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The magnetic properties of narrow zigzag graphene nanoribbons with periodically embedded atoms of transi-
tion metals have been studied in the framework of Heisenberg spin Hamiltonian. We have proposed the simple
effective model to give a semi-qualitative description of the peculiarities of magnetization profiles of the systems
under consideration. This model can be used for an arbitrary value of spin of the embedded atoms of transition me-
tals. Our analytical and numerical calculations confirm the correctness of the proposed model.
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Introduction

Magnetic carbon-based materials like zigzag-edged gra-
phene nanoribbons are considered as promising materials
for future applications in graphene-based spintronic devices
[1-3]. It is found both theoretically and experimentally that
atoms of transition metals (ATM) may fill carbon vacan-
cies in graphene clusters to form stable ATM-embedded
structures. In contrast to pristine graphene nanoribbons, the
theoretical description of the magnetic structure of these
materials is based usually on different variants of density
functional theory approach and the corresponding many-
electron consideration is of big interest. One of the simp-
lest variants of this consideration is based on the effective
Heisenberg spin Hamiltonian approach [4-6], which per-
mit us to perform the many-electron study of embedded
structures with ATM of arbitrary spin.

In our recent work, we applied above approach to the
study of the magnetic properties of some narrow graphene
nanoribbons with periodically embedded ATM [7]. Accord-
ing to the extended Lieb theorem [8], these nanoribbons
may have macroscopic ground-state spin. In particular, we
studied the field dependence of the magnetization of the
Heisenberg spin model for a simplest representative of zig-
zag nanoribbon—polyacene macromolecule by means of the
guantum Monte Carlo (QMC) method based on stochastic
series expansion approach [9]. We expected to obtain a mo-
notonic increase of the magnetization of pristine polyacene
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with the increase of the external magnetic field. For ATM-
embedded polyacene, we suppose to find the intermediate
plateau in field dependence of magnetization because in
the case of nonmagnetic ATM (s = 0) the Hamiltonian (1)
corresponds to so-called polyallyl spin chain having one
intermediate magnetization plateau [10]. Unexpectedly, we
found numerically at low temperatures one intermediate pla-
teau for pristine polyacene macromolecule and two inter-
mediate plateaus for embedded polyacene derivatives de-
spite the absence of small interactions between site spins.

In several research papers [11,12] the magnetic properties
of pristine graphene nanoribbons with zigzag edge termina-
tion were treated with the help of effective two-leg spin-1/2
ladder model with ferromagnetic interactions along the legs
and antiferromagnetic interactions in rungs. In this work,
we applied a similar idea in order to give a simple semi-
qualitative description of the peculiarities of magnetization
profiles of the Heisenberg spin models for narrow zigzag
graphene nanoribbons with periodically embedded ATM
of arbitrary spin.

Effective low-energy spin Hamiltonian for polyacene
derivatives

Carbon atoms of the pristine polyacene macromolecule
are arranged in the stripe of hexagons. Quasihomopolar ener-
gy states of 7t -electron network of this macromolecule can
be described adequately by effective Heisenberg spin-1/2 Ha-
miltonian on the corresponding hexagonal lattice stripe [4,5].
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According to Lieb theorem [13], this Hamiltonian has a sing-
let ground state. Let us enumerate all the atoms conse-
quently along the unit cells and consider the polyacene
derivative for which all the fourth carbon atoms of each
unit cell are substituted by the ATM of spin s (Fig. 1).

The spin Hamiltonian of this polyacene derivative in pre-
sence of the external magnetic field h has the following form:

L 3

H=3> | > SnkSnkst+SniSns11+Sn4Snira |~
n=1 \ k=1

L 4
~h> > Shk- (1)

n=1lk=1

Here, for simplicity of further consideration, we put equal
coupling constants for all the interactions between neigh-
bor spins of the lattice; the spin operator S, 4 corresponds
to the embedded ATM spin of the nth unit cell.

For finite fragment of above lattice structure formed
by L unit cells, according to the extended Lieb theorem,
the Heisenberg spin model has the ground-state spin
S = L(s—1/2), which takes macroscopic value in the limit
L—>o at s#1/2. According to the Klein theorem [8],
for the ground-state W, the two-particle correlators
(i-J)=(¥o|SiSj|Wo) for embedded spins with s = 0 have
positive values. A similar consideration is valid for oppo-
site carbon spins (site spins with numbers (n, 1)). The spin
correlators for marginal spins of the same unit cell (embedded
spin s and opposite carbon spin) should have a negative
sign. In other words, we may say about effective “ferromag-
netic” ordering of the marginal spins along the polyacene
zigzag edges and antiferromagnetic interactions between
the marginal spins of different zigzag edges. There are also
L pairs of spins which belongs to two neighbor hexagons
simultaneously (vertical edges of the lattice graph). Accord-
ing to [8], the corresponding spin correlators should have
a negative sign.

Similar to [11,12] the set of marginal spins of the na-
noribbon can be described by the effective two-leg spin
ladder with “ferromagnetic” interactions in legs and “anti-
ferromagnetic” interactions in rungs. Due to the topology
of the hexagon stripe, the diagonal interactions of the mar-
ginal spins should be taken into account. As a result, for
the simulation of the magnetic properties of the embedded
nanoribbons, instead of full Heisenberg spin Hamiltonian
of the polyacene derivative stripe of size L, we may treat
the simple low-energy model — two-leg mixed spin ladder
formed by L unit cells with diagonal interactions and L
isolated pair of spin 1/2 with effective antiferromagnetic
interaction (Fig. 2).

Fig. 1. Polyacene with embedded ATM of spin s (balls).
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Fig. 2. (Color online) Effective low-energy spin model for descrip-

tion of the magnetization profile of polyacene macromolecule with
embedded ATM (red balls, 1).

The corresponding Heisenberg spin Hamiltonian has
the form

Her (L) = L (30S:S2 ~hSf ~S3 ) + Hiagger (L 1), (2)

where

[LEY

L
Hiadder (L) = [Jlsl,nsl,ml +J2520S2,n41+J3S1nS2n +

n=1
+Jy (Sl,nsz,ml +3S1n+152,n )J +

L
+JOSLLSZ,L_hZ (S]Z_‘n +S§’n), ‘]1"]2 <0, J3,J4 > 0.
n=1

Here the spin operator S; , corresponds to the spin 1/2 lo-
cated on the nth site of the upper leg of the ladder and S, ,
corresponds to the spin s located on the nth site of the bot-
tom leg. For pristine polyacene J; = J,.

The energy spectrum of the effective spin ladder can be
estimated analytically in the linear spin-wave approxima-
tion (see Appendix) or numerically by means of density ma-
trix renormalization group (DMRG) approach and by the
guantum Monte Carlo method. Due to ferromagnetic coupl-
ing in legs, our spin ladder model has nonfrustrated character
and obeys the Lieb theorem. According to the simple ge-
neralization of Lieb theorem [13], there is a following order-
ing of lowest energy states with specified values of total
spin S:

Emin (S+1)> Emin (S), $28 =L(s-1/2). (3)

Therefore the external magnetic field will increase smoothly
total magnetization up to the value, which corresponds to
z-projection of a total spin of the embedded polyacene
M, =L(2s+1)/4, if the coupling parameter J, satisfies
the condition

‘]0 > Emin (SO +n)—Emin (SO +n—1), n :1, 2,..., L. (4)

Further increase of the external field leads to the triplet
excitations inside the isolated pairs of spins and at h > J,
we obtain the state with maximal magnetization. As a re-
sult, the field dependence of the total magnetization of
the spin system (2) should have an intermediate plateau at
z-projection of the total spin per unit cell m=s+1/2. For
the polyacene embedded by ATM with s > 1/2, the effec-
tive ladder Hamiltonian has the macroscopic ground-state
spin and we may expect the existence of additional inter-
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mediate plateau at m=s-1/2 due to the possible gapped
character of the lowest excitations with total spin S > S .

In order to check the adequacy of the proposed model,
we studied numerically by DMRG method the spin corre-
lator R =({n,2—n,3) for pair of spins corresponding to ver-
tical edges of the polyacene graph. According to our model,
the lowest energy state of the Hamiltonian (1) from the sub-
space the value with m=s+1/2 should correspond to
the beginning of the magnetization plateau. Therefore,
the above spin correlator for this state should have a prefer-
ably antiferromagnetic character. Our DMRG simulations
give R = -0.483, —-0.481, and —0.392 for polyacene struc-
tures with s = 1/2, 1, and 3/2, respectively. These results
may be treated approximately as the presence of localized
singlet pair of spins located on the vertical edges of the
lattice graph.

To estimate the effective coupling constant of the Hamil-
tonian (2) let us suppose, that in the lowest energy state of (2)
with m=s+1/2 there is perfect singlet coupling for pairs
of spins located on vertical edges of the lattice graph.
The energy of this state has the form

B =L[(J+Jp+33+23,)/4-315/4]. (5

The state with the maximal value of total spin has the
energy

E¢ =L[(J+p+13+23,)/4+3514].  (6)

Similar to [4,6], we may estimate the coupling constant
Jo using the corresponding exact energies of the Hamilto-
nian (1) for finite lattice fragment. There are different ways
to do this. We used for all polyacene derivatives the fragment
formed by two hexagons which corresponds to the system
formed by one four-spin fragment of the effective ladder
model and three isolated pairs of interacting spins 1/2 (Fig. 3).
As a result, we have

Jo=(Ef —El)/s, @)

where E; and E; are the exact energies of two-hexagon
fragment described by the Hamiltonian (1) for ferromag-
netic state and the lowest energy state with m=s+1/2,
respectively. From the topology of this fragment, we may
also suppose the following relation: J; =2J,.

Similarly, we estimated the effective coupling constant
J using two lowest energy states of the four-site unit cell

o0~

Fig. 3. (Color online) 10-spin fragment of polyacene derivative
and the corresponding effective spin model.
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Fig. 4. (Color online) Four-sites fragment of the polyacene with
two embedded heteroatoms and the corresponding effective two-
spin system.

g and g, of the initial spin system described by the Hamil-
tonian (1):

J1=(81—80)/(S+1/2). (8)

For the estimation of ferromagnetic interactions along
the ladder legs from the lowest energy levels ¢, (2s) and
€min (25 —1) of the following four-site polyacene fragment
(Fig. 4).

The Hamiltonian of this fragment has a simple energy
spectrum, which can be found analytically for arbitrary s.
In particular, &piy(2s) =—(s+3/4)J and gp, (25-1) =
=—(s+1/4)J. As a result, we obtain a negative coupling
constant describing the interaction of two ATM spins
Jy==J1(4s).

We applied the above scheme to polyacene with ATM
of spin s=1/2, 1, and 3/2. The effective coupling para-
meters for the Hamiltonian (2) are given in the unit of J in
Table 1.

Table 1. Effective coupling parameters for the Hamiltonian (2)

s Jo Ji J2 J3
1/2 1.99 -0.5 -0.5 0.659

1 2.45 -0.5 -0.25 0.513
3/2 3.03 -0.5 -0.167 0.402

Numerical simulation of magnetization profiles

Nonfrustrated character of the spin ladder Hamiltonian
permits us to use QMC method for the numerical simula-
tion of their low-temperature thermodynamics. For the
check, we also used the density matrix renormalization
group method at zero temperature [14]. All the QMC cal-
culations were performed at temperature T = 0.02 (in unit
of J) and the systems size N = 1200 spins. The correspond-
ing DMRG calculations were done at N = 400 spins and 50
optimized states. Besides, our DMRG calculations indicate
that in the ground-state spin-spin correlators of neighbor
spins have positive (ferromagnetic) sign in legs and have a ne-
gative (antiferromagnetic) sign in rungs. This result also con-
firms the correctness of the proposed model (see [11,12]).

On Figs. 5-7 we presented the magnetization profiles of
polyacene macromolecules with ATM of spin s = 1/2, 1,
3/2, respectively (the case s = 1/2 corresponds to pristine
polyacene). For all the figures curves 1 correspond to
QMC calculations for the Hamiltonian (1), curves 2 with
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Fig. 5. (Color online) Magnetization profile with one intermediate
magnetization plateau for pristine polyacene macromolecule.
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Fig. 6. (Color online) Magnetization profile with two intermediate
magnetization plateaus for polyacene macromolecules with ATM
spins=1.
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Fig. 7. (Color online) Magnetization profile with two intermediate
magnetization plateaus for polyacene macromolecules with ATM
spin's = 3/2.

crosses and curves 3 with filled boxed are the magnetiza-
tion profiles for the model (2) calculated by DMRG and
QMC methods, respectively.
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Conclusions

We have proposed an effective simple model to describe
magnetic properties of narrow zigzag graphene nanorib-
bons with periodically embedded ATM. The model consists
of two-leg ladder with diagonal interactions and the set of
S =1/2 isolated dimers. One leg of the ladder contains S = 1/2
spins and other leg contains ATM spins. The parameters of
effective coupling can be obtained analytically from the ana-
lysis of a small fragment of the initial system. Our analyti-
cal and numerical calculations have been shown that the ef-
fective model describes adequately the main peculiarities
of the magnetization profile of narrow zigzag graphene na-
noribbons with periodically embedded ATM. It should be
noted, that the proposed approach can be extended to the po-
lyacene derivatives with periodically embedded ATM of more
complicated structure, e.g., nanoribbons formed by two
chains of hexagons.

Appendix

We consider spin ladder with two different antiferro-
magnetic (AF) interactions in legs ferromagnetic (FM) inter-
action in rungs with Hamiltonian

N
H=>" [~31S1nS1n11—3252nS2n41 + J3S1nS2n +
n=1

+34(S1.n82,012 +S1n41520 )J : (A1)

Here J; >0, i=1,..,4, and N is the number of spins in
each chain (leg). Leg spins are s; and s,. We assume the pe-
riodic boundaries, which means Sy, =Sj;, j=12.

Let us start from AF ground state, and consider (A.1) in
linear spin-wave approximation. According well known Hol-
stein—Primakoff transformation,

/ T .
S1J,rn ~ 288y, Slz,nzsl_alnal,n-

t z t (A2)

+

SZ,n ~ /25, a 51,n =8y 8 —Sp.

Linearized Hamiltonian (A.1) has the form

" L t t

HO = EO + Z{(Jgsz + 2\]131)a1’na]_’n + (J351 + 2-]232)3.2’”&2’” +
n=1

t t
+ [—(315131,na1,n+1 +J2828) 8 n11) +

[ t 4T t 4t t t
T V552 (‘]3al,n3'2,n + ‘]4(a1,na2,n+l + al,n+1az,n)) + h'C'}} ,
(A3)

where E, =—[J1512 +3,53 +(J3 +2J4)5152]N is the AF
ground-state energy.

Translation symmetry in the horizontal direction per-
mits us to introduce quasi-wave vector k=2nl/N,
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I=0,1,..., N -1, perform Fourier transformation of a;,, ay,
in (A.3)

1 . 1 .
y, =—— » exp (ikn)a; ., a,, =—— » exp (-ikn)a, |,
in =7 zk p (ikn)ag ., azn N zk p (—ikn)ay
(A.4)

and rewrite (A.3) as

|:|O = EO +Z{{(J3 +2J4)52 —4J151 Sin2 (g]}a{kalﬁk +
k
o (K|t
+ |:(J3 +2J4)8p —4J45; sin (EH aagk +

+ 5155 (I3 +23, cosk)(a{ka;k + h.c.)} . (A5)

For diagonalization of (A.5) one can use the Heisenberg
representation of the creation and annihilation operators to
derive the equations of movement:

4 =%[I:Io,ajk], j=12. (A.6)

Generalized u-v Bogolubov transformation has the form

2 i 1)*
ajk = Z(Ul(kj)blk Vi by ) i=L2. (AT

1=1

Because a new set of operators bi’k,b;rk should diagonalize
the Hamiltonian (A.5), we have

blk = _%S(kl)b”( . (AS)
For each aﬁl) we have similar sets of 8 linear uniform al-
gebraic equations for 8 coefficients, which separate into
four sets with 2 equations corresponding to two energy
branches. One should take only non-negative energies (ex-
citations above the ground state)

. . k
et =§H(J3 +234)(52 = 52) + 43181 — I252)sin’ (EH+

2
+ \/|:(J3 +234)(Sy +81) +4(I18 + \lzsz)sin2 [gﬂ —4(J3+2J4c0s k)23152

Itis easy to see that for k =0 in (A.9) zero energy ¢ =0
exists always. It means that in linear spin-wave approxima-
tion the energy spectrum is gapless. In the long-wave limit
k <« 1 the approximation formulas for lowest energies are:
ats) # sy

2 2
g ~ J]_Sl +J2$2 +2J43152 k2 (A]_O)
Is1—s; |

andats; =s, =s

e #Sy(J1+ 32 +234)(J3+234) K| (A1)

It should be noted, that the approximate formula (A.10)
does not depend on AM interaction in rungs Js.
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EdekTnBHa HU3bKOEHEpPreTMyHa cniHoBa MOAenNb
Ons By3bKUX 3uraaronofibHux rpacpeHoBux
HaHOCTpPIYOK

B.O. YepaHoscekun, B.B. CnasiH, E.B. €3epcbka
V pamkax crniHoBoro ramineToHiany I'eiizenbepra g0cCmiHKEHO

MarHiTHI BIIaCTHBOCTI BY3bKHMX 3MI3aronogiOHux rpadeHoBUX Ha-
HOCTPIYOK 3 MEPioANYHO BOYJIOBAaHHMHU aTOMaMH MEPEXiTHUX Me-
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TaJiB. 3alpOIOHOBAaHO e(hEeKTHBHY IPOCTY MOJENb, IO T03BOJISIE
HAIlBSKICHO ONHUCAaTH OCOOIMBOCTI NPOQiTiB HAMarHi9eHOCTi po3-
IIAHYTHX cucteM. s Mozxenb Moxxe OyTH BUKOpUCTaHA NpHU J0-
BUIBHOMY 3HAYeHHI CIIiHy BOYJOBaHHMX aTOMIB IEPEXiTHAX METaJIiB.
AHaTHYHI Ta YUCIOBI PO3PAXyHKH MiATBEP/DKYIOTH aJeKBATHICTh
3aIpOIIOHOBAHOI MOIEII.

KurouoBi cioBa: rpadeHoBi HaHocTpiuku, Teopema Jliba, crinosa
Mozenb [efizenbepra.

817



	Introduction
	Effective low-energy spin Hamiltonian for polyacene derivatives
	Numerical simulation of magnetization profiles
	Conclusions
	Appendix

