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Current-voltage characteristics of a single-electron transistor with a vibrating quantum dot were calculated as-
suming vibrons to be in a coherent (non-equilibrium) state. For a large amplitude of quantum dot oscillations we 
predict strong suppression of conductance and the lifting of polaronic blockade by bias voltage in the form of 
steps in I–V curves. The height of the steps differs from the prediction of the Franck–Condon theory (valid for 
equilibrated vibrons) and the current saturates at lower voltages than for the case, when vibrons are in equilibri-
um state. 
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1. Introduction 

Tunneling spectroscopy is a well-known method to 
study of electron–phonon interaction in bulk metals [1]. 
Electron transport spectroscopy can be used for studying of 
vibration properties of molecules in single-molecule-based 
transistors [2,3]. Current-voltage characteristics of single 
electron transistors (SET), where fullerene molecule [2], 
suspended single-wall carbon nanotube [4–6] or carbon 
nano-peapod [3] are used as a base element, demonstrate at 
low temperatures additional sharp features (steps) at bias 
voltages neV n ω  (ω is the angular frequency of vibra-
tional degree of freedom). The simplest models that de-
scribe step-like behavior of I–V curves are based, as a rule, 
on a theory where phonon excitations are dispersion-less 
(vibrons with a single frequency) and they are assumed to 
be in equilibrium with the heat bath at temperature T  (bulk 
metallic electrodes can play the role of this heat bath). 
Steps in current-voltage dependencies (equidistant peaks in 
differential conductance) are associated with the opening 
of inelastic channels of electron tunneling through vibrat-

ing quantum dot. For strong electron–vibron interaction 
these models predict: (i) Franck–Condon blockade [7] (ex-
ponential suppression) of conductance at low temperatures 
T ω , and (ii) non-monotonous temperature dependence 
of conductance. All these effects were observed in experi-
ments [2,3]. 

When coupling of vibron subsystem to the heat bath is 
weak and vibrons are not in equilibrium during the time of 
electron tunneling through the system, their density matrix 
can not be in the Gibbs form and it has to be evaluated from 
the solution of kinetic equations. This problem can be solved 
only numerically [8]. There are only few papers [9–11], 
where vibrons in electron transport in SET were considered 
as non-equilibrated. In Ref. 10 it was assumed that vibron 
subsystem is in a coherent state. In the approach used in the 
cited paper, the density matrix of coherent state was time-
independent, that contradicts Liuville-von Neumann equa-
tion for density matrix of noninteracting vibrons. Therefore 
the results of this approach are questionable and the problem 
of electron transport through a vibrating quantum dot with 
coherent vibrons has to be re-examined. 
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In paper, we consider a single-electron transistor with 
vibrating quantum dot, where vibronic subsystem is described 
by time-dependent density matrix. Physically this approach 
corresponds to coherent oscillations of quantum dot treated 
as harmonic quantum oscillator. Coherent states of har-
monic oscillators are well known in physics [12]. In tunnel 
electron transport they are appeared, for instance, in weak 
superconductivity (Josephson current through a vibrating 
quantum dot, see Ref. 13 and references therein). Last 
years coherent states of photons (“Schrödinger cat” states) 
coupled to qubits and qubits formed by the coherent pho-
ton states became a hot topic of studies in quantum compu-
ting science [14]. 

The model device we are interesting in is depicted in 
Fig. 1. It consists of two bulk electrodes, source (Left) and 
drain (Right) leads, with chemical potential biased by voltage 

=L R eVµ −µ  and a single level quantum dot (QD), which 
oscillates in the direction (x) perpendicular to the direction 
of electron current flow. Gate voltage, GV , is adjusted to 
maximum tunnel current 0 ( ) =G FVε ε , where 0 ( )GVε  is the 
dot level energy and Fε  is the Fermi energy of the leads. 
For simplicity we consider tunneling of spinless electrons in 
a symmetric junction and it is assumed that the vibration of 
QD does not change tunneling matrix elements 0= =L Rt t t . 
In our paper we consider the process of sequential electron 
tunneling, when max( , )eV T Γ , where 2

0| |tΓ ∝  is the level 
width (characteristic energy of tunnel coupling dot-leads). 
Our model device can simulate, for instance, SET based on 
a suspended single-wall carbon nanotube. 

We use density matrix approach to calculate periodic in 
time current through the device (the period 0 = 2 /T π ω is 
determined by the angular frequency ω of QD oscillations). 
In order to calculate current-voltage dependencies, we nu-
merically average the current over 0T . It is shown that the 
zeroth-harmonic (time-independent) contribution dominates 
in the Fourier series for the current. Therefore, a simple 
analytic equation for dc electric current (analogous to the 
current through vibrating QD with equilibrated vibrons) is 
presented. This formula agrees with our numerical calcula-
tion with high accuracy. 

We show that I–V curves characteristics of a single-
electron transistor with coherent vibrons are a step-like func-
tion of bias voltage, and they do not depend on the phase of 
coherent state parameter. At large amplitudes of dot oscilla-
tions the conductance is strongly suppressed (polaronic 
blockade) regardless the strength of electron–vibron inter-
action. The heights of the steps and the characteristic volt-
age of current saturation strongly differ from the prediction 
the Franck–Condon theory. In particularly the lifting of 
polaronic blockade occurs at lower voltages than the lifting 
of Franck–Condon blockade. 

2. Hamiltonian and equation for density matrix 

The Hamiltonian of the system (schematic picture of 
device, Fig. 1) consists of four terms: 

 dot tun= ,l v dH H H H H−+ + +  (1) 

where dot,lH H  are the Hamiltonians of the non-interacting 
electrons in the leads and the dot correspondingly, 

 † †
, , dot 0,

,
= , = ,l k kk

k
H a a H c cκ κκ

κ
ε ε∑  (2) 

†
,, ( )kka a κκ  is the creation (annihilation) operator (with 

standard anti-commutation relations) of electron in the lead 
= ,L Rκ  with momentum k  and energy ,k κε , † ( )c c  is the 

creation (annihilation) operator of electron state in the dot 
with the energy 0ε . 

Hamiltonian dH −v  describes the vibronic subsystem 
and the interaction between electrons and vibrons 

 
2 2 2

†ˆ = .
2 2d
p m xH xc c
m−

ω
+ + ∆v  (3) 

In Eq. (3) ,x p are the canonically conjugate operators 
of coordinate and momentum, [ , ] = , ,x p i mω  are the fre-
quency of dot oscillations and the mass of the dot, ∆ is the 
electron–vibron coupling constant. 

The Hamiltonian tunH  describes the tunneling of elec-
trons between the dot and the leads and it takes the stand-
ard form: 

 †
tun ,

,
= H.c.,k

k
H t a cκ κ

κ
+∑  (4) 

where tκ is the tunneling amplitude. In what follows we 
restrict ourselves to the symmetric case, 0= =L Rt t t . 

It is convenient to perform the unitary transformation, 
†UHU H→ , with †= exp [ ]U i pc cλ  and 2= / mλ ∆ ω . 

After this transformation the dot-vibron Hamiltonian dH −v  
Eq. (3) takes the diagonal form: 

Fig. 1. Sketch of the single-electron transistor. A vibrating one-
level ( 0ε  is the level energy) quantum dot (macromolecule) is 
placed between two bulk electrodes biased by the voltage V . The 
dot tunnel couples ( 0= =L Rt t t  is the tunneling amplitude) to the 
leads with the chemical potentials , , =L R L R eVµ µ −µ  and the 
temperature .T  The gate voltage GV  is set 0( ) =G FVε ε , where 

Fε  is the Fermi energy, to get maximal current. The dot oscillates 
in x  direction perpendicular to the electric current flow. QD os-
cillations are modeled by the coherent state of one-dimensional 
harmonic oscillator. 
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2 2 2

= ,
2 2d
p m xH H
m−

ω
→ +v v  (5) 

while the tunneling Hamiltonian, tunH , is transformed to 
the equation 

 †
tun tun 0 ,

,
= e H.c.i p

k
k

H H t a c− λ
κ

κ
→ +∑  (6) 

The quantum consideration of electron–vibron interact-
ing system is based, in what follows, on the approximation 
that the density matrix of the system is factorized to direct 
product of the leads equilibrium density matrix, the vibron 
density matrix and the density matrix of the dot 

 dot .l vρ ≈ ρ ⊗ρ ⊗ρ  (7) 

This approximation corresponds to the case of sequential 
electron tunneling, which holds when max { , }eV T Γ , 
where Γ  is the electron level width, T  is the temperature 
and V  is the biased voltage. In contrast to the previous 
works [15,16] we will consider non-equilibrated vibrons. 
Here we assume that they are described by a time-
dependent coherent state | ( )z t 〉 . Note, that in Ref. 10 cur-
rent-voltage characteristics of a single-electron transistor 
were calculated for time-independent coherent state of 
vibrons. This assumption contradicts to equation of mo-
tion of noninteracting vibrons in our model, where 

( )| ( ) = exp | , ( = 1)z t iH t z〉 − 〉 v . Here | z〉  is the eigen-
function of vibron annihilation operator ,b  | = |b z z z〉 〉  
(z is the complex number). The corresponding density ma-
trix takes the standard form: 

 ( ) =| ( ) ( ) | .v t z t z tρ 〉〈  (8) 

The Liouville-von Neumann equation for the density 
matrix 

 0 tun[ , ] = 0,i H H
t

∂ρ
+ + ρ

∂
 (9) 

where 0 dot= lH H H H+ +v , has the formal solution, 

( ) ( )0 0tun( ) = ( ) e [ , ( )] e .
t

iH t t iH t tt i dt H t′ ′− − −

−∞

′ ′ρ ρ −∞ − ρ∫  (10) 

After substitution of Eqs. (7), (10) into Eq. (9) and trac-
ing out both the electronic degrees of freedom of the leads 
and vibronic degrees of freedom of the dot one gets 

 dot
dot dot[ , ] =i H

t
∂ρ

+ ρ
∂

  

( ) ( )0 0tun tunTr [ ,e [ , ( )] e ].
t

iH t t iH t tdt H H t′ ′− − −

−∞

′ ′= − ρ∫  (11) 

Now we can explicitly calculate averages of electronic 
and vibronic operators in our approximation of the factor-
ized density matrix Eq. (7). For equilibrium density matrix 
of electrons in the leads we use the standard expression: 

 †
, , , ,, = ( ) ,k k k kka a f′ ′ ′ ′κ κ κ κ κκ〈 〉 ε δ δ  (12) 

where 1( ) = (exp(( ) / ) 1)f T −
κ κε ε −µ +  is the Fermi-Dirac 

distribution function, , 0= ( / 2)L R eVµ µ ±  is the electro-
chemical potential in the lead κ . The evaluation of vibronic 
correlation function 1 1( , ; ) = exp [ ( )] exp [ ( )]F t t i p t i p tλ 〈 − λ λ 〉  
in coherent state representation results in the equation 

 ( )( ) 11( , ; ) = Tr[e | | e ] =i p ti p tF t t z z λ− λλ 〉〈   

 { ( )2 1exp 1 ei t tω − = −λ − −  
  

 }1 1e e e e ,i t i ti t i tz z− ω ω− ω ∗ ω   −λ − + λ −      
 (13) 

(in Eq. (13) we introduced the dimensionless constant of 
electron–vibron interaction, 02 / ,lλ → λ

 0 = /l mω  
is the amplitude of zero-point oscillations). Parameter λ 
characterizes the “degree of quantumness” of the mechani-
cal subsystem. It can be rewritten in the form 0= 2 /l lλ , 
where 2= /l m∆ ω  is the characteristic displacement length 
of classical oscillator. 

With the help of Eqs. (12), (13) Eq. (11) can be repre-
sented as follows: 

 dot
dot dot[ , ] =

4
i H d d

t κ

∂ρ Γ
+ ρ τ ε×

∂ π ∑ ∫ ∫   

[ ]{ †dot dotdot( , ; )e 1 ( ) e ( ) eiH iHiF t t f c t c− τ τετ
κ× − τ λ − ε ρ − τ +  

 † dot dotdot( , ; )e ( ) e ( ) eiH iHiF t t f c t c− τ τ− ετ
κ+ − τ −λ ε ρ − τ −  

 †dot dotdot( , ; )e ( ) e ( )eiH iHiF t t f c c t− τ τ∗ ετ
κ− − τ −λ ε ρ − τ −   

 ( , ; )e iF t t∗ − ετ− − τ λ ×   

 }† dot dotdot[1 ( )] e ( )e H.c. ,iH iHf c c t− τ τ
κ× − ε ρ − τ +  (14) 

where 2
0= 2 tΓ πν  is the level width of electron state in the 

dot, ν is the density of states of the leads, which we assume 
to be energy independent (wide-band approximation [17]). 
We notice here that unlike the case of equilibrated vibrons 
(see, e.g., Ref. 16), the vibron correlation function, Eq. (13), 
depends on two times independently. This means that time-
invariance in our system is explicitly broken. The vibrons 
in coherent state | ( )z t 〉 , (which physically describes oscil-
lations of quantum pendulum) violates time-invariance. 

The density operator dotρ  acts in Fock space, which in 
our case is a two-dimensional space of a spinless electron 
level in the dot. The matrix elements of the density operator 
are 0 dot( ) = 0 | ( ) | 0 ,t tρ 〈 ρ 〉  1 0 dot( ) = 1 ( ) = 1| ( ) |1t t tρ −ρ 〈 ρ 〉, 
where †|1 = | 0c〉 〉  and | 0〉  is a vacuum state. From Eq. (14) 
it follows that the probability 0 ( )tρ  satisfies the equation 

 [ ]{ ( )0 0= ( , ; )e 1 ( )
4

id d F t t f
t

ε−ε τ
κ

κ

∂ρ Γ
τ ε − τ λ − ε ×

∂ π ∑ ∫ ∫   

 [ ] }( )00 01 ( ) ( , ; )e ( ) ( ) .it F t t f tε−ε τ∗
κ× −ρ − τ − − τ −λ ε ρ − τ   

  (15) 
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This equation is strongly simplified after integration 
over ε. This integration can be done by using the equation 

 ee ( ) = ( ) p.v. .
sh

i
i i Td f i

T

− µ τκ− ετ
κ

π
ε ε − πδ τ +

π τ∫  (16) 

In the limit T Γ  one can neglect the retardation effects, 
and Eq. (15) takes a simple local form: 

 0
1 0 2= ( ) ( ),M t M t

t
∂ρ

− ρ −
∂

 (17) 

where 

( )
0 0

1( ) = 1 ( )[ ( ) ( )].
2

i
i n L R

n
M t A t f n f n− ε − ω + ε − ω∑  (18) 

The coefficients ( ) ( )i
nA t  are periodic functions of time 

(with the period 2 /π ω) and they can be presented as the 
Fourier series 

 ( ) ( )
,( ) = e ,i i i pt

n n p
p

A t a ω∑  (19) 

 
2(1) (1 cos )

,
1= e sin

2n p
pa d n

π
−λ − ϑ

−π

π ϑ ϑ− × π  ∫   

 ( )2sin sin cos 4 | | sin ,
2 2p
p J zϑ ϑ   × λ ϑ λ   

   
 (20) 

 
2(2) (1 cos )

,
1= e cos

2 2n p
pa d

π
−λ − ϑ

−π

ϑ ϑ × π  ∫   

 2cos sin 4 | | sin .
2 2p
p n J zπ ϑ   × − ϑ+ λ ϑ λ   

   
 (21) 

In Eqs. (20), (21) ( )pJ x  is the Bessel function of the first 
kind, and we parameterized the coherent state eigenvalue z  
in the form = | | exp ( )z z iϕ . Notice, that the parameter | |z  
determine the amplitude of dot oscillation. 

In the asymptotic ( 1/t Γ ) steady-state regime of os-
cillations the probability 0 ( )tρ  is a periodic function of 
time, 0 0 0( ) = ( )t T tρ + ρ , and therefore it can be presented 
as the Fourier series 

 0 ( ) = e , = .i nt
n n n

n
t ω ∗

−ρ ρ ρ ρ∑  (22) 

Then the equation for the Fourier harmonics takes the 
form 

 (1)(2)
,0 , ,

1=
2p p p n p kn p k

n k
ip a a +

 
ρ δ −ρ − − ρ × 

  
∑ ∑   

 [ ]0 0( ) ( ) .L Rf n f n× ε − ω + ε − ω  (23) 

We are interested in I–V curves characteristics of our 
single-electron transistor. Therefore, we have to calculate 
time-averaged current through the system 

 
0

0

1= ( ) ,
T

I J t dt
T ∫  (24) 

where ( ) = ( ) / 2L RJ t J J+  and the left (L) and right (R) 
currents in the system are defined by a standard equation: 

 †
,,= Tr , = ,kk

k

N
J e N a a

t
κ

κ κ κ κκ
∂ η ρ ∂ 

∑  (25) 

where / = 1L Rη ± . With the help of Eq. (10) the expression 
for the current can be presented in the following form: 

 ( ) ( )0 0 tun= Tr e e [ , ] H.c.,
t

iH t t iH t tJ dt I H′ ′− − −
κ κ κ

−∞

′η ρ +∫   

 †
0 ,= e .i p

k
k

I et ca− λ
κ κ∑  (26) 

The straightforward calculation of Eq. (26) yields the 
following equation analogous to Eq. (17): 

 0 1 2
0

( ) = ( ) ( ) ( ),J t t P t P t
I

−ρ +  (27) 

where 0 = / 2I eΓ  is the saturation current through a single-
level symmetric junction, and 

 [ ]( )
0 0( ) = ( ) ( ) ( )i

i n L R
n

P t A t f n f nε − ω − ε − ω∑ , (28) 

(coefficients ( )i
nA  are defined in Eqs. (19)–(21)). As it fol-

lows from Eqs. (22), (24), (27), the desired expression for 
the average current takes the form 

 [ ](2) (1)
0 ,0 0 0, ,

,
= ( ) ( ) .k k L Rn k n k

n k
I I a a f n f n δ − ρ ε − ω − ε − ω ∑   

  (29) 
Notice, that the average current does not depend on the 
phase ϕ  of coherent state. 

3. Numerical results and discussion 

The results of numerical calculations are presented in 
Figs. 2, 3. As one can see, the plots for coherent vibrons 
(black dotted curves) demonstrate step-like behavior of cur-
rent versus bias voltage at low temperatures T ω

. This 
behavior is similar (however, in general case not identical) 
to Franck–Condon steps in I–V curves known for equili-
brated vibrons (see, e.g., Ref. 15 and references therein). 
The plots for equilibrated and coherent vibrons coincide 
(see Fig. 2) when the amplitude of oscillations of QD is 
less or of the order of the amplitude of zero-point oscilla-
tions 0l  (| | 1z ≤  correspondingly). 

It is physically clear that in this case both systems are 
close to their ground state (the average number of vibrons 

1n ) and there is no difference in the behavior of coherent 
and non-coherent vibrons. The strong differences appear for 
large amplitudes of oscillations when | | 1z   (see Fig. 3 
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where the thick dotted curve corresponds to vibrons in the 
coherent state with parameter | | = 10z ). It is useful to intro-
duce effective temperature of vibrons T∗ by equating the 
average number of vibrons in coherent and equilibrium state 

 ( ) 12| | = exp ( / ) 1 .z T
−∗ω −  (30) 

Then for large amplitudes of oscillations (| | 1z  ) and 
moderately strong electron–vibron interaction ( 1λ  ) 

2 2| |T z∗ ω λ ω  
. It is clear that at these high tempera-

tures of the leads Franck–Condon steps in I–V curves char-
acteristics will be smeared out. It means that coherent 
vibrons for large amplitudes of QD oscillations lead to 
strong suppression of current at low biases and to pro-
nounced step-like behavior of I–V curves. It is interesting to 
compare this behavior with the Franck–Condon theory by 
assuming that the vibronic subsystem is hot (it is described 
by Bose-Einstein distribution with the temperature T∗), 
while the leads are kept at low temperatures T ω . The 
thin curve (green on-line) in Fig. 3 demonstrates this case. 

We see rather strong differences in current-voltage de-
pendencies: (i) the height of the steps for coherent vibrons 
are not regular, and (ii) the current in the case of coherent 
vibrons saturates at lower voltages ( | |seV z ω ) than for 
equilibrated vibrons. 

One can strongly simplify numerical calculations notic-
ing that coefficient 0ρ  (zeroth harmonic) of the Fourier se-
ries Eq. (22) in the steady-state regime 0 = 0.5ρ  with very 

high accuracy, 510− . Then if we put in Eq. (29) 0 = 1/ 2ρ  
and = 0pρ  for 1p ≥ , one gets a simple analytic formula 
for the average current: 

 [ ]0 0 0= ( ) ( ) ,n L R
n

I I a f n f nε − ω − ε − ω∑  (31) 

where 

 
2(1 cos )

0
1= ena d

π −λ − ϑϑ ×
π ∫   

 2
0cos cos ( sin ) 4 | | sin .

2
n J z ϑ × ϑ λ ϑ λ 

 
 (32) 

For 1λ ≤  one can roughly estimate integral Eq. (32) as 
( )2 2 | |n na J zλ . This allows us to strongly simplify nu-

merical calculations. Note that Eq. (31) has the same form 
as a well-known equation (see, e.g., Ref. 15) for the current 
of spinless electrons through a vibrating QD with equili-
brated vibrons: 

 [ ]eq 0 0 0= ( ) ( ) ,n L R
n

I I A f n f nε − ω − ε − ω∑  (33) 

where now spectral densities nA  are defined by the expres-

sion ( ) (0)
eqTr [e e ] = ei p t i p i nt

n
n

A− λ λ ωρ ∑ . 

The dash-dotted curve (red on-line) in the Fig. 3 corre-
spond to calculations by using Eqs. (31), (32). This ap-
proximate calculations coincide with the “exact” numerical 
calculations with high accuracy. 

Fig. 2. The current-voltage dependencies for small value of co-
herent state parameter of vibrons, | | = 0.25z , and for strong elec-
tron–vibron interaction = 1λ . The black dotted curve corresponds 
to numerical calculation of current when the vibrons are in the 
coherent state. The thin green curve represents I–V curves charac-
teristics when the vibrons are in equilibrium and characterized by 
the effective temperature *T  determined by Eq. (30). In calcula-
tions the value / = 0.05,T ω  was used. 

Fig. 3. I–V curves plots for the large value of the parameter 
| | = 10z . All other parameters are the same as in Fig. 2. The thin 
green curve corresponds to the case of equilibrated vibrons with 
the effective temperature determined by the parameter | | = 10z . 
The red dash-dotted curve represents calculation of current in the 
approximation when 0 = 0.5ρ  (see the text below). Inset shows 
the region of low voltages. 
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In summary, we have calculated I–V curves characteris-
tics of a single-molecule transistor, assuming vibrons of 
QD (molecule) oscillations to be in a coherent state. It was 
shown that I–V curves at low temperatures have a step-like 
form similar to the steps that accompany the lifting of 
Franck–Condon blockade by bias voltage. However, for 
large amplitudes of oscillations there are strong differences 
in the predictions of the Franck–Condon theory and our 
model. Using numerical calculations we found strong sup-
pression of conductance even for a weak or moderately 
strong electron–vibron coupling. The lifting of this coher-
ent oscillations-induced blockade by a bias voltage occurs 
at voltages much lower than the ones predicted by the 
Franck–Condon theory. 

Acknowledgements 

The authors thank L.Y. Gorelik and O.A. Ilinskaya for 
useful discussions. This work is supported by the National 
Academy of Sciences of Ukraine (grant No. 4/19-N and 
Scientific Program 1.4.10.26.4) and partially by the Insti-
tute for Basic Science in Korea. 
 _______  

1. Y.G. Naidyuk and I.K. Yanson, Point Contact Spectroscopy, 
Springer Series in Solid-State Sciences, Springer, New York 
(2005), vol. 145.  

2. H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, 
and P.L. McEuen, Nature 407, 57 (2000). 

3. P. Utko, R. Ferone, I.V. Krive, R.I. Shekhter, M. Jonson, 
M. Monthioux, L. Noé, and J. Nygård, Nature Commun. 1, 
37 (2010). 

4. B. Babi, J. Furer, S. Sahoo, Sh. Farhangfar, and C. Schnenberger, 
Nano Lett. 3, 1577 (2003). 

5. R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer, C. Hierold, 
E. Mariani, M. G Schultz, F. Von Oppen, and K. Ensslin, 
Nature Phys. 5, 327 (2009). 

6. M. Poot and H.S.J. van der Zant, Phys. Rep. 511, 273 (2012). 
7. J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005). 
8. J.U. Kim, I.V. Krive, and J.M. Kinaret, Phys. Rev. Lett. 90, 

6401 (2003). 

9. W. Liu, F. Wang, Z. Tang, and R. Liang, J. Nanomater. 9, 
863 (2019). 

10. W. Liu, F. Wang, Z. Tang, and R. Liang, J. Nanomater. 9, 
394 (2019). 

11. A. Mitra, I. Aleiner, and A.J. Millis, Phys. Rev. B 69, 245302 
(2004). 

12. J-P. Gazeau, Coherent States in Quantum Physics, Wiley-
VCH, Berlin (2009). 

13. A. Zazunov, D. Feinberg, and T. Martin, Phys. Rev. Lett. 97, 
196801 (2006). 

14. A. Blais, S.M. Girvin, and W.D. Oliver, Nat. Phys. 16, 
247256 (2020). 

15. I.V. Krive, A. Palevski, R.I. Shekhter, and M. Jonson, Fiz. 
Nizk. Temp. 36, 155 (2010) [Low Temp. Phys. 36, 119 
(2010)]. 

16. A.D. Shkop, O.M. Bahrova, S.I. Kulinich, and I.V. Krive, 
Superlattic. Microst. 137, 106356 (2020). 

17. N.S. Wingreen, K.W. Jacobsen, and J.W. Wilkins, Phys. 
Rev. B 40, 11834 (1989). 

 ___________________________ 

Поляронні ефекти, які індуковані нерівноважними 
вібронами в одноелектронному транзисторі 

О.М. Багрова, С.І. Кулініч, І.В. Кріве 

Розраховано вольт-амперні характеристики одноелектрон-
них транзисторів з квантовою вібруючою точкою за умови, що 
віброни знаходяться у когерентному (нерівноважному) стані. 
Показано, що за великих амплітуд коливань відбувається 
сильне пригнічення кондактансу та зняття поляронної блокади 
при підвищенні напруги, які проявляються у вигляді сходи-
нок на вольт-амперній характеристиці. Висота сходинок від-
різняється від передбачень теорії Франка-Кондона, що справе-
длива у разі рівноважних вібронів. Крім того, насичення 
струму відбувається за нижчої напруги, ніж у разі рівноважних 
вібронів. 

Ключові слова: одноелектронний транзистор, когерентний стан, 
блокада Франка–Кондона.
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