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Polaronic effects induced by non-equilibrium vibrons
in a single-molecule transistor
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Current-voltage characteristics of a single-electron transistor with a vibrating quantum dot were calculated as-
suming vibrons to be in a coherent (non-equilibrium) state. For a large amplitude of quantum dot oscillations we
predict strong suppression of conductance and the lifting of polaronic blockade by bias voltage in the form of
steps in I-V curves. The height of the steps differs from the prediction of the Franck—Condon theory (valid for
equilibrated vibrons) and the current saturates at lower voltages than for the case, when vibrons are in equilibri-

um state.
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1. Introduction

Tunneling spectroscopy is a well-known method to
study of electron—phonon interaction in bulk metals [1].
Electron transport spectroscopy can be used for studying of
vibration properties of molecules in single-molecule-based
transistors [2,3]. Current-voltage characteristics of single
electron transistors (SET), where fullerene molecule [2],
suspended single-wall carbon nanotube [4-6] or carbon
nano-peapod [3] are used as a base element, demonstrate at
low temperatures additional sharp features (steps) at bias
voltages eV,, ~ nawo (o is the angular frequency of vibra-
tional degree of freedom). The simplest models that de-
scribe step-like behavior of I-V curves are based, as a rule,
on a theory where phonon excitations are dispersion-less
(vibrons with a single frequency) and they are assumed to
be in equilibrium with the heat bath at temperature T (bulk
metallic electrodes can play the role of this heat bath).
Steps in current-voltage dependencies (equidistant peaks in
differential conductance) are associated with the opening
of inelastic channels of electron tunneling through vibrat-
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ing quantum dot. For strong electron—vibron interaction
these models predict: (i) Franck—Condon blockade [7] (ex-
ponential suppression) of conductance at low temperatures
T < hw, and (ii) non-monotonous temperature dependence
of conductance. All these effects were observed in experi-
ments [2,3].

When coupling of vibron subsystem to the heat bath is
weak and vibrons are not in equilibrium during the time of
electron tunneling through the system, their density matrix
can not be in the Gibbs form and it has to be evaluated from
the solution of kinetic equations. This problem can be solved
only numerically [8]. There are only few papers [9-11],
where vibrons in electron transport in SET were considered
as non-equilibrated. In Ref. 10 it was assumed that vibron
subsystem is in a coherent state. In the approach used in the
cited paper, the density matrix of coherent state was time-
independent, that contradicts Liuville-von Neumann equa-
tion for density matrix of noninteracting vibrons. Therefore
the results of this approach are questionable and the problem
of electron transport through a vibrating quantum dot with
coherent vibrons has to be re-examined.
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In paper, we consider a single-electron transistor with
vibrating quantum dot, where vibronic subsystem is described
by time-dependent density matrix. Physically this approach
corresponds to coherent oscillations of quantum dot treated
as harmonic quantum oscillator. Coherent states of har-
monic oscillators are well known in physics [12]. In tunnel
electron transport they are appeared, for instance, in weak
superconductivity (Josephson current through a vibrating
quantum dot, see Ref.13 and references therein). Last
years coherent states of photons (“Schrddinger cat” states)
coupled to qubits and qubits formed by the coherent pho-
ton states became a hot topic of studies in quantum compu-
ting science [14].

The model device we are interesting in is depicted in
Fig. 1. It consists of two bulk electrodes, source (Left) and
drain (Right) leads, with chemical potential biased by voltage
p —Hg =€V and a single level quantum dot (QD), which
oscillates in the direction (x) perpendicular to the direction
of electron current flow. Gate voltage, Vi, is adjusted to
maximum tunnel current gq(Vg) = e, where g(Vg) is the
dot level energy and e is the Fermi energy of the leads.
For simplicity we consider tunneling of spinless electrons in
a symmetric junction and it is assumed that the vibration of
QD does not change tunneling matrix elements t; =tg =t;.
In our paper we consider the process of sequential electron
tunneling, when max(eV,T) > I, where T of| t, ? is the level
width (characteristic energy of tunnel coupling dot-leads).
Our model device can simulate, for instance, SET based on
a suspended single-wall carbon nanotube.

We use density matrix approach to calculate periodic in
time current through the device (the period To = 2n/® is
determined by the angular frequency ® of QD oscillations).
In order to calculate current-voltage dependencies, we nu-
merically average the current over Ty. It is shown that the
zeroth-harmonic (time-independent) contribution dominates
in the Fourier series for the current. Therefore, a simple
analytic equation for dc electric current (analogous to the
current through vibrating QD with equilibrated vibrons) is
presented. This formula agrees with our numerical calcula-
tion with high accuracy.

We show that |-V curves characteristics of a single-
electron transistor with coherent vibrons are a step-like func-
tion of bias voltage, and they do not depend on the phase of
coherent state parameter. At large amplitudes of dot oscilla-
tions the conductance is strongly suppressed (polaronic
blockade) regardless the strength of electron—vibron inter-
action. The heights of the steps and the characteristic volt-
age of current saturation strongly differ from the prediction
the Franck—-Condon theory. In particularly the lifting of
polaronic blockade occurs at lower voltages than the lifting
of Franck—Condon blockade.

2. Hamiltonian and equation for density matrix

The Hamiltonian of the system (schematic picture of
device, Fig. 1) consists of four terms:
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H = H| +Hd0t +HV—d + Htun’ (1)

where Hj, Hyo are the Hamiltonians of the non-interacting
electrons in the leads and the dot correspondingly,

- t - t
H| = z Sk’Kak’Kak’K, HdOt = 80C C, (2)
k,x

aE’K(ak'K) is the creation (annihilation) operator (with
standard anti-commutation relations) of electron in the lead
x = L,R with momentum k and energy g ., cf(c) is the
creation (annihilation) operator of electron state in the dot
with the energy .

Hamiltonian H,_q4 describes the vibronic subsystem
and the interaction between electrons and vibrons

2 2,2
_p° mo“X
Hypg =g —+——

+axc'e. 3)
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In Eq. (3) x, p are the canonically conjugate operators
of coordinate and momentum, [x, p] = i%, ®, m are the fre-
quency of dot oscillations and the mass of the dot, A is the
electron—vibron coupling constant.

The Hamiltonian Hy,, describes the tunneling of elec-
trons between the dot and the leads and it takes the stand-
ard form:

Hin = 2 tKaIVKc+ H.c., 4)
k,x
where t, is the tunneling amplitude. In what follows we
restrict ourselves to the symmetric case, t| =ty =tg.

It is convenient to perform the unitary transformation,
UHUT 5> H, with U =exp[irpcic] and A =A/7mo?.
After this transformation the dot-vibron Hamiltonian H,,_g4
Eg. (3) takes the diagonal form:

My
Mg

Fig. 1. Sketch of the single-electron transistor. A vibrating one-
level (gq is the level energy) quantum dot (macromolecule) is
placed between two bulk electrodes biased by the voltage V. The
dot tunnel couples (t_ =tr =ty is the tunneling amplitude) to the
leads with the chemical potentials p g, pu —pr =€V and the
temperature T. The gate voltage Vg is set gg(Vg) = ep, Where
e Is the Fermi energy, to get maximal current. The dot oscillates
in x direction perpendicular to the electric current flow. QD os-
cillations are modeled by the coherent state of one-dimensional
harmonic oscillator.
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while the tunneling Hamiltonian, Hy,,, is transformed to
the equation
— —idp 5T
Hiun = Hun =to ) e "Pay c+H.c. (6)
k,x

Hv—d - Hz) =

: ®)

The quantum consideration of electron—vibron interact-
ing system is based, in what follows, on the approximation
that the density matrix of the system is factorized to direct
product of the leads equilibrium density matrix, the vibron
density matrix and the density matrix of the dot

p =P ®py ®Pgot- )

This approximation corresponds to the case of sequential
electron tunneling, which holds when max{eV,T}>T,
where T" is the electron level width, T is the temperature
and V is the biased voltage. In contrast to the previous
works [15,16] we will consider non-equilibrated vibrons.
Here we assume that they are described by a time-
dependent coherent state | z(t)). Note, that in Ref. 10 cur-
rent-voltage characteristics of a single-electron transistor
were calculated for time-independent coherent state of
vibrons. This assumption contradicts to equation of mo-
tion of noninteracting vibrons in our model, where
| z(t)) =exp (—iH,t)| 2), (1 =1). Here |z) is the eigen-
function of vibron annihilation operator b, b|z)=1z]|z)
(z is the complex number). The corresponding density ma-
trix takes the standard form:

py (1) =l z(OXz(D) ] ®)

The Liouville-von Neumann equation for the density
matrix

op .
o+ [Ho + Hun,p] =0, ©
ot

where Hg = H| + H,, + Hyq, has the formal solution,

t - r - r
p() = p(—=0) -i [ dre™ MO Hy p(e)1 ™) (10)
After substitution of Egs. (7), (10) into Eq. (9) and trac-
ing out both the electronic degrees of freedom of the leads
and vibronic degrees of freedom of the dot one gets

6pd .
Fot"" [Haot Pdot] =

t
==Tr [ dtTHy.e O Hy, p1 001 @)
—00
Now we can explicitly calculate averages of electronic
and vibronic operators in our approximation of the factor-
ized density matrix Eq. (7). For equilibrium density matrix
of electrons in the leads we use the standard expression:

<a|I’Kakr’Kr> = fK (Sk,K)ak,k,SK,K'7 (12)
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where f_(c) = (exp((e—p)/T)+1)! is the Fermi-Dirac
distribution function, p g =pg=(eV/2) is the electro-
chemical potential in the lead . The evaluation of vibronic
correlation function F(t,t;; 1) = (exp [-iAp(t)] exp [iAp(t)]
in coherent state representation results in the equation

F(t,t;0) = Trie P | z)(z | eikp(tl)] _

=exp {—kz [1— o) ] -

2z [e—i‘”t —efi‘”tlJ+7\z* [ei‘”t _eloh ]} (13)

(in Eq. (13) we introduced the dimensionless constant of
electron-vibron interaction, Ax/2/ lg >, lg=+vAa/mo
is the amplitude of zero-point oscillations). Parameter A
characterizes the “degree of quantumness” of the mechani-
cal subsystem. It can be rewritten in the form o = /21 /1,
where | = A/mw? is the characteristic displacement length
of classical oscillator.

With the help of Egs. (12), (13) Eq. (11) can be repre-
sented as follows:

Pdot _ : r
——+i[Hyq, =— dt|dex
ot [Hdot s Pdot] in %“J. J.
X {F (t,t—7;1)e* [1- f.(e)] ce_inOtrpdot (t—)cTeMdot™ 4

+E(tt—t-A)e €0 f_(e)cTeHdot™p ,  (t —1)ce'Hdot™ —
—F*(t,t—1;-A)e f_(g)ce " dot"cT o (t—r)e'HdotT
—F*(t,t—TA)e ¥ x

<[1— f,.()]cTe THdot®ep o, (t - v)e ot H.c.}, (14)

where T = 2nvt3 is the level width of electron state in the
dot, v is the density of states of the leads, which we assume
to be energy independent (wide-band approximation [17]).
We natice here that unlike the case of equilibrated vibrons
(see, e.g., Ref. 16), the vibron correlation function, Eq. (13),
depends on two times independently. This means that time-
invariance in our system is explicitly broken. The vibrons
in coherent state | z(t)), (which physically describes oscil-
lations of quantum pendulum) violates time-invariance.

The density operator pyy acts in Fock space, which in
our case is a two-dimensional space of a spinless electron
level in the dot. The matrix elements of the density operator
are po(t) = (0] pgot (1)1 0), p1(t) =1—pg(t) = 1| pyor (t) | D,
where |1) = cf |0) and | 0) is a vacuum state. From Eq. (14)
it follows that the probability pq (t) satisfies the equation

0 I i(e—en)T
%:E%:Idrj.dg{F(t,t—t;k)e( 0T [1- £, (e)]x

x[1-po(t—1)]- F*(t.t—t;—1)e' C 0 _(e)pg (t - T)},

(15)
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This equation is strongly simplified after integration
over . This integration can be done by using the equation

. . -y, .t
[ dse ™ 1 (e) = —imd(@) +pv T (16)
shnTt

In the limit T > I" one can neglect the retardation effects,
and Eq. (15) takes a simple local form:

_%: M; (t)pg — M5 (t), (17)

where
Mi(0) =1 T AP OLfL G0 10+ Tr o -0} (18)

The coefficients A()(t) are periodic functions of time
(with the period 2/ ®) and they can be presented as the
Fourier series

A @) = all), elort, (19)
p
17 2
arﬂl%, == I dge™ uCOSS)sin(nS—n—p]x
, T o 2
x Sin (k sin 8) cos (Tj J P [4% |z| smEj, (20)
@ _ 1 o o32(cos) p9
anp:—dee CoS| — |x
: 2n - 2

X COS (n—zp—n8+k2 sin Sij [4X|z|singj. (21)

In Egs. (20), (21) Jp(¥) is the Bessel function of the first
kind, and we parameterized the coherent state eigenvalue z
in the form z =| z | exp (ip). Notice, that the parameter | z |
determine the amplitude of dot oscillation.

In the asymptotic (t >>1/T) steady-state regime of os-
cillations the probability pq(t) is a periodic function of
time, pg(t+Tg) = pg(t), and therefore it can be presented
as the Fourier series

o)=Y pn €™, p_,=ph (22)
n

Then the equation for the Fourier harmonics takes the
form

. _ 1 2 1
IPPp =8p,0 —Pp ‘52{3&% —Zaé,)mkpk }X
n k
X [fL (80 —n(J))+ fR (80 —n(D)]. (23)
We are interested in 1-V curves characteristics of our
single-electron transistor. Therefore, we have to calculate

time-averaged current through the system
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1
=— | J(t)dt, 24
TOT{ ) (24)

where J(t) = (J_ +Jg)/2 and the left (L) and right (R)
currents in the system are defined by a standard equation:

oN

‘]K = nKeTr[p 6;{)’ NK = Zalz,Kak,K‘ (25)
k

where n ;g = £1. With the help of Eq. (10) the expression

for the current can be presented in the following form:

t
I =nTr [ dr et e Mot Oy, ol He,

—00

I =etge P> ca . (26)
k

The straightforward calculation of Eq. (26) yields the
following equation analogous to Eq. (17):

= OB R0, 0

where 1o =el"/2 is the saturation current through a single-
level symmetric junction, and

R =D AV O] f(eo —nw) - fr(eo —nw)], (28)

(coefficients ATQ) are defined in Egs. (19)—(21)). As it fol-
lows from Eqgs. (22), (24), (27), the desired expression for
the average current takes the form

| = IOZ |:ar(5&8kyo - ar(.ﬂ'&pk :|[ f|_ (80 — n(D) — fR (SO — n(D)]
n,k
(29)
Notice, that the average current does not depend on the
phase ¢ of coherent state.

3. Numerical results and discussion

The results of numerical calculations are presented in
Figs. 2, 3. As one can see, the plots for coherent vibrons
(black dotted curves) demonstrate step-like behavior of cur-
rent versus bias voltage at low temperatures T < sw. This
behavior is similar (however, in general case not identical)
to Franck—Condon steps in I-V curves known for equili-
brated vibrons (see, e.g., Ref. 15 and references therein).
The plots for equilibrated and coherent vibrons coincide
(see Fig. 2) when the amplitude of oscillations of QD is
less or of the order of the amplitude of zero-point oscilla-
tions Iy (| z| <1 correspondingly).

It is physically clear that in this case both systems are
close to their ground state (the average number of vibrons
n < 1) and there is no difference in the behavior of coherent
and non-coherent vibrons. The strong differences appear for
large amplitudes of oscillations when |z|>1 (see Fig. 3

Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 7
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Fig. 2. The current-voltage dependencies for small value of co-
herent state parameter of vibrons, | z|=0.25, and for strong elec-
tron-vibron interaction A =1. The black dotted curve corresponds
to numerical calculation of current when the vibrons are in the
coherent state. The thin green curve represents I-V curves charac-
teristics when the vibrons are in equilibrium and characterized by
the effective temperature T" determined by Eg. (30). In calcula-
tions the value T / 7w = 0.05, was used.

where the thick dotted curve corresponds to vibrons in the
coherent state with parameter | z | =10). It is useful to intro-
duce effective temperature of vibrons T by equating the
average number of vibrons in coherent and equilibrium state
2_ * -1
HE (exp (ho I T )—1) . (30)
Then for large amplitudes of oscillations (| z|>1) and
moderately strong electron—vibron interaction (A ~1)
T ~|z |2 ho > A2ho. Itis clear that at these high tempera-
tures of the leads Franck—Condon steps in I-V curves char-
acteristics will be smeared out. It means that coherent
vibrons for large amplitudes of QD oscillations lead to
strong suppression of current at low biases and to pro-
nounced step-like behavior of |-V curves. It is interesting to
compare this behavior with the Franck—Condon theory by
assuming that the vibronic subsystem is hot (it is described
by Bose-Einstein distribution with the temperature T*),
while the leads are kept at low temperatures T < zw. The
thin curve (green on-line) in Fig. 3 demonstrates this case.
We see rather strong differences in current-voltage de-
pendencies: (i) the height of the steps for coherent vibrons
are not regular, and (ii) the current in the case of coherent
vibrons saturates at lower voltages (eVg ~|z | 7m) than for
equilibrated vibrons.
One can strongly simplify numerical calculations notic-
ing that coefficient py (zeroth harmonic) of the Fourier se-
ries Eq. (22) in the steady-state regime pg = 0.5 with very

1.0+ —
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L ,J 90 -4
0.4 o he
r J
r 0.03F h
r
»
0.2 e
o
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1 1 1 1 1
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e b P v b P b v by |

0 10 20 30 40 50 6 70
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Fig. 3. I-V curves plots for the large value of the parameter
| 2| =10. All other parameters are the same as in Fig. 2. The thin
green curve corresponds to the case of equilibrated vibrons with
the effective temperature determined by the parameter |z |=10.
The red dash-dotted curve represents calculation of current in the
approximation when pg = 0.5 (see the text below). Inset shows
the region of low voltages.

high accuracy, ~107°. Then if we put in Eq. (29) pg =1/2
and pp =0 for p>1, one gets a simple analytic formula
for the average current:

| = IOZan[fL(so—nco)— fr (e —nw)], (31)

where

2
a, = 1 J "d e (1-cos8)
Y0

x cosngcos (A2 sin 8)J0(4k|z|sin§} (32)

For A <1 one can roughly estimate integral Eq. (32) as
a, ~ Jﬁ(ZM z[). This allows us to strongly simplify nu-
merical calculations. Note that Eq. (31) has the same form
as a well-known equation (see, e.g., Ref. 15) for the current
of spinless electrons through a vibrating QD with equili-
brated vibrons:

qu :IOZAn[fL(SO_nw)_fR(‘SO_nm)]’ (33)

where now spectral densities A, are defined by the expres-

sion Tr [eiiXp(t)eixp(O)peq] - z Aneioont .
n

The dash-dotted curve (red on-line) in the Fig. 3 corre-
spond to calculations by using Egs. (31), (32). This ap-
proximate calculations coincide with the “exact” numerical
calculations with high accuracy.
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In summary, we have calculated -V curves characteris-
tics of a single-molecule transistor, assuming vibrons of
QD (molecule) oscillations to be in a coherent state. It was
shown that I-V curves at low temperatures have a step-like
form similar to the steps that accompany the lifting of
Franck—Condon blockade by bias voltage. However, for
large amplitudes of oscillations there are strong differences
in the predictions of the Franck—Condon theory and our
model. Using numerical calculations we found strong sup-
pression of conductance even for a weak or moderately
strong electron—vibron coupling. The lifting of this coher-
ent oscillations-induced blockade by a bias voltage occurs
at voltages much lower than the ones predicted by the
Franck—Condon theory.
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[MonsipoHHi edpekTu, AKi iHAYKOBaHi HePiBHOBaXXHMMM
BiOpOHaMKN B OQHOENEKTPOHHOMY TPaH3UCTOPI

O.M. Barpoga, C.I. KyniHiu, I.B. Kpie

Po3paxoBaHO BOJIBT-aMIIEPHi XapaKTEPUCTUKH OIHOEIEKTPOH-
HHX TPAH3KCTOPIB 3 KBAHTOBOIO BiOPYIOUOIO TOUKOIO 332 YMOBH, 1110
BIOPOHM 3HAXOAATECS Y KOT€PEHTHOMY (HEpIBHOBa)KHOMY) CTaHi.
IToxa3zaHo, IO 3a BEIMKMX aMIUNTYJ KOJMBAaHb Bif0yBaeThCH
CHJIbHE TIPUTHIYCHHS KOHIAKTAHCY Ta 3HATTS IOJIIPOHHOT OJIOKa 1
NpH MiABUILCHHI HANPYTH, SIKi HPOSBISIOTHCS Y BUTISIII CXOIH-
HOK Ha BOJIbT-aMIICPHIH XapakTepucTuli. BiHcoTa cX0AMHOK BiJ-
pi3HseTbes B nependauens Teopii Ppanka-Kongona, o cripase-
JUIMBa y pa3l piBHOBaXHMX BiOpoHiB. KpiM Toro, HacudeHHS
CTpyMy BiZI0yBa€ThCS 32 HIDKYOI HATIPYTH, HDK Y pa3i piBHOBAKHHX
BiOpOHIB.

Kitro4oBi cj10Ba: 0HOENEKTPOHHUH TPAH3UCTOP, KOTEPEHTHHUIT CTaH,
6nokana ®panka—KonmoHa.
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