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Magnetoconductivity oscillations and absolute negative conductivity induced by nonequilibrium populations 
of excited subbands in a degenerate multisubband two-dimensional electron system are studied theoretically. The 
displacement from equilibrium, which can be caused by resonant microwave excitation or by any other reason, is 
assumed to be such that electron distributions can no longer be described by a single Fermi level. In this case, in 
addition to the well-known conductivity peaks occurring at the Shubnikov–de Haas conditions and small peaks 
of normal intersubband scattering, sign-changing oscillations with a different shape are shown to be possible. We 
found also that even a small fraction of electrons transferred to the excited subband can lead to negative conduc-
tivity effects. 
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1. Introduction 

The transport properties of a 2D electron gas in a perpen-
dicular magnetic field have attracted much interest [1,2] 
because of unexpected discoveries and new physics. In addi-
tion to the amazing quantum Hall effects observed in a de-
generate 2D electron gas under equilibrium conditions [3,4], 
new experiments revealed resistivity oscillations [5,6] and 
zero-resistance states [7,8], if a 2D electron gas formed is 
GaAs/AlGaAs heterostructures is exposed to microwave 
(MW) radiation. These oscillations are controlled by the 
ratio of the radiation frequency, ω, to the cyclotron frequen-
cy, cω . The zero-resistance states (ZRS) are assumed [9] to 
be caused by instability of an electron system with absolute 
negative conductivity, < 0xxσ , regardless of the actual 
mechanism of MW-induced resistance oscillations (MIRO) 
which is still under debate (for a review, see Ref. 10). 

Among different theoretical mechanisms proposed for 
the explanation of MIRO, here we would like to highlight 
the displacement [11,12] and inelastic [13] models. The dis-
placement mechanism is based on a peculiarity of orbit cen-
ter migration ( )X X ′→  when an electron absorbs a photon 
and simultaneously is scattered off impurities. The authors 
of the inelastic mechanism noticed that photon-assisted scat-
tering affects the distribution function of electrons ( )f ε  in 
such a way that it acquires a nonequilibrium oscillating cor-
rection (a sort of population inversion) whose derivative 
leads to a sign-changing contribution to xxσ . 

MW-induced magnetoconductivity oscillations similar to 
MIRO and even ZRS were observed in a nondegenerate 2D 
electron gas formed on the free surface of liquid helium 
[14,15]. The important distinction of these new oscillations 
is that they are observed only if the excitation energy of the 
second surface subband 2,1 2 1∆ ≡ ∆ −∆  is tuned to the reso-
nance with the MW field 2,1( = )∆ ω  by varying the press-
ing electric field (a sort of Stark effect in the 1D potential 
well formed at the surface). It should be noted also that the 
shape of these oscillations strikingly differs from the usual 
shape of magnetointersubband oscillations described theo-
retically [16] and observed [17] for semiconductor hetero-
structures under conditions that two subbands are occupied. 
Instead of simple peaks of xxσ  expected at the conditions of 
alignment of Landau levels belonging to different subbands, 
the shape of MIRO observed in a 2D electron gas on liquid 
helium represents rather a derivative of peaks. 

The oscillations reported for electrons on liquid helium 
were explained [18–20] by a nonequilibrium population of 
the excited subband which triggers quasi-elastic intersub-
band scattering of electrons with the same peculiarity of 
orbit center migration as that noticed in the displacement 
model. Thus, the intersubband mechanism of MIRO and 
ZRS has something in common with the both displacement 
and inelastic mechanisms though it does not use the concept 
of photon-assisted scattering which is important for these 
two models. Extensive studies of MIRO in a nondegenerate 
2D electron gas on liquid helium have revealed a number 
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of remarkable effects associated with the ZRS regime: in-
plane redistribution of electrons [21], self-generated audio-
frequency oscillations [22], and incompressible states [23]. 
An explanation of these novel observations is based on the 
concept of electron density domains [24]: regions of dif-
ferent densities appear to eliminate the regime of negative 
conductivity. 

It should be noted also that even the delicate theoretical 
predictions reported for the intersubband mechanism of MI-
RO [20] which concern the effect of Coulomb interaction on 
conductivity extrema were clearly observed in the experi-
ment [25]. Still, this mechanism of MIRO was described 
only for a nondegenerate multisubband electron system 
using an important simplification: ( ) exp ( / )ef Tε ∝ −ε , 
where ε is the in-plane energy, and eT  is the electron tem-
perature. It is not clear how the Pauli exclusion principle 
affects this mechanism; and the theory does not indicate in 
what respect the results obtained for electrons on liquid 
helium can be applied to a degenerate 2D electron system 
similar to those investigated in semiconductor structures. 

In this work we develop a theory of magnetoconductivity 
oscillations in a degenerate 2D electron gas which are in-
duced by nonequilibrium population of excited subbands. 
We introduce a new definition of the extended dynamic 
structure factor of a multisubband 2D electron system which 
incorporates the concept of quasi-Fermi levels (imref) and 
describes the contribution of elastic inter-subband scattering 
to the momentum relaxation rate under conditions that 
electron distribution is strongly displaced from equilibrium 
and cannot be attributed to simple heating of electrons. We 
demonstrate that nonequilibrium populations of excited 
subbands can lead to magnetointersubband oscillations 
whose shape differs from the shape of usual oscillations 
caused by the equilibrium population of the second subband 
and the alignment of staircases of Landau levels [16]. This 
induces important changes in quantum magnetotransport of 
a degenerate 2D electron system and can even lead to neg-
ative linear response conductivity. 

2. Magnetotransport in multisubband 2D systems 

Electrons formed on the free surface of liquid helium 
have a rather low density 9 22 10 cmen −⋅ , therefore at 
temperatures which are comparable with the Fermi tem-
perature they are already localized in sites of the Wigner 
lattice [26]. Above the Wigner solid transition temperature 
this system can be considered as a nondegenerate Coulomb 
liquid where the Pauli exclusion principle is unimportant. 
Electrons on a liquid helium film represent a remarkable 
exception: for a special arrangement of various substrates 
[27] they can form a 2D Fermion system even at = 0T . 

Electrons in semiconductor structures usually have the 
effective mass which is much smaller than the free electron 
mass. Therefore, at low temperatures these electrons can 
be described as a 2D Fermi gas. A 2D electron system 
formed in a semiconductor device can have more than one 

subband [1,28,29]. There is a number of experiments 
demonstrated importance of intersubband scattering for elec-
tron transport in a 2D system [17,30]. These results repre-
sent properties of an equilibrium system, when the gate po-
tential and the Fermi level position in a GaAs/AlGaAs 
heterostructure provide the second subband occupancy. 
There is also a possibility of changing carrier density by 
illuminating samples with light due to electron-hole pair 
generation [31]. In this work, we shall focus on magneto-
transport properties of a 2D electron system under condi-
tions that electron populations of excited subbands deviate 
substantially from equilibrium and cannot be described by 
a single chemical potential. 

The energy spectrum of a multisubband 2D electron 
system in crossed magnetic (B ) and electric (E



) fields is 
described by three quantum numbers (l , n, and X ; here we 
shall ignore the spin variable): 

 , , = ,l n X l n eE X∆ + ε +


 (1) 

where l∆  is the subband energy ( = 1,2,...l ), X  is the coor-
dinate of the center of the cyclotron motion, nε  is the usual 
Landau spectrum  

 ( )= 1/ 2 ,n c nε ω +  (2) 

( = 0,1,...n ), and = /c eeB m cω  is the cyclotron frequency. 
In the center-of-mass reference frame moving with regard 
to the laboratory frame with the drift velocity du , the elec-
tric field 0E′ →



 and the in-plane electron motion is de-
scribed by the pure Landau spectrum of Eq. (2). The de-
generacy of each Landau level is given by 2/ 2A BS π , 
where = /B c eB   is the radius of the cyclotron orbit at 

= 0n , and AS  is the surface area. 
The schematic view of Landau levels of a two-subband 

system is shown in Fig. 1. The Landau levels of the excited 
subband are up-shifted by 2,1 2 1∆ ≡ ∆ −∆  as compared to 
respective levels of the ground subband. In contrast with the 
model considered previously [16], the equilibrium Fermi 
energy Fε  is assumed to be smaller than the intersubband 
excitation energy 2,1 2,1=ω ∆  (here 2,1ω  is the excitation 
frequency). It is obvious that at certain magnetic fields 
defined by the condition 2,1 / =c mω ω  (here = 1,2,...m ) 
Landau levels of the excited subband becomes completely 
aligned with high enough Landau levels of the ground 
subband which triggers elastic intersubband scattering. 

At strong magnetic fields directed perpendicular to the 
electron layer, magnetotransport of a 2D electron gas is 
well described [32] by the center-migration theory [33,34], 
if the collision broadening of Landau levels is taken into 
account. For semiconductor electrons, there are two scatter-
ing mechanisms important at low temperatures: Coulomb 
scattering from charged centers and surface roughness scat-
tering [1]. Both of them represent essentially elastic scat-
tering process. Each experimental realization of a 2D elec-
tron system has its own specific nature of scatterers. The 
details of this nature are not important for the effect consid-
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ering in this work, and they can be incorporated in the theory 
by changing the matrix elements of electron scattering. As 
we shall see, the important parameters of the theory are the 
Landau level broadening and the momentum collision rate at 
zero magnetic field. Therefore, here we shall model the scat-
terers by artificial heavy atoms interacting with electrons by 
an arbitrary potential int ( )e aV −R R  (here eR  and aR  are 
radius vectors of an electron and an atom, respectively). 

In the model considering here, the interaction Hamilto-
nian can be represented in terms of creation ( †aK ) and de-
struction (aK ) operators of atoms as 

 ( )int
,

1= exp e
v e

H i
′

′− − ×  Ω ∑ ∑
K K

K K R   

 † ,V a a′− ′× KK K K  (3) 

where v A zS LΩ ≡  is the volume containing these atoms, K  
represents a 3D wave vector of an atom, and V ′−K K  is a 
Fourier-transform of the potential int ( )V R . For the effective 
potential ( )a e aV δ −R R , conventionally describing interac-
tion with short-range scatterers, =Q aV V . Static defects 
resulting in elastic electron scattering are described by the 
limiting case aM →∞ (here aM  is the mass of an artificial 
atom). Surface defects can be modeled by a 2D layer of 
artificial atoms. Similar modeling can be considered for a 
description of remote scatterers. 

In the case of a nondegenerate 2D electron gas, the prob-
lem of finding the nonequilibrium magnetoconductivity xxσ  
can be equally well solved by considering the momentum 

exchange at a collision in the laboratory [18,20,35] or in 
the center-of-mass [19] reference frames. For nondege-
nerate electrons, a great simplification appears because 

,[1 ( )] 1n Xf ′ ′− ε  , and the quantity to be averaged in the 
laboratory frame is independent of .X  This allows one to 
restrict the averaging procedure to the Landau level index 
n only, assuming the distribution function ( )nf ε ∝ 

exp ( / )n eT∝ −ε  with an effective temperature .eT  
Magnetoconductivity xxσ  of a degenerate 2D electron 

system can be found from the average friction force frF  
acting on electrons due to interaction with scatterers (the 
momentum balance method [36–39]) or using a direct ex-
pression for the current xj  and calculating probabilities of 
electron scattering from X  to X ′ (a version of the Titeica’s 
method [40]). In order to avoid complications with the field 
term eE X



 in the energy spectrum of degenerate electrons, 
it is convenient to consider scattering processes in the cen-
ter-of-mass reference frame moving with the drift velocity 

du  with regard to the laboratory reference frame. In this 
moving frame, the driving electric field E′



 is zero [39], and 
the electron spectrum coincides with the Landau spectrum 

nε . It is important that the momentum exchange at a colli-
sion ′≡ −Q K K  in the center-of-mass frame is the same as 
in the laboratory frame because of the linear relationship 
between a momentum and the respective velocity. At the 
same time, one have to keep in mind that in the center-of-
mass reference frame the energy exchange at an elastic 
collision acquires a Doppler shift correction [39], 

 ( ) ( ) = ,a a
d dE E′ − − ⋅ ≡ − ⋅KK Q u q u   (4) 

due to the quadratic dependence of the energy of an atom 
on its velocity. Here ( ) 2 2= / 2a

aE K MK   and we used the 
notation { },κQ = q  with q and κ  standing for the in-plane 
and vertical components, respectively. It is quite obvious 
that scattering probabilities should not depend on a choice 
of an inertial reference frame. Physically, the correction of 
Eq. (4) is equivalent to the energy exchange for the elec-
tron spectrum considered in the laboratory frame 

( ) = y HeE X X q V′ − 



, here we have taken into account 
that 2= y BX X q′ −   due to the momentum conservation 
and used the notation = /HV cE B



 for the Hall velocity 
( )( ).y

Hdu V−  
The momentum balance approach [38,39] allows ob-

taining the effective collision frequency of electrons effν  
from the kinetic friction acting on the whole electron sys-
tem frF . In the linear transport regime, frF  is proportional 
to du , and conventionally it can be written as [41] 

fr eff= e e dN m− νF u , where the proportionality factor effν  
defines electron magnetoconductivity 

 
2

eff
2 ,e

xx
e c

e n
m

ν
σ

ω
  (5) 

and = /e e An N S  is electron density. 

Fig. 1. (Color online) Schematic illustration of a two-subband 2D 
electron system in a magnetic field. The energy spectrum of the 
ground (blue) and the first excited (red) subbands represents a 
staircase of Landau levels. The position of the Fermi-level at 
equilibrium is shown by the pink horizontal line. 
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The simplest way of obtaining effν  is to consider the 
momentum balance along the y axis, ( )

fr =yF  
( )

eff
y

e e dN m u= − ν . Assuming ( )y
Hdu V−  and using the 

Born approximation for scattering probabilities in the cen-
ter-of-mass frame, one can find  

 ( ) ( )( )
fr = ,y

H e y HF V N q W V− ∑ q
q
  (6) 

where  

 ( ) ( ) ( )
(3D)

, , ,

2
= 1a

H l n l n
A l l n n

n
W V f f

S ′ ′
′ ′

π
 ε − ε × η ∑q



  

 ( ) ( ) ( )2 2
, , ,n n q l l n n l l y HI x U q q V′ ′ ′ ′× δ ε − ε + ∆ +   (7) 

is the probability of electron scattering with the in-plane 
momentum exchange equal q , and , =l l l l′ ′∆ ∆ − ∆ . Here 
we have used the following notations: (3D)

an  is the density 
of scatterers, 2= 2 B enη π  is the filling factor, ( )l nf ε  is the 
electron distribution function, the functions 2

, ( )l lU q′  and 
2
, ( )n n qI x′  are defined by matrix elements of the interaction 

Hamiltonian  

 ( ) ( )
2

2 2
, 2 2 ,

1= e ,i z
l l l lqz

U q V
L

− κ
′ ′+κκ

∑  (8) 

 ( ) ( )
2

2
2 ,,, ; ,

e = ,i e n n qX X qn X n X B y
I x− ⋅

′′−′ ′
δq r



 (9) 

 
2| |2 | |

, min( , )
[min( , )]!( ) = e ( ) ,
[max( , )]!

n nn n x
n n n n

n nI x x L x
n n

′′ −− −
′ ′

′  
 ′

  

2 2= / 2q Bx q  , and ( )m
nL x  are the associated Laguerre poly-

nomials. When obtaining Eq. (7), we used the advantages of 
describing scattering probabilities in the moving frame — 
the summations over indexes X , X ′ and K  are trivial lead-
ing to the factors 2= 1/ 2B Bn π  and (3D)

an . 
Comparing the right side of Eq. (6) with the result ex-

pected for the linear regime effe e HN m Vν , one can find that 

 ( )eff
1= .y H

e H
q W V

m V
ν − ∑ q

q
  (10) 

When expanding ( )HW Vq  in HV , we can consider only the 
linear term (0) HW V′q  [here the “prime” denotes the differ-
entiation] because (0)Wq  depends only on the absolute 
value of q and, therefore, gives zero contribution into effν . 

It is instructive to note that the same result for effν  and 
xxσ  can be found from the direct expression for the elec-

tron current along x direction (this method was also used 
[42,43] for describing a nondegenerate electron system): 

 ( ) ( )= ,x e Hj en X X W V′− −∑ qq
q

 (11) 

where we have to use the relationship 2( ) = B yX X q′ − q   
which follows from matrix elements of Eq. (9). The 

Eq. (11) and the definition of xxσ  obviously yield the ex-
pression for effν  given in Eq. (10). 

To obtain a finite magnetoconductivity in the treatment 
presented above, one have to include higher approxima-
tions by incorporating the collision broadening of Landau 
levels ,l nΓ  (the broadening of electron density of states). 
Following the ideas of the center migration theory [33] and 
the self-consistent Born approximation (SCBA) [32], in the 
right side of Eq. (7) we shall insert 

 ( ) ( );l n l nd d ′ ′′ ′ε ε δ ε − ε δ ε − ε∫ ∫    

the subscripts l  and l′ in the respective delta-functions just 
mark the subband where the level density belongs. Then, 
assuming the replacement  

 ( ) ( ),
1 Im .l n l nGδ ε − ε → − ε
π

  

[here ( ),l nG ε  is the single-electron Green’s function], the 
average probability of scattering with the momentum ex-
change q  can be represented in the following form:  

( ) ( ) ( )
(3D)

2
, , ,2

,
= , ,a

H l l l l l l y H
l lA

n
W V U q D q q V

S
′ ′ ′

′
ω −∑q



 (12) 

where , ,= /l l l l′ ′ω ∆ , and  

 ( ) ( ) ( ),
2, = 1l l l lD q d f f′ ′Ω ε ε − ε + Ω ×  π η ∫ 



  

 ( ) ( ) ( )2
, , ,

,
Im Imn n q l n l n

n n
I x G G′ ′ ′
′

× ε ε + Ω∑   (13) 

is a new generalization of the dynamic structure factor 
(DSF) of a multisubband 2D electron system. Expanding 
Wq in y Hq V  yields 

 ( ) ( )
(3D)

2 2
eff , , ,

,
= , .a

y l l l l l l
e A l l

n
q U q D q

m S ′ ′ ′
′

′ν ω∑∑
q

 (14) 

Thus, the effective collision frequency of a multisubband 
2D electron system is proportional to the derivative of the 
extended DSF , ,( , )l l l lD q′ ′′ ω  with respect to frequency. 

There are two important approximations for the Landau 
level density of states. The SCBA theory of Ando and 
Uemura yields the semi-elliptical shape of the density of 
states [32] 

 ( ) ( )2
2

2Im = 1 ,n
n

n n
G

ε − ε
− ε −

Γ Γ

  (15) 

where nΓ  is the broadening parameter. In the case of short-
range scatterers, nΓ  is independent of Landau number 

=nΓ Γ with [32] 

 0
2= ,cΓ ω ν
π
  (16) 
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where 0ν  is the electron relaxation rate obtained for = 0B . 
The cumulant expansion method [44] yields the Gaussian 
shape of Landau levels 

 ( ) ( )2
2

22Im = exp ,n
n

n n
G

 ε − επ  − ε −
Γ  Γ 

  (17) 

which does not have the sharp cutoff of the density of states. 
Generally, the level shape is a kind of mixture of elliptical 
and Gaussian forms [45], and the shape of the lowest level is 
close to a Gaussian. 

In the case of equilibrium Fermi-distribution, , ( , )l lD q′ Ω  
has very useful properties which simplify significantly eval-
uation of effν  and xxσ . For example, consider only the con-
tribution from intrasubband scattering processes ( = ).l l′  
Then, , ( , )l lD q Ω  coincides with the conventional DSF of a 
2D electron system which satisfies the condition 

 ( ) ( )/
, ,, = e ,Tel l l lD q D q− Ω−Ω Ω . (18) 

The derivative of this relationship gives 

( ) ( ), ,, 0 = ,0
2l l l l

e
D q D q

T
′   

and the linear (in y Hq V ) term of Eq. (12) can be rewritten as  

 ( )0 ,
2y H

e
W q V W

T
δ −q q



  (19) 

which allows representing xxσ  in terms of the equilibrium 
probability ( )0Wq : 

 ( ) ( )
2

2 0 .
2

e
xx

e

e n
X X W

T
′σ −∑ qq

q
  (20) 

This equation coincides with the well-known result obtained 
previously [33,46], and it is similar to the Einstein relation 
between the conductivity and the diffusion coefficient. 

For the ground subband and the semi-elliptic shape of 
Landau levels [Eq. (15)] induced by short-range scatterers, 
Eq. (20) transforms into the result of Ando and Uemura 
which indicates that the conductivity peak value 

( ) ( )
2

max 2= 1/ 2xx
e nσ +
π 

 depends only on the Landau 

level index n and the natural constants [32]. These “check-
points” of equilibrium transport regime, encourage us to use 
Eq. (14) for describing magnetotransport in nonequilibrium 
multisubband 2D electron systems. 

For a nonequilibrium filling of 2D subbands, the extend-
ed DSF , ( , )l lD q′ Ω  generally has no a relationship similar to 
Eq. (18). Only describing nondegenerate electrons and as-
suming ( ) exp ( / )l l ef N Tε ∝ −ε  it was possible to introduce 
[19,20] a version of the DSF , ( , )l lS q′ Ω  which had an im-
portant property resembling Eq. (18), in spite of the fact 
that the occupation of subbands was not equilibrium. Un-
fortunately, this version of the extended DSF appears to be 

useless for degenerate electrons. The new definition of the 
extended DSF , ( , )l lD q′ Ω  given in Eq. (13) transforms into 

, ( , )l l ln S q′ Ω  if the electron system can be considered as a 
nondegenerate gas [here = /l l en N N  is the fractional oc-
cupancy of a subband]. 

3. Quasi-Fermi level approximation 

Generally, it is very difficult to find ( )lf ε  if a system is 
displaced from equilibrium. Therefore, in solid state phys-
ics it is quite common to use the concept of a quasi-Fermi 
level or imref. In the following, we assume that displace-
ment from equilibrium is such that electron populations 
can no longer be described by a single chemical potential 
(or a Fermi level), nevertheless it is possible to describe it 
introducing separate chemical potentials (quasi-Fermi lev-
els) for each subband: 

 ( ) ( ) ( ),1/,1

1= ,
e 1

l F l lTl l e
f f

ε+∆ −µ
ε ≡ ε + ∆ − δµ

+
 (21) 

where =l lδµ µ −µ. The chemical potentials lµ  are meas-
ured from the bottom of the ground subband, while the zero 
of Landau energy ε is taken at the bottom of each subband. 
In most cases, it is sufficient to consider only two subbands 
(the ground subband and the first excited subband), when 
electron populations of higher subbands can be neglected. 
The form of Eq. (21) is quite accurate if electron-electron 
collisions are more important for intrasubband redistribu-
tion than for intersubband decay rates. Anyway, this form 
of ( )lf ε  is very useful because it allows obtaining xxσ  in 
an analytical form for nonequilibrium populations of elec-
tron subbands. 

One can also introduce different electron temperatures 
for each subband ,( ),l eT  still we shall assume that , =l eT  

, =l e eT T′=  because in-plane energy relaxation between dif-
ferent subbands is governed by electron-electron collisions 
(electron spacing is usually much larger than the average 
distance between nearest subbands), whose rate is quite 
high for 2D electron systems [1]. Regarding possible heat-
ing of electrons ( > ),eT T  we assume that eT  is still much 
lower than the quasi-Fermi energies. The opposite limiting 
case (nondegenerate electrons) was described in Refs. 19, 20. 
It should be noted also that MIRO observed in a 2D electron 
gas on liquid helium are quite well described even by the 
approximation =eT T  in spite of a substantial heating [25]. 

Using the distribution function of Eq. (21) and the well-
known identity 

( ) ( ) ( ) ( ) ( )F /
11 = ,

1 e
F F F Te

f f f f
′ε−ε

′ ′ε − ε ε − ε      
−

 (22) 

it is possible to establish the following relationship for the 
extended DSF 

 ( ) ( ) ( )
/, ,

, ,, = e , ,
Tl l l l e

l l l lD q D q
− Ω+∆ −µ′ ′

′ ′−Ω Ω


 (23) 
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where , =l l l l′ ′µ µ −µ . For a single subband ( =l l′ ), this 
property coincides with the property of the usual DSF of a 
2D electron gas given in Eq. (18). 

When considering the contribution from intersubband 
scattering interν  in Eq. (14), the property of Eq. (23) allows 
us to transform derivatives of the DSF whose frequency 
argument is negative into functions with a positive argument  

 ( ) ( ) ( )
/, ,

, ,, = e ,
Tl l l l e

l l l lD q D q
− Ω+∆ −µ′ ′

′ ′′ ′−Ω − Ω +


  

 ( ) ( )
/, ,

,e ,
Tl l l l e

l l
e

D q
T

− Ω+∆ −µ′ ′
′+ Ω



 . (24) 

Thus, a substantial part of , ,( , )l l l lD q′ ′′ ω  entering Eq. (14) 
can be eliminated by reverse scattering processes due to 
the first term in the right side of Eq. (24). Therefore, it is 
convenient to represent the contribution of intersubband 
scattering to effν  in the form containing only positive fre-
quency arguments ( > ).l l′  In this way, one can obtain two 
kinds of contributions: a normal contribution proportional 
to , ,( , ),l l l lD q′ ′ω  and an abnormal (sign-changing) contribu-
tion proportional to the derivative , ,( , ).l l l lD q′ ′′ ω  To make a 
distinction between these contributions, we shall use the 
following notations: inter = ,N Aν ν + ν  where  

 ( ) ( )
(3D) /2 2 ,

, , ,
>

= e , ,
Ta l l e

N y l l l l l l
e A el l

n
q U q D q

m S T
−µ ′

′ ′ ′
′

ν ω∑∑
q





  

  (25) 

 
(3D) /,

>
= 1 e

Ta l l e
A

e A l l

n
m S

−µ ′

′

 ν − × 
 ∑



  

 ( ) ( )2 2
, , ,, .y l l l l l lq U q D q′ ′ ′′× ω∑

q
 (26) 

The normal contribution Nν  exists even under the equilib-
rium condition ( , = 0l l′µ ), though at ,< l l′µ ∆  it is very 
small due to ( )lf ε  present in , ,( , )l l l lD q′ ′ω . The abnormal 
terms Aν  differ from zero only if electron distribution is 
somehow displaced from equilibrium ( , > 0l l′µ ). 

When the first excited subband ( = 2l ) has an extra elec-
tron population 2Nδ , one expects that the all these electrons 
will occupy the lowest Landau level ( = 0),n  if low tempera-
tures ( )e cT ω  are considered and the filling factor of the 
excited subband 2

2 2= 2 / < 1.B AN Sη π  Neglecting elec-
tron populations at higher Landau levels and assuming that 
the level broadening is small, one can find the quasi-Fermi 
level of the excited subband  

 2
2 2,1 0

2

1
= ln .eT

 −η
µ ∆ + ε −  η 

 (27) 

In this equations, the last two terms represent the well-known 
high-field approximation for the chemical potential [47]. 

The influence of higher Landau levels and a finite broad-
ening 2,0Γ  on 2 2( )µ η  is illustrated in Fig. 2 for / = 5c eTω  

(in this figure 2 2,1µ −∆  and 2,nΓ  are given in units of ).cω  
These results indicate that the simple form of Eq. (27) de-
scribes the dependence 2 2 2,1( )µ η −∆  quite well if 

2,0 / 0.3.cΓ ω ≤  At 2,0 / = 0.1,cΓ ω  it is even difficult to 
see the difference between results of numerical calculations 
(not shown in Fig. 2) and the approximation 2,0 = 0Γ  illus-
trated in the figure by the red line. For the strong broadening 

2,0 / = 1,cΓ ω  the results of numerical calculations (orange 
line) deviate substantially from the approximation given in 
Eq. (27), if 2 > 0.2.η  Under these conditions, the analytical 
form can be used only for a qualitative analysis or simple 
estimations. It is important that considering a 2D electron 
system with narrow Landau levels, the approximation of 
Eq. (27) can be used even for substantial values of the filling 
factor 2 0.8η ≤  which are quite sufficient for this research. 
The accuracy of the high-field approximation increases with 
lowering temperature. 

For larger values of the filling factor 2 > 1η , one can 
find a simple extension of the analytical form of Eq. (27) 
which can be used for the ground subband as well. There-
fore, in the following equation, we shall use an arbitrary 
subband index (l ):  

 ,1
=0

1
= ln l

l l n e
ln

n
T

n

∞   + −η
µ − ∆ ε − ×  η −   

∑   

 ( ) ( )1 ,l ln n×θ + −η θ η −  (28) 

where ( )xθ  is the Heaviside step function, and 
2= 2 /l B l AN Sη π . This solution is found assuming that 

( ) 1lf ε   for 1n−ε ≤ ε  if < < 1ln nη + , therefore it is a low 
temperature approximation. Figure 3 illustrates that at low 
temperatures ( 1 KeT ≤ ) numerical results shown by solid 

Fig. 2. (Color online) The quasi-chemical potential of the first 
excited subband 2 2,1µ − ∆  (in units of cω ) versus the filling 
factor 2 =η 2

22 /B AN Sπ  calculated for different conditions which 
are indicated in the figure legend. The level broadening 2,nΓ  is 
also shown in units of cω . 
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lines, are well approximated by the periodic extension of 
the high field formula of Eq. (27) given in Eq. (28). Devia-
tions of Eq. (28) from the numerical result appear only in 
very narrow regions near the points = 1,2,...lη . At high 
temperatures 0.2e cT ω , the deviations are strong be-
cause the numerical results shown by the red line approach 
the semi-classical formula 2

,1( ) 2 /l l l l e AN m Sµ η −∆ π
. 

In our numerical calculations (here and below), the ratio of 

the effective electron mass to the free electron mass is 
fixed to the value 0.067 which is typical for semiconductor 
heterostructures. 

In Fig. 3, the filling factor lη  was varied by changing 
electron density = /l l An N S , while the magnetic field was 
fixed. It is remarkable that the simple analytical approxi-
mation given in Eq. (28) can be used also for the description 
of the well-known oscillations [48] of the chemical potential 

( )Bµ  of a 2D electron system with a fixed density and nar-
row Landau levels (here we omit the subband index). This 
possibility is illustrated in Fig. 4 for 10 2= 1.5 10 cmen −⋅  
and = 0.5 K,T  assuming that the broadening of Landau 
levels is small. One can see that the analytical formula (red 
line) practically coincides with the results of numerical cal-
culations (blue line) in a wide range of magnetic fields with 
the exception of the points where ( )Bη  is very close to an 
integer (1, 2,...) as indicated in Fig. 4. 

4. Results and discussion 

According to Eqs. (25) and (26) the contribution from 
intersubband scattering to the effective collision frequency 
as a function of the magnetic field is determined by the ex-
tended DSF , ( , )l lD q′ Ω  and its derivative with respect to 
frequency , ( , )l lD q′′ Ω  near the special points ,= l l′Ω ω ≡  

, / > 0.l l′≡ ∆   Considering the two subband model ( = 2l  
and = 1),l′  in Eq. (13) which defines 2,1( , )D q Ω  the factor 
[ ]11 ( )f− ε + Ω  can be set to unity because the distribution 
function of electrons occupying the ground subband is very 
small at high energies: 1 2,1( ) 1.f ε + ∆   The later inequali-
ty follows from the fact that the respective quasi-Fermi 
level 1 .µ ≤ µ  For the regime of fixed density, 1 <µ µ  which 
is quite obvious according to Fig. 3. In the regime of fixed 
chemical potential, 1 =µ µ  due to a reservoir of electrons 
[47]. Therefore, the nonequilibrium DSF 2,1( , )D q Ω  as a 
function of frequency is determined mostly by the distribu-
tion of electrons occupying the excited subband 

 ( )
1

02
2

2

1
= exp 1 ,

e
f

T

−
  ε − ε−η ε +  η   

 (29) 

where we had used the approximation of Eq. (27) for 2µ  
assuming that 2 0.8.η ≤  For larger 2 ,η  we shall use the 
extension of Eq. (28). 

In the expression for the effective collision frequency 
eff ,ν  the DSF is affected by integration over .q  For short-

range scatterers, the respective integral can be easily calcu-
lated because ( )2

, ( ) = 1q n n q qx I x dx n n′ ′+ +∫ . Therefore, it 

is convenient to analyze the frequency dependence of the 
dimensionless function  

 ( ) ( )2,1 2,1
0

/ = ,
4c q qJ D q x dx

∞
ηΓ

ω ω ω∫


 (30) 

instead of 2,1( , )D q ω . Here, for simplicity reasons, the col-
lision broadening of Landau levels Γ  is assumed to be in-

Fig. 3. (Color online) The analytical (A) extension of the quasi-
chemical potential of the l -subband (dashed, dash-dotted and 
dash-dot-doted lines) is compared with the results of numerical 
(N) calculations for narrow Landau levels (solid lines). The wavy 
shape of the solid lines increases with lowering temperature to-
gether with the accuracy of the analytical approximation. 

Fig. 4. (Color online) Illustration of the efficiency of the analyti-
cal approximation given in Eq. (28) for the description of oscilla-
tions of the chemical potential (Fermi energy) as a function of B  
under conditions that the collision broadening is small: the ana-
lytical equation (solid red line), and numerical calculations 
(dashed blue line). The singular points, where the filling factor η 
equals to an integer, are indicated. 
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dependent of quantum numbers n and l . Employing the 
Gaussian shape of ,Im ( )l nG ε  given in Eq. (17) yields  

 ( )
( )

( ) ( )

2

2,1 2
2 2=1 /0

exp 2
= 1

1 exp / en

y
J n

y T

∞∞

−ε Γ

−
η + ×

−η Γ + η∑ ∫   

 
2

exp 2 .c

c
y n dy

   ω ω × − + −   Γ ω     



 (31) 

It is obvious that 2,1( / )cJ ω ω  has prominent maxima near 
the conditions / = 1,2,...,cω ω  if the 2D electron system is 
pure enough and / > 1.cω Γ  The results of numerical 
evaluations of the function 2,1( / )cJ ω ω  and its derivative 

2,1( / )cJ ′ ω ω  are shown in Fig. 5 by the solid and dashed 
(dashed-dotted) lines, respectively. The calculations were 
performed for 2 = 0.1 eN N  and two values of the magnetic 
field [ = 0.5 TB  (red lines) and 0.1 T (blue lines)]. The 
heights of the maxima increase with lowering B  due to the 
factor 2 2(1 ) /−η η  because the filling factor 2 (0.5 T)η   

0.165  while 2 (0.1 T) 0.827.η   The change of B  affects 
notably also the positions of minima, maxima and the zero-
crossing (sign-changing) point of the derivative 2,1( / ).cJ ′ ω ω  

Using the same approximations as those used for ob-
taining Eq. (31), the abnormal contribution to the effective 
collision frequency can be represented as 

 ( )
2

/2,1 2,1
0 2,1

2
= 1 e ,

Tc e
A

p
B

−µω   ν ν − Φ  πη Γ   



 (32) 

where we defined  

 ( ) ( )2,1 2,1 2,1= / c
c

B JΓ ′Φ ω ω
ω

 (33) 

because the derivative 2,1 2,1( / )cJ ′ ω ω  contains the addi-
tional factor /cω Γ  according to Eq. (31). The dimension-
less parameter ,l lp ′ is determined by the following matrix 
elements  

 ( )
2

1,1 1 1
, , ,,

= , = e .i z
l l l l z l ll l

B
p B L

B
− − − κ

′ ′ ′′ κ
∑  (34) 

The accurate calculation of 2,1p  requires the knowledge of 
the details of a particular 2D electron system such as the 
wavefunctions of subband states which are not considering 
in this work. For electrons on liquid helium [49], 2,1p  is a 
factor of two smaller than 1,1 = 1p . Therefore, in following 
numerical calculations we shall use a rough estimation: 

2,12 1p  . 
Under the conditions used for obtaining Eq. (32), the 

contribution from electron scattering within the ground 
subband ( = 1l ) can be found as  

 ( )
2

1,1(1)
0 1,1intra ,cp

B
ω ν ν Φ πη Γ 



  (35) 

where 

 ( ) ( ) ( )21
1,1 2

=0

4
= 2 1 exp .n

n
B n

∞  µ − ε
 Φ + −
 Γ 

∑  (36) 

At the same time, the contribution from electron scattering 
within the first excited subband (2)

intraν  has a very weak de-
pendence on B  because the distribution function 2 ( )f ε  
given in Eq. (29) varies strongly near 0ε . Thus, (2)

intraν  can 
be considered as a small background value when the ratio 

2 / 1.eN N   The background value decreases also with 
narrowing of the density of states. In the following, we 
shall neglect (2)

intraν  and assume that (1)
intra intra .ν ν  

Comparing Aν  of Eq. (32) with (1)
intraν  given in Eq. (35) 

indicates that the abnormal contribution contains the addi-

tional factor /2,11 e
Te−µ − 

 
 which is zero under equilibrium 

conditions 2 1( = = ).Fµ µ µ  If we have a nonequilibrium 
population of the second subband, then, according to 
Eq. (27) and Fig. 2, 2δµ  becomes substantially larger than 

eT  already at a small filling factor 2η . For example, Fig. 2 
shows that 2 2,1>µ ∆  if 2 > 0.1.η  Assuming this reasonable 
condition, we can neglect the exponentially small term in 

the factor /2,11 e
Te−µ − 

 
 and set this factor to unity even if 

1µ  is fixed (according to Fig. 3, 1µ  decreases with lowering 

1N  which also reduces /2,1e ).
Te−µ  

Another important distinction between Aν  and intraν  is 
caused by different behaviors of the dimensionless func-
tions 2,1( )BΦ  and 1,1( )BΦ  illustrated in Fig. 6. The both 
functions oscillate with varying 1/ ,B  but the periods of 
these oscillations are different. Assuming 1µ  is fixed to 

,Fµ  the maxima of the positive function 1,1( )BΦ  entering 

Fig. 5. (Color online) The frequency dependences of the dimen-
sionless functions which define the shape of magnetooscillations 
of Nν  and Aν  calculated for two values of the magnetic field 
shown in the figure legend: 2,1( / )cJ ω ω  (solid lines) and 

2,1( / )cJ ′ ω ω  (dashed and dash-dotted lines). 
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intraν  occur at = / ( 1/ 2)c F nω µ +  due to the Shubnikov–
de Haas effect. In contrast to 1,1( ),BΦ  the function 

2,1( ),BΦ  which determines ,Aν  is a sign-changing function 
having maxima and minima, according to the definition of 
Eq. (33) and Fig. 5; its zero-crossing points occur at mag-
netic fields which are close to the condition 2,1 / =c m∆ ω  
(here = 1,2,...).m  

It is instructive to analyze Nν  using the same approxi-
mations and conditions. Direct transformation of Eq. (25) 
yields  

 ( )
2 2/2,1 2,1

0 2,1 2,1
2

= e / .
T ce

N c
e

p
J

T
−µ ω

ν ν ω ω
πη Γ



 (37) 

As compared to the contribution from intrasubband scatter-
ing of Eq. (35), here we have eT  in the denominator because 
for intersubband scattering one cannot use the relationship 

[ ]( ) 1 ( ) ( ).e Ff f Tε − ε → δ ε − ε  The shape of oscillations 
caused by Nν  is determined by the function 2,1 2,1( / )cJ ω ω  
shown above in Fig. 5 by solid lines. This shape is in a 
qualitative accordance with results obtained for magneto-
intersubband oscillations under equilibrium conditions [16]. 
For nonequilibrium regime described here, Eq. (37) contains 
also the exponential factor 2,1exp ( / )eT−µ  which becomes 
very small even for relatively weak excitations 2 = 0.1 .eN N  
It should be noted also that under conditions used here, the 
amplitude of 2,1Φ  is about 5 times larger than the respec-
tive amplitude of 2,1J . Therefore, Nν  can be neglected as 
compared to Aν  and intra .ν  

Typical dependences of ( )xx Bσ  are shown in Fig. 7. In 
the equilibrium case ( 1 2=µ µ ), eff intra=ν ν  and ( )xx Bσ  
has maxima when = / ( 1/ 2)c F nω µ +  according to the 
SCBA theory [32] (blue dashed line). In this figure, the 
electron conductivity xxσ  is normalized by the first ( = 0)n  
peak value (0) 2

max = / 4eσ π found for the Gaussian level 
density ( 0.827 T).B   Already a small nonequilibrium 

electron population of the excited subband 2( / = 0.1)eN N  
induces important changes into ( )xx Bσ  shown in Fig. 7 by 
the red line. Besides additional maxima and a substantial 
reduction of the SCBA peak at = 3,n  there are sign-
changing variations of ( )xx Bσ  near 0.48 T,B   0.24 T 
and 0.156 T, and quite deep minima with regions where 
the linear response conductivity xxσ  becomes negative. An 
increase in the electron population of the excited subband 

2( / = 0.2)eN N  amplifies these unusual phenomena as 
indicated in Fig. 7 by the olive dash-dotted line. It should 
be noted that for such a population, 2 ( )Bη  becomes larger 
than unity in the region of low ,B  and, therefore, the ap-
proximation of Eq. (27) defining 2µ  fails. In this case, we 
had used the extension of the quasi-Fermi energy given in 
Eq. (28). Numerical calculations indicate also that reducing 
temperature from 1 K to 0.5 K amplifies additionally the 
effect of the sign-changing contribution .Aν  

Thus, the theoretical analysis given above indicates that 
the Pauli exclusion principle does not ruin the intersubband 
mechanism of MIRO, if the electron distribution in the 
ground and excited subbands can be described by the quasi-
Fermi level approximation. Moreover, a sharp increase of 
the imref of the excited subband as a function of the filling 
factor shown in Fig. 2 reduces strongly the compensational 
contribution from reverse intersubband scattering [the ex-
ponential term in parenthesis of Eq. (32); under conditions 
of Fig. 7 this term does not exceed 0.04]. This means that 
magnetoconductivity oscillations and ZRS induced by the 
resonant MW field, whose polarization direction is perpen-
dicular to the electron layer, can be realized in sufficiently 
clean semiconductor devices. The regions with negative 
linear response conductivity attract a special interest, be-
cause they allow performing complementary studies of ZRS 

Fig. 6. Graphical illustration of the functions 2,1( )BΦ  and 

1,1( )BΦ  which determine Aν  and intraν , respectively. 

Fig. 7. (Color online) Magnetoconductivity normalized to 
(0) 2
max = / 4eσ π  versus the magnetic field for different levels of 

the displacement from equilibrium: 2 0N   (blue dashed line), 

2 = 0.1 eN N  (red solid line), and 2 = 0.2 eN N  (olive dash-dotted 
line). 
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in heterostructures caused by a definite mechanism. These 
studies potentially can help also with the identification of the 
origin of MIRO and ZRS in the conventional setup. 

5. Conclusion 

We have presented a theory of quantum magnetotransport 
in a degenerate multisubband electron system under condi-
tions that electron distributions over 2D subbands cannot 
be described by a single chemical potential. Using the con-
cept of quasi-Fermi levels and the self-consistent Born 
approximation, we expressed magnetoconductivity equa-
tions in terms of the extended dynamic structure factor and 
its derivative with regard to frequency. We have shown 
that a displacement from the equilibrium electron distribu-
tion over excited subbands, which cannot be reduced to triv-
ial heating, leads to appearance of abnormal sign-changing 
contribution to the momentum collision rate and magneto-
conductivity. Calculations performed for a simplified po-
tential of scatterers indicate that even a small fraction of elec-
trons (about 10%) transferred to the first excited subband can 
drastically change the shape of magnetointersubband oscil-
lations an lead to negative linear response conductivity. The 
theory can be applied to electrons on helium films with a 
special arrangements of substrates [27], and to multisubband 
2D electron systems of semiconductor devices. 
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Осциляції магнітопровідності виродженого 
двовимірного електронного газу, індуковані 

нерівноважною заселеністю підзон 

Ю.П. Монарха 

Побудовано теорію, що описує осциляції магнітопровідно-
сті та абсолютну від’ємну провідність виродженої двовимірної 
електронної системи, індуковані нерівноважною заселеністю 
підзон. Припускається, що відхилення від рівноваги, яке може 
бути викликане резонансним мікрохвильовим випромінюван-
ням або будь-якою іншою причиною, є таким, що розподіл 
електронів не описується функцією Фермі з одним хімічним 
потенціалом. Показано, що в цьому випадку, на додаток до 
добре відомих піків провідності, обумовлених ефектом Шуб-
никова–де Гааза, та невеликих піків, викликаних міжпідзон-
ним розсіянням, можлива поява знакозмінних осциляцій іншої 

форми. Встановлено, що навіть невелика фракція електронів, 
переміщених в збуджену підзону, може призводити до ефек-
тів від’ємної провідності. 

Ключові слова: двовимірний електронний газ, осциляції маг-
нітопровідності, нерівноважні явища, абсолютна від’ємна 
провідність. 

Осцилляции магнитопроводимости вырожденного 
двумерного электронного газа, индуцированные 

неравновесной заселенностью подзон 

Ю.П. Монарха 

Построена теория, описывающая осцилляции магнито-
проводимости и абсолютную отрицательную проводимость 
вырожденной двумерной электронной системы, индуциро-
ванные неравновесной заселенностью подзон. Предполагается, 
что отклонение от равновесия, которое может быть вызвано 
резонансным микроволновым излучением или любой иной 
причиной, таково, что распределение электронов не описы-
вается функцией Ферми с одним химическим потенциалом. 
Показано, что в этом случае, в дополнение к хорошо извест-
ным пикам проводимости, обусловленным эффектом Шуб-
никова–де Гааза, и небольшим пикам, вызванным межпод-
зонным рассеянием, возможно появление знакопеременных 
осцилляций иной формы. Установлено, что даже небольшая 
фракция электронов, перемещенных в возбужденную подзону, 
может приводить к эффектам отрицательной проводимости. 

Ключевые слова: двумерный электронный газ, осцилляции 
магнитопроводимости, неравновесные явления, абсолютная 
отрицательная проводимость.
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