvvq (Vi )- (10)

MeVH

When expanding W (V) in Vy, we can consider only the
linear term W (O)VH [here the “prime” denotes the differ-
entiation] because W (0) depends only on the absolute
value of g and, therefore, gives zero contribution into vgg.
It is instructive to note that the same result for v and
Gy Can be found from the direct expression for the elec-
tron current along x direction (this method was also used
[42,43] for describing a nondegenerate electron system):

ix =—ene2(><'—><)qvvq (Vi ), (11)

where we have to use the relationship (X'—X)q = qu
which follows from matrix elements of Eg. (9) The
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Eq. (11) and the definition of o, obviously yield the ex-
pression for v given in Eqg. (10).

To obtain a finite magnetoconductivity in the treatment
presented above, one have to include higher approxima-
tions by incorporating the collision broadening of Landau
levels T}, (the broadening of electron density of states).
Following the ideas of the center migration theory [33] and
the self-consistent Born approximation (SCBA) [32], in the
right side of Eq. (7) we shall insert

Idejds’& (e—&n)dy (' —2p);

the subscripts | and I" in the respective delta-functions just
mark the subband where the level density belongs. Then,
assuming the replacement
8 (e—¢n)—> —iImG| n ().
mh '
[here Gy (&) is the single-electron Green’s function], the

average probability of scattering with the momentum ex-
change #q can be represented in the following form:

n(3D)

Wy (Vi ) = azzull
SARS Y

)Dyy (Gon —ayVi ), (12)

where o | = A/ 1, and

Dy (q.Q) = %J‘daﬁ (&)1 fy (5+70) ]x

XY g (% )IMGy o (8)IMGpryy (2 +7Q)  (13)
n,n’

is a new generalization of the dynamic structure factor
(DSF) of a multisubband 2D electron system. Expanding
Wy in qyVy vields

n(3D)

vett =——> > qUf () Dy, r(aoy) (14)

Thus, the effective collision frequency of a multisubband
2D electron system is proportional to the derivative of the
extended DSF Dy (g, «y ) with respect to frequency.

There are two important approximations for the Landau
level density of states. The SCBA theory of Ando and
Uemura vyields the semi-elliptical shape of the density of
states [32]

2n 1_(8—8n)2’

-ImG
( ) rn Fﬁ

(15)

where I',, is the broadening parameter. In the case of short-
range scatterers, I',, is independent of Landau number

I, =T with [32]
[2
I'=,|—hovg, (16)
T
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where vy is the electron relaxation rate obtained for B = 0.
The cumulant expansion method [44] yields the Gaussian
shape of Landau levels

2
-ImG,, (&) = */ﬁ_“h exp [—M} 17

n 1"%

which does not have the sharp cutoff of the density of states.
Generally, the level shape is a kind of mixture of elliptical
and Gaussian forms [45], and the shape of the lowest level is
close to a Gaussian.

In the case of equilibrium Fermi-distribution, Dy (q,€2)
has very useful properties which simplify significantly eval-
uation of v and oy, . For example, consider only the con-
tribution from intrasubband scattering processes (I'=1).
Then, Dy (q,€) coincides with the conventional DSF of a
2D electron system which satisfies the condition

—hQIT,

Dii(q.-Q)=e "7 ¢Dy (a,Q). (18)

The derivative of this relationship gives

n
D/,(9,0)=—D;;(q,0
1(a,0) o7, 11(a,0)
and the linear (in qyV}y ) term of Eq. (12) can be rewritten as

_ ho—
8V = ~ayViy - Wg (0), (19)
e

which allows representing c,y in terms of the equilibrium
probability Wg, (0):

o e (X=X )2 W, (0) (20)
XX — 2T, . q 4 ’

This equation coincides with the well-known result obtained
previously [33,46], and it is similar to the Einstein relation
between the conductivity and the diffusion coefficient.

For the ground subband and the semi-elliptic shape of
Landau levels [Eq. (15)] induced by short-range scatterers,
Eq. (20) transforms into the result of Ando and Uemura
which indicates that the conductivity peak value

2

(0% ) max :%(n +1/2) depends only on the Landau

level index n and the natural constants [32]. These “check-
points” of equilibrium transport regime, encourage us to use
Eq. (14) for describing magnetotransport in nonequilibrium
multisubband 2D electron systems.

For a nonequilibrium filling of 2D subbands, the extend-
ed DSF D |(q,Q) generally has no a relationship similar to
Eg. (18). Only describing nondegenerate electrons and as-
suming f(e) oc Ny exp (—e/T,) it was possible to introduce
[19,20] a version of the DSF S; |/(q,€2) which had an im-
portant property resembling Eq. (18), in spite of the fact
that the occupation of subbands was not equilibrium. Un-
fortunately, this version of the extended DSF appears to be
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useless for degenerate electrons. The new definition of the
extended DSF Dy |-(q,€) given in Eqg. (13) transforms into
S 11(g,€) if the electron system can be considered as a
nondegenerate gas [here M = N; / N, is the fractional oc-
cupancy of a subband].

3. Quasi-Fermi level approximation

Generally, it is very difficult to find f, (¢) if a system is
displaced from equilibrium. Therefore, in solid state phys-
ics it is quite common to use the concept of a quasi-Fermi
level or imref. In the following, we assume that displace-
ment from equilibrium is such that electron populations
can no longer be described by a single chemical potential
(or a Fermi level), nevertheless it is possible to describe it
introducing separate chemical potentials (quasi-Fermi lev-
els) for each subband:

= fe(s+ A1 -8 ), (21)

where 8y =y —p. The chemical potentials p, are meas-
ured from the bottom of the ground subband, while the zero
of Landau energy ¢ is taken at the bottom of each subband.
In most cases, it is sufficient to consider only two subbands
(the ground subband and the first excited subband), when
electron populations of higher subbands can be neglected.
The form of Eq. (21) is quite accurate if electron-electron
collisions are more important for intrasubband redistribu-
tion than for intersubband decay rates. Anyway, this form
of f|(e) is very useful because it allows obtaining oy, in
an analytical form for nonequilibrium populations of elec-
tron subbands.

One can also introduce different electron temperatures
for each subband (T, ), still we shall assume that T o =
=Ty ¢ =T, because in-plane energy relaxation between dif-
ferent subbands is governed by electron-electron collisions
(electron spacing is usually much larger than the average
distance between nearest subbands), whose rate is quite
high for 2D electron systems [1]. Regarding possible heat-
ing of electrons (T, >T), we assume that T, is still much
lower than the quasi-Fermi energies. The opposite limiting
case (nondegenerate electrons) was described in Refs. 19, 20.
It should be noted also that MIRO observed in a 2D electron
gas on liquid helium are quite well described even by the
approximation T, =T in spite of a substantial heating [25].

Using the distribution function of Eq. (21) and the well-
known identity

e ()1 e ()] = 1 (e)— ¢ (8')]1_&;—8’)’%’ (22)

it is possible to establish the following relationship for the
extended DSF

hQ+A|r’| fp,l|r’| )/Te

Dy (q,-Q)= ei( Dy (9,Q), (23)
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where | =y —py. For a single subband (I"'=1), this
property coincides with the property of the usual DSF of a
2D electron gas given in Eq. (18).

When considering the contribution from intersubband
scattering Vineer in E0. (14), the property of Eq. (23) allows
us to transform derivatives of the DSF whose frequency
argument is negative into functions with a positive argument

Df1(9-0) = 70

+£e (hQ+A| |1y |)

e

Dy (9,Q)+
Dy (9.9Q). (24)

Thus, a substantial part of Dy (q,, ) entering Eg. (14)
can be eliminated by reverse scattering processes due to
the first term in the right side of Eq. (24). Therefore, it is
convenient to represent the contribution of intersubband
scattering to v in the form containing only positive fre-
quency arguments (I >1"). In this way, one can obtain two
kinds of contributions: a normal contribution proportional
to Dy (9, @y 1), and an abnormal (sign-changing) contribu-
tion proportional to the derivative Dy (q,w; '). To make a
distinction between these contributions, we shall use the
following notations: Vjner = VN +Va, Where

(3D)
Na h U2, (q)e ™ an
Dy (.o
mehSA g‘z ( )
(25)
(30) o
vp = Na Z(l_e Kl /Tejx
MehSa iy
x Y a3Ufy (a)Dfy (a0 ). (26)

q

The normal contribution vy exists even under the equilib-
rium condition (uj - =0), though at p <A it is very
small due to fj(e) present in D |/(q, ey ). The abnormal
terms v, differ from zero only if electron distribution is
somehow displaced from equilibrium (y; | > 0).

When the first excited subband (I = 2) has an extra elec-
tron population 5N, one expects that the all these electrons
will occupy the lowest Landau level (n = 0), if low tempera-
tures (T, < hw,) are con5|dered and the filling factor of the
excited subband n, = 2nl’ N, /Sp <1. Neglecting elec-
tron populations at higher Landau levels and assuming that
the level broadening is small, one can find the quasi-Fermi
level of the excited subband

1—
Hp = A1 +gg—Teln ( 2 j @7)
N2

In this equations, the last two terms represent the well-known

high-field approximation for the chemical potential [47].
The influence of higher Landau levels and a finite broad-

ening I'y g on py(ny) is illustrated in Fig. 2 for iwg /T =5

Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 6

I,,=0,n=0
— I,,=0,alln
-—- 1,,=03,alln
I,,=1alln

1 1 1 1 1

04 06 08 1.0
N,

Fig. 2. (Color online) The quasi-chemical potential of the first
excited subband p, —Aj; (in units of Zw;) versus the filling
factor n, = Zrcf%Nz /'S 5 calculated for different conditions which
are indicated in the figure legend. The level broadening I'y , is
also shown in units of 7.

(in this figure py — A4 and 'y , are given in units of 7).
These results indicate that the simple form of Eq. (27) de-
scribes the dependence up(ny)-Ay; quite well if
[y /ho, <0.3. At Ty o/ hoy = 0.1, it is even difficult to
see the difference between results of numerical calculations
(not shown in Fig. 2) and the approximation I'y 5 =0 illus-
trated in the figure by the red line. For the strong broadening
['p /o =1, the results of numerical calculations (orange
line) deviate substantially from the approximation given in
Eq. (27), if n, > 0.2. Under these conditions, the analytical
form can be used only for a qualitative analysis or simple
estimations. It is important that considering a 2D electron
system with narrow Landau levels, the approximation of
Eq. (27) can be used even for substantial values of the filling
factor n, <0.8 which are quite sufficient for this research.
The accuracy of the high-field approximation increases with
lowering temperature.

For larger values of the filling factor n, >1, one can
find a simple extension of the analytical form of Eq. (27)
which can be used for the ground subband as well. There-
fore, in the following equation, we shall use an arbitrary
subband index (1):

T i {gn ~T,1In (M—_”'Hx

n=0 m-n

x0(n+1-n;)6(n; —n), (28)

where 0(x) is the Heaviside step function, and
m :2n£%N| /'Sp. This solution is found assuming that
fi(e) =1 for e<e,_q if N < <n+1, therefore it is a low
temperature approximation. Figure 3 illustrates that at low
temperatures (T, <1K) numerical results shown by solid
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o T=0.5K (N)
—-—T=05K (A)
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L 1 L

Fig. 3. (Color online) The analytical (A) extension of the quasi-
chemical potential of the |-subband (dashed, dash-dotted and
dash-dot-doted lines) is compared with the results of numerical
(N) calculations for narrow Landau levels (solid lines). The wavy
shape of the solid lines increases with lowering temperature to-
gether with the accuracy of the analytical approximation.

lines, are well approximated by the periodic extension of
the high field formula of Eq. (27) given in Eq. (28). Devia-
tions of Eq. (28) from the numerical result appear only in
very narrow regions near the points n; =1,2,.... At high
temperatures T, 2 0.27m, the deviations are strong be-
cause the numerical results shown by the red line approach
the semi-classical formula pj(n;)—A;; ~ 21h?N; 1 mgS a.
In our numerical calculations (here and below), the ratio of

16 L —Analyti.cal
----Numerical
14 -
v 12 1H&4m
=
10 {
gl
51 4 3 2 n=1
1 1 1 1 1 1 I
0.1 1
B, T

Fig. 4. (Color online) Illustration of the efficiency of the analyti-
cal approximation given in Eq. (28) for the description of oscilla-
tions of the chemical potential (Fermi energy) as a function of B
under conditions that the collision broadening is small: the ana-
Iytical equation (solid red line), and numerical calculations
(dashed blue line). The singular points, where the filling factor n
equals to an integer, are indicated.
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the effective electron mass to the free electron mass is
fixed to the value 0.067 which is typical for semiconductor
heterostructures.

In Fig. 3, the filling factor n; was varied by changing
electron density nj = N; /S, while the magnetic field was
fixed. It is remarkable that the simple analytical approxi-
mation given in Eq. (28) can be used also for the description
of the well-known oscillations [48] of the chemical potential
u(B) of a 2D electron system with a fixed density and nar-
row Landau levels (here we omit the subband index). This
possibility is illustrated in Fig. 4 for n, =15-10%cm™
and T =0.5K, assuming that the broadening of Landau
levels is small. One can see that the analytical formula (red
line) practically coincides with the results of numerical cal-
culations (blue line) in a wide range of magnetic fields with
the exception of the points where n(B) is very close to an
integer (1,2,...) as indicated in Fig. 4.

4. Results and discussion

According to Egs. (25) and (26) the contribution from
intersubband scattering to the effective collision frequency
as a function of the magnetic field is determined by the ex-
tended DSF D /(q,Q) and its derivative with respect to
frequency Dy (q,€) near the special points Q=ay =
= Ay /7 >0. Considering the two subband model (I =2
and I"=1), in Eq. (13) which defines D, 4(q,Q) the factor
[1- f1(e+ Q)] can be set to unity because the distribution
function of electrons occupying the ground subband is very
small at high energies: fj(e+A,;) < 1. The later inequali-
ty follows from the fact that the respective quasi-Fermi
level 1y < p. For the regime of fixed density, p; < p which
is quite obvious according to Fig. 3. In the regime of fixed
chemical potential, p; = p due to a reservoir of electrons
[47]. Therefore, the nonequilibrium DSF D,;(q,Q) as a
function of frequency is determined mostly by the distribu-
tion of electrons occupying the excited subband

-1
fy (8):{1—112 exp(8;80j+l} , (29)

N2 e

where we had used the approximation of Eq. (27) for p,
assuming that n, <0.8. For larger n,, we shall use the
extension of Eq. (28).

In the expression for the effective collision frequency
Vesf» the DSF is affected by integration over g. For short-

range scatterers, the respective integral can be easily calcu-
2 _ , ;
lated because quln,nv(xq)dxq =(n+n'+1). Therefore, it

is convenient to analyze the frequency dependence of the
dimensionless function

FOO
Jai(o/ o) = 2_71-[ Dy1 (0 @) XqdXq (30)
0

instead of D, (g, ). Here, for simplicity reasons, the col-
lision broadening of Landau levels I' is assumed to be in-
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dependent of quantum numbers n and |. Employing the
Gaussian shape of ImG; , (¢) given in Eq. (17) yields

© © exp (—2y2)
‘]2,1 =MN2 n+1 X
ngl( )go/r (1—ﬂ2)eXp(yr/Te)+n2
" 2
xexp —2|:y+&[2—nﬂ dy. (31)
I' (o

It is obvious that J, (/o) has prominent maxima near
the conditions o/, =1,2,..., if the 2D electron system is
pure enough and #hw, /I >1. The results of numerical
evaluations of the function J,3(o/®;) and its derivative
J21(w/ ) are shown in Fig. 5 by the solid and dashed
(dashed-dotted) lines, respectively. The calculations were
performed for N, = 0.1N, and two values of the magnetic
field [B=0.5T (red lines) and 0.1 T (blue lines)]. The
heights of the maxima increase with lowering B due to the
factor (1-m,)/m, because the filling factor n,(0.5T) =
=0.165 while 1,(0.1T) ~ 0.827. The change of B affects
notably also the positions of minima, maxima and the zero-
crossing (sign-changing) point of the derivative J;; (o / ).

Using the same approximations as those used for ob-
taining Eq. (31), the abnormal contribution to the effective
collision frequency can be represented as

2 2 —to /T
VA= Vo :2’1(;“%) [1—e H21 ejq)z,l(B), (32)

where we defined

r .,
‘1)2,1(5):—;1(D 331 (0217 ) (33)
C

§'\/
=
'
é’u
8
HN" ,-
—0.1TJ,, " -
’ v
[----0.5TJ,, \/
—=01TJ ;
-8 I > i i
1 2 3
/o,

Fig. 5. (Color online) The frequency dependences of the dimen-
sionless functions which define the shape of magnetooscillations
of vy and v, calculated for two values of the magnetic field
shown in the figure legend: J,i(w/w;) (solid lines) and
J51(w/ @) (dashed and dash-dotted lines).

because the derivative Jj;(w,; /) contains the addi-
tional factor ze. /T" according to Eq. (31). The dimension-
less parameter pj | is determined by the following matrix
elements

2

P = (34)

(=)
Il
The accurate calculation of p, requires the knowledge of
the details of a particular 2D electron system such as the
wavefunctions of subband states which are not considering
in this work. For electrons on liquid helium [49], p,4 is a
factor of two smaller than p; y =1. Therefore, in following
numerical calculations we shall use a rough estimation:
2ppq ~1.

Under the conditions used for obtaining Eq. (32), the
contribution from electron scattering within the ground
subband (I =1) can be found as

VOE(’“”C jz ;4 (B), (35)
m\ T ’

Bli L1_ -1
By Biy=L Y

i K

O

Vintra =

where

n=0

0 2
®1(B)= Y (2n+1)exp {_4(“;;;“)} (36)

At the same time, the contribution from electron scattering
within the first excited subband Vi(r21t)ra has a very weak de-
pendence on B because the distribution function f,(g)
given in Eq. (29) varies strongly near gy. Thus, vi(ﬁt)ra can
be considered as a small background value when the ratio
N, /N < 1. The background value decreases also with
narrowing of the density of states. In the following, we

o) RPN €
shall neglect v/ and assume that vini, =~ viti.

Comparing v of Eq. (32) with v given in Eq. (35)

intra
indicates that the abnormal contribution contains the addi-

. —o /T, L T
tional factor (1—e H2l ej which is zero under equilibrium

conditions (u, = =ug). If we have a nonequilibrium
population of the second subband, then, according to
Eq. (27) and Fig. 2, du, becomes substantially larger than

T, already at a small filling factor n,. For example, Fig. 2
shows that py > A, if np >0.1. Assuming this reasonable
condition, we can neglect the exponentially small term in

iy /T . . .
the factor (1—e H21 ej and set this factor to unity even if

Ly is fixed (according to Fig. 3, p; decreases with lowering

. ~p T,
N; which also reduces e "21"'¢),

Another important distinction between v and viqgeq 1S
caused by different behaviors of the dimensionless func-
tions @, 4(B) and @;;(B) illustrated in Fig. 6. The both
functions oscillate with varying 1/ B, but the periods of
these oscillations are different. Assuming p is fixed to
g, the maxima of the positive function @, 1(B) entering
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— @, (B)
---- Dy, (B)

D,,(B), ©,,(B)

1 ! 1

0.2 0.4
B, T

L 1 L | I
0.6 0.8 1.0

Fig. 6. Graphical illustration of the functions ®,,(B) and
@ 1(B) which determine v o and vy, respectively.

Vintra OCCUr at ime = ug /(n+1/2) due to the Shubnikov—
de Haas effect. In contrast to ®;4(B), the function
®,;(B), which determines v 5, is a sign-changing function
having maxima and minima, according to the definition of
Eg. (33) and Fig. 5; its zero-crossing points occur at mag-
netic fields which are close to the condition A, 3 / i, =m
(herem=1,2,..).

It is instructive to analyze vy using the same approxi-
mations and conditions. Direct transformation of Eq. (25)
yields

2 B 2 2
VN = Vo %e h21 e %32’1<m2’1/®0)_ (37)
As compared to the contribution from intrasubband scatter-
ing of Eq. (35), here we have T, in the denominator because
for intersubband scattering one cannot use the relationship
f(e)[1- f ()] > Ted(e—eg). The shape of oscillations
caused by vy is determined by the function J; (w51 /o¢)
shown above in Fig. 5 by solid lines. This shape is in a
qualitative accordance with results obtained for magneto-
intersubband oscillations under equilibrium conditions [16].
For nonequilibrium regime described here, Eq. (37) contains
also the exponential factor exp(—u, 4 /Te) which becomes
very small even for relatively weak excitations N, = 0.1N,.
It should be noted also that under conditions used here, the
amplitude of @, is about 5 times larger than the respec-
tive amplitude of J,,. Therefore, vy can be neglected as
compared to v 5 and Vinira -

Typical dependences of o, (B) are shown in Fig. 7. In
the equilibrium case (1 = H2), Veff = Vintra @and oy (B)
has maxima when %o, = pug /(n+1/2) according to the
SCBA theory [32] (blue dashed line). In this figure, the
electron conductivity o,y is normalized by the first (n = 0)
peak value cgﬁ)gx =e? [ 4h found for the Gaussian level
density (B~0.827 T). Already a small nonequilibrium
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s
:':. """ Ml = H’Z’ Vintrﬂ
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N2 - O'INN Vimra + VA
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Fig. 7. (Color online) Magnetoconductivity normalized to
cﬁggx =e? | 4nh versus the magnetic field for different levels of
the displacement from equilibrium: N, ~0 (blue dashed line),
N, =0.1IN, (red solid line), and N, =0.2N, (olive dash-dotted
line).

electron population of the excited subband (N, / N, =0.1)
induces important changes into o, (B) shown in Fig. 7 by
the red line. Besides additional maxima and a substantial
reduction of the SCBA peak at n=3, there are sign-
changing variations of oy, (B) near B~048T, 0.24T
and 0.156 T, and quite deep minima with regions where
the linear response conductivity c,, becomes negative. An
increase in the electron population of the excited subband
(N5 /N =0.2) amplifies these unusual phenomena as
indicated in Fig. 7 by the olive dash-dotted line. It should
be noted that for such a population, n,(B) becomes larger
than unity in the region of low B, and, therefore, the ap-
proximation of Eq. (27) defining p, fails. In this case, we
had used the extension of the quasi-Fermi energy given in
Eqg. (28). Numerical calculations indicate also that reducing
temperature from 1 K to 0.5 K amplifies additionally the
effect of the sign-changing contribution v 4.

Thus, the theoretical analysis given above indicates that
the Pauli exclusion principle does not ruin the intersubband
mechanism of MIRO, if the electron distribution in the
ground and excited subbands can be described by the quasi-
Fermi level approximation. Moreover, a sharp increase of
the imref of the excited subband as a function of the filling
factor shown in Fig. 2 reduces strongly the compensational
contribution from reverse intersubband scattering [the ex-
ponential term in parenthesis of Eq. (32); under conditions
of Fig. 7 this term does not exceed 0.04]. This means that
magnetoconductivity oscillations and ZRS induced by the
resonant MW field, whose polarization direction is perpen-
dicular to the electron layer, can be realized in sufficiently
clean semiconductor devices. The regions with negative
linear response conductivity attract a special interest, be-
cause they allow performing complementary studies of ZRS
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in heterostructures caused by a definite mechanism. These
studies potentially can help also with the identification of the
origin of MIRO and ZRS in the conventional setup.

5. Conclusion

We have presented a theory of quantum magnetotransport
in a degenerate multisubband electron system under condi-
tions that electron distributions over 2D subbands cannot
be described by a single chemical potential. Using the con-
cept of quasi-Fermi levels and the self-consistent Born
approximation, we expressed magnetoconductivity equa-
tions in terms of the extended dynamic structure factor and
its derivative with regard to frequency. We have shown
that a displacement from the equilibrium electron distribu-
tion over excited subbands, which cannot be reduced to triv-
ial heating, leads to appearance of abnormal sign-changing
contribution to the momentum collision rate and magneto-
conductivity. Calculations performed for a simplified po-
tential of scatterers indicate that even a small fraction of elec-
trons (about 10%) transferred to the first excited subband can
drastically change the shape of magnetointersubband oscil-
lations an lead to negative linear response conductivity. The
theory can be applied to electrons on helium films with a
special arrangements of substrates [27], and to multisubband
2D electron systems of semiconductor devices.
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Ocuunsauii MarHiTonpoBigHOCTI BUPO)KEHOTO
OBOBUMIPHOrO €neKTPOHHOrO rasy, iHAyKOBaHi
HEepiBHOBAXHOIO 3aCerneHicTIo NiA30H

KO.M. MoHapxa

[ToGymoBaHO Teopito, 110 ONMUCYE OCLIJIALII MarHiTOPOBIAHO-
CTi Ta abCOJIIOTHY Bif’€MHY IIPOBIJHICTH BUPOJDKCHOI IBOBHMIpPHOT
CJICKTPOHHOI CHUCTeMH, iHAyKOBaHI HEPiBHOBAKHOIO 3aCENICHICTIO
mi3oH. [IpumyckaeTsest, MO BIAXWICHHS BiJl PIBHOBArH, sIKe MOXe
OyTH BHMKJIMKaHE PE30HAHCHUM MiKPOXBHJIBOBHM BHIIPOMiHIOBAH-
HAIM a00 OyIb-SKOIO I1HIIOK MPUYUHOI0, € TaKHM, IO PO3IOJILT
SNICKTPOHIB He omucyeTbes (yHkuiero depmi 3 OJHUM XiMIYHUM
notenmianom. [lokazano, mo B I[bOMY BHINAJKY, Ha JOJATOK IO
n06pe BiToMuX MiKiB MPOBigHOCTI, 00ymMoBieHux edekrom I1yo6-
HUKOBa—/¢ ['aa3a, Ta HEBEIUKUX IIKIB, BUKIMKAHAX MIKITII30H-
HHM PO3CISHHAM, MOXKIMBA 05IBA 3HAKO3MIHHMX OCLWAJISILIH 1HIIOT
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¢opmu. BeranosieHo, 1m0 HaBiTH HeBelMKa (hpakimist eIEKTPOHIB,
HepeMIIeHnX B 30yMKeHy Mi30Hy, MOXKe IIPU3BOJUTH 10 edek-
TiB BiJ’€MHOI IIPOBIIHOCTI.

KirouoBi croBa: 1BOBUMIpHUIA €IEKTPOHHUI ra3, OCIIIIANIT Mar-
HITONPOBIJHOCTI, HEPIBHOBAaXKHI sIBHINA, aOCOJIOTHA Bia’ €MHa
HPOBIHICTE.

Ocuunnsauyum MarHMTonpoBoAMMOCTU BbIPOXOEHHOIO
O0BYMEPHOro 3J1eKTPOHHOIO rasa, UHAyumMpoBaHHbIE
HepaBHOBeCHOIZ 3aCeJyieHHOCTbO NOA30H

KO.M. MoHapxa

IlocTpoena Teopus, omucHIBaIOIas OCHWUIIIMUA MAarHUTO-
HPOBOJAMMOCTH U a0COJIIOTHYIO OTPHLATEIbHYIO HPOBOANMOCTH
BBIPOJKACHHON JIByMEPHOH 3JIEKTPOHHOH CHCTEMBI, MHIYLHPO-
BaHHBIC HEPABHOBECHOI 3aCENEHHOCTBIO oA30H. [Ipennonaraercs,
YTO OTKJIOHEHHE OT PAaBHOBECHS, KOTOPOE MOXET OBITH BHI3BaHO
PE30HAHCHBIM MUKDPOBOJIHOBBIM H3JIyYCHHEM WM JII000H HMHOM
MIPUYNHOM, TaKOBO, YTO PACIPEAEIICHUE JJIEKTPOHOB HE OIHCHI-
BaeTcsi QyHkuned depMu ¢ OJHUM XUMHUYECKHM IIOTCHIUATIOM.
Ilokazano, 94TO B 3TOM ciTydae, B JOIOJHEHHE K XOPOIIO H3BECT-
HBIM [HKaM MPOBOAUMOCTH, 00yCIoBIeHHBIM dddekrom Iy6-
HUKOBa—J¢ ['aa3a, n HEOOJIBIINM ITHKaM, BHI3BAHHBIM MEXKITOJI-
30HHBIM PacCesHHEM, BO3SMOXKHO MOSBJIECHHE 3HAKONEPEMEHHBIX
OCIWUILIIUHA MHOU (OPMBI. Y CTaHOBJIEHO, YTO Ja)ke HeOOIbIIast
(pakuys 31eKTPOHOB, EPEMEIICHHBIX B BO30YXACHHYIO MO/I30HY,
MOJKET IPUBOJUTE K p(heKTaM OTpUIaTeIbHOI IPOBOIMMOCTH.

KnroueBsle ciioBa: JBYMEpHBIN 3JICKTPOHHBIN Ta3, OCLMIUIALUN
MarHUTOIPOBOJUMOCTH, HEPAaBHOBECHBIC SIBIICHHS, aOCOJIOTHAsS
OTpHLATEIbHAS IPOBOIUMOCTb.
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