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The magnetic properties of narrow zigzag graphene nanoribbons with periodically embedded atoms of transi-
tion metals have been studied in the framework of Heisenberg spin Hamiltonian. We have proposed the simple 
effective model to give a semi-qualitative description of the peculiarities of magnetization profiles of the systems 
under consideration. This model can be used for an arbitrary value of spin of the embedded atoms of transition me-
tals. Our analytical and numerical calculations confirm the correctness of the proposed model. 
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Introduction 

Magnetic carbon-based materials like zigzag-edged gra-
phene nanoribbons are considered as promising materials 
for future applications in graphene-based spintronic devices 
[1–3]. It is found both theoretically and experimentally that 
atoms of transition metals (ATM) may fill carbon vacan-
cies in graphene clusters to form stable ATM-embedded 
structures. In contrast to pristine graphene nanoribbons, the 
theoretical description of the magnetic structure of these 
materials is based usually on different variants of density 
functional theory approach and the corresponding many-
electron consideration is of big interest. One of the simp-
lest variants of this consideration is based on the effective 
Heisenberg spin Hamiltonian approach [4–6], which per-
mit us to perform the many-electron study of embedded 
structures with ATM of arbitrary spin. 

In our recent work, we applied above approach to the 
study of the magnetic properties of some narrow graphene 
nanoribbons with periodically embedded ATM [7]. Accord-
ing to the extended Lieb theorem [8], these nanoribbons 
may have macroscopic ground-state spin. In particular, we 
studied the field dependence of the magnetization of the 
Heisenberg spin model for a simplest representative of zig-
zag nanoribbon–polyacene macromolecule by means of the 
quantum Monte Carlo (QMC) method based on stochastic 
series expansion approach [9]. We expected to obtain a mo-
notonic increase of the magnetization of pristine polyacene 

with the increase of the external magnetic field. For ATM-
embedded polyacene, we suppose to find the intermediate 
plateau in field dependence of magnetization because in 
the case of nonmagnetic ATM (s = 0) the Hamiltonian (1) 
corresponds to so-called polyallyl spin chain having one 
intermediate magnetization plateau [10]. Unexpectedly, we 
found numerically at low temperatures one intermediate pla-
teau for pristine polyacene macromolecule and two inter-
mediate plateaus for embedded polyacene derivatives de-
spite the absence of small interactions between site spins. 

In several research papers [11,12] the magnetic properties 
of pristine graphene nanoribbons with zigzag edge termina-
tion were treated with the help of effective two-leg spin-1/2 
ladder model with ferromagnetic interactions along the legs 
and antiferromagnetic interactions in rungs. In this work, 
we applied a similar idea in order to give a simple semi-
qualitative description of the peculiarities of magnetization 
profiles of the Heisenberg spin models for narrow zigzag 
graphene nanoribbons with periodically embedded ATM 
of arbitrary spin. 

Effective low-energy spin Hamiltonian for polyacene 
derivatives 

Carbon atoms of the pristine polyacene macromolecule 
are arranged in the stripe of hexagons. Quasihomopolar ener-
gy states of π -electron network of this macromolecule can 
be described adequately by effective Heisenberg spin-1/2 Ha-
miltonian on the corresponding hexagonal lattice stripe [4,5]. 
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According to Lieb theorem [13], this Hamiltonian has a sing-
let ground state. Let us enumerate all the atoms conse-
quently along the unit cells and consider the polyacene 
derivative for which all the fourth carbon atoms of each 
unit cell are substituted by the ATM of spin s (Fig. 1). 

The spin Hamiltonian of this polyacene derivative in pre-
sence of the external magnetic field h has the following form: 
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Here, for simplicity of further consideration, we put equal 
coupling constants for all the interactions between neigh-
bor spins of the lattice; the spin operator ,4nS  corresponds 
to the embedded ATM spin of the nth unit cell. 

For finite fragment of above lattice structure formed 
by L unit cells, according to the extended Lieb theorem, 
the Heisenberg spin model has the ground-state spin 

( )0 1/ 2S L s= − , which takes macroscopic value in the limit 
L →∞  at 1/ 2s ≠ . According to the Klein theorem [8], 
for the ground-state 0Ψ  the two-particle correlators 

0 0i ji j S S− = Ψ Ψ  for embedded spins with 0s ≠  have 
positive values. A similar consideration is valid for oppo-
site carbon spins (site spins with numbers (n, 1)). The spin 
correlators for marginal spins of the same unit cell (embedded 
spin s and opposite carbon spin) should have a negative 
sign. In other words, we may say about effective “ferromag-
netic” ordering of the marginal spins along the polyacene 
zigzag edges and antiferromagnetic interactions between 
the marginal spins of different zigzag edges. There are also 
L pairs of spins which belongs to two neighbor hexagons 
simultaneously (vertical edges of the lattice graph). Accord-
ing to [8], the corresponding spin correlators should have 
a negative sign. 

Similar to [11,12] the set of marginal spins of the na-
noribbon can be described by the effective two-leg spin 
ladder with “ferromagnetic” interactions in legs and “anti-
ferromagnetic” interactions in rungs. Due to the topology 
of the hexagon stripe, the diagonal interactions of the mar-
ginal spins should be taken into account. As a result, for 
the simulation of the magnetic properties of the embedded 
nanoribbons, instead of full Heisenberg spin Hamiltonian 
of the polyacene derivative stripe of size L, we may treat 
the simple low-energy model — two-leg mixed spin ladder 
formed by L unit cells with diagonal interactions and L 
isolated pair of spin 1/2 with effective antiferromagnetic 
interaction (Fig. 2). 

The corresponding Heisenberg spin Hamiltonian has 
the form 

( ) ( ) ( )eff 0 1 2 1 2 ladder, ,z zL h L J h h L h= − − +H S S S S H , (2) 

where 

( )
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Here the spin operator 1,nS  corresponds to the spin 1/2 lo-
cated on the nth site of the upper leg of the ladder and 2,nS  
corresponds to the spin s located on the nth site of the bot-
tom leg. For pristine polyacene 1 2J J= . 

The energy spectrum of the effective spin ladder can be 
estimated analytically in the linear spin-wave approxima-
tion (see Appendix) or numerically by means of density ma-
trix renormalization group (DMRG) approach and by the 
quantum Monte Carlo method. Due to ferromagnetic coupl-
ing in legs, our spin ladder model has nonfrustrated character 
and obeys the Lieb theorem. According to the simple ge-
neralization of Lieb theorem [13], there is a following order-
ing of lowest energy states with specified values of total 
spin S: 

 ( ) ( )min min1E S E S+ > , ( )0 1/ 2S S L s≥ = − . (3) 

Therefore the external magnetic field will increase smoothly 
total magnetization up to the value, which corresponds to 
z-projection of a total spin of the embedded polyacene 

( )1 2 1 / 4M L s= + , if the coupling parameter 0J  satisfies 
the condition 

0 min 0 min 0( ) ( 1), 1, 2,...,J E S n E S n n L> + − + − = . (4) 

Further increase of the external field leads to the triplet 
excitations inside the isolated pairs of spins and at 0h J>  
we obtain the state with maximal magnetization. As a re-
sult, the field dependence of the total magnetization of 
the spin system (2) should have an intermediate plateau at 
z-projection of the total spin per unit cell 1 / 2m s= + . For 
the polyacene embedded by ATM with s > 1/2, the effec-
tive ladder Hamiltonian has the macroscopic ground-state 
spin and we may expect the existence of additional inter-Fig. 1. Polyacene with embedded ATM of spin s (balls). 

Fig. 2. (Color online) Effective low-energy spin model for descrip-
tion of the magnetization profile of polyacene macromolecule with 
embedded ATM (red balls, 1). 



V.O. Cheranovskii, V.V. Slavin, and E.V. Ezerskaya 

814 Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 7 

mediate plateau at 1/ 2m s= −  due to the possible gapped 
character of the lowest excitations with total spin 0S S> . 

In order to check the adequacy of the proposed model, 
we studied numerically by DMRG method the spin corre-
lator , 2 ,3R n n= 〈 − 〉  for pair of spins corresponding to ver-
tical edges of the polyacene graph. According to our model, 
the lowest energy state of the Hamiltonian (1) from the sub-
space the value with 1/ 2m s= +  should correspond to 
the beginning of the magnetization plateau. Therefore, 
the above spin correlator for this state should have a prefer-
ably antiferromagnetic character. Our DMRG simulations 
give R = –0.483, –0.481, and –0.392 for polyacene struc-
tures with s = 1/2, 1, and 3/2, respectively. These results 
may be treated approximately as the presence of localized 
singlet pair of spins located on the vertical edges of the 
lattice graph. 

To estimate the effective coupling constant of the Hamil-
tonian (2) let us suppose, that in the lowest energy state of (2) 
with 1/ 2m s= +  there is perfect singlet coupling for pairs 
of spins located on vertical edges of the lattice graph. 
The energy of this state has the form 

 ( )1 1 2 3 4 02 / 4 3 / 4E L J J J J J = + + + −  .  (5) 

The state with the maximal value of total spin has the 
energy 

 ( )1 2 3 4 02 / 4 / 4fE L J J J J J = + + + +  .  (6) 

Similar to [4,6], we may estimate the coupling constant 
0J  using the corresponding exact energies of the Hamilto-

nian (1) for finite lattice fragment. There are different ways 
to do this. We used for all polyacene derivatives the fragment 
formed by two hexagons which corresponds to the system 
formed by one four-spin fragment of the effective ladder 
model and three isolated pairs of interacting spins 1/2 (Fig. 3). 
As a result, we have 

 ( )0 1 / 3fJ E E= − , (7) 

where fE  and 1E  are the exact energies of two-hexagon 
fragment described by the Hamiltonian (1) for ferromag-
netic state and the lowest energy state with 1/ 2m s= + , 
respectively. From the topology of this fragment, we may 
also suppose the following relation: 3 42J J= . 

Similarly, we estimated the effective coupling constant 
3J  using two lowest energy states of the four-site unit cell 

0ε  and 1ε  of the initial spin system described by the Hamil-
tonian (1): 
 ( )1 1 0 / ( 1/ 2)J s= ε − ε + .  (8) 

For the estimation of ferromagnetic interactions along 
the ladder legs from the lowest energy levels min (2 )sε  and 

( )min 2 1sε −  of the following four-site polyacene fragment 
(Fig. 4). 

The Hamiltonian of this fragment has a simple energy 
spectrum, which can be found analytically for arbitrary s. 
In particular, ( )min (2 ) 3 / 4s s Jε = − +  and min (2 1)sε − = 

( )1/ 4s J= − + . As a result, we obtain a negative coupling 
constant describing the interaction of two ATM spins 

( )1 / 4J J s= − . 
We applied the above scheme to polyacene with ATM 

of spin 1/ 2s =  , 1, and 3/2. The effective coupling para-
meters for the Hamiltonian (2) are given in the unit of J in 
Table 1. 

Table 1. Effective coupling parameters for the Hamiltonian (2) 

s J0 J1 J2 J3 

1/2 1.99 –0.5 –0.5 0.659 
1 2.45 –0.5 –0.25 0.513 

3/2 3.03 –0.5 –0.167 0.402 

Numerical simulation of magnetization profiles 

Nonfrustrated character of the spin ladder Hamiltonian 
permits us to use QMC method for the numerical simula-
tion of their low-temperature thermodynamics. For the 
check, we also used the density matrix renormalization 
group method at zero temperature [14]. All the QMC cal-
culations were performed at temperature T = 0.02 (in unit 
of J) and the systems size N = 1200 spins. The correspond-
ing DMRG calculations were done at N = 400 spins and 50 
optimized states. Besides, our DMRG calculations indicate 
that in the ground-state spin-spin correlators of neighbor 
spins have positive (ferromagnetic) sign in legs and have a ne-
gative (antiferromagnetic) sign in rungs. This result also con-
firms the correctness of the proposed model (see [11,12]). 

On Figs. 5–7 we presented the magnetization profiles of 
polyacene macromolecules with ATM of spin s = 1/2, 1, 
3/2, respectively (the case s = 1/2 corresponds to pristine 
polyacene). For all the figures curves 1 correspond to 
QMC calculations for the Hamiltonian (1), curves 2 with 

Fig. 3. (Color online) 10-spin fragment of polyacene derivative 
and the corresponding effective spin model. 

Fig. 4. (Color online) Four-sites fragment of the polyacene with 
two embedded heteroatoms and the corresponding effective two-
spin system. 
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crosses and curves 3 with filled boxed are the magnetiza-
tion profiles for the model (2) calculated by DMRG and 
QMC methods, respectively. 

Conclusions 

We have proposed an effective simple model to describe 
magnetic properties of narrow zigzag graphene nanorib-
bons with periodically embedded ATM. The model consists 
of two-leg ladder with diagonal interactions and the set of 
S = 1/2 isolated dimers. One leg of the ladder contains S = 1/2 
spins and other leg contains ATM spins. The parameters of 
effective coupling can be obtained analytically from the ana-
lysis of a small fragment of the initial system. Our analyti-
cal and numerical calculations have been shown that the ef-
fective model describes adequately the main peculiarities 
of the magnetization profile of narrow zigzag graphene na-
noribbons with periodically embedded ATM. It should be 
noted, that the proposed approach can be extended to the po-
lyacene derivatives with periodically embedded ATM of more 
complicated structure, e.g., nanoribbons formed by two 
chains of hexagons. 

Appendix 
We consider spin ladder with two different antiferro-

magnetic (AF) interactions in legs ferromagnetic (FM) inter-
action in rungs with Hamiltonian 

 1 1, 1, 1 2 2, 2, 1 3 1, 2,
1

ˆ
N

n n n n n n
n

J J J+ +
=

= − − + +∑H S S S S S S   

 ( )4 1, 2, 1 1, 1 2,n n n nJ + + + + S S S S . (A.1) 

Here 0,iJ >  1,..., 4i = , and N  is the number of spins in 
each chain (leg). Leg spins are 1s  and 2.s We assume the pe-
riodic boundaries, which means 1 1,jN j+ =S S  1, 2j = . 

Let us start from AF ground state, and consider (A.1) in 
linear spin-wave approximation. According well known Hol-
stein–Primakoff transformation, 
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Linearized Hamiltonian (A.1) has the form 

{ † †
0 0 3 2 1 1 1, 3 1 2 2 2,1, 2,

1

ˆ ( 2 ) ( 2 )
N

n nn n
n

E J s J s a a J s J s a a
=

= + + + + +∑H

 † †
1 1 1, 1 2 2 2, 11, 2,( )n nn nJ s a a J s a a+ +

+ − + +  

( ) }† † † † † †
1 2 3 41, 2, 1, 2, 1 1, 1 2,( ) h.c.n n n n n ns s J a a J a a a a+ +

+ + + + 
, 

  (A.3) 

where 2 2
0 1 1 2 2 3 4 1 2( 2 )E J s J s J J s s N = − + + +   is the AF 

ground-state energy. 
Translation symmetry in the horizontal direction per-

mits us to introduce quasi-wave vector 2 / ,k l N= π  

Fig. 5. (Color online) Magnetization profile with one intermediate 
magnetization plateau for pristine polyacene macromolecule. 

Fig. 6. (Color online) Magnetization profile with two intermediate 
magnetization plateaus for polyacene macromolecules with ATM 
spin s = 1. 

Fig. 7. (Color online) Magnetization profile with two intermediate 
magnetization plateaus for polyacene macromolecules with ATM 
spin s = 3/2. 



V.O. Cheranovskii, V.V. Slavin, and E.V. Ezerskaya 

816 Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 7 

0, 1,..., 1l N= − , perform Fourier transformation of 1, 2,,n na a  
in (A.3) 

1 1, 2 2,
1 1exp ( ) , exp ( ) ,n k n k

k k
a ikn a a ikn a

N N
= = −∑ ∑  

(A.4) 

and rewrite (A.3) as 

†2
0 0 3 4 2 1 1 1,1,

ˆ ( 2 ) 4 sin
2 kk

k

kE J J s J s a a
  = + + − +     

∑H

†2
3 4 2 1 1 2,2,( 2 ) 4 sin

2 kk
kJ J s J s a a  + + − +    

( )( )† †
1 2 3 4 1, 2,2 cos h.c.k ks s J J k a a

+ + + 


.  (A.5) 

For diagonalization of (A.5) one can use the Heisenberg 
representation of the creation and annihilation operators to 
derive the equations of movement: 

0
ˆ , , 1, 2jk jk

ia a j = = H



. (A.6) 

Generalized u–v Bogolubov transformation has the form 

( )
2

( ) ( )* †

1
, 1, 2.j j

jk lklk lk lk
l

a U b V b j
=

= + =∑  (A.7) 

Because a new set of operators †
, ,,i k i kb b  should diagonalize

the Hamiltonian (A.5), we have 

( )l
lk lkk

ib b= − ε



. (A.8) 

For each ( )l
kε  we have similar sets of 8 linear uniform al-

gebraic equations for 8 coefficients, which separate into 
four sets with 2 equations corresponding to two energy 
branches. One should take only non-negative energies (ex-
citations above the ground state)

 ___________________________________________________  

(1,2) 2
3 4 2 1 1 1 2 2

1 ( 2 )( ) 4( )sin
2 2k

kJ J s s J s J s
   ε = ± + − + − +     

2
2 2

3 4 2 1 1 1 2 2 3 4 1 2( 2 )( ) 4( )sin 4( 2 cos ) .
2
kJ J s s J s J s J J k s s

   + + + + + − +      

 (A.9) 

 ______________________________________________ 

It is easy to see that for 0k =  in (A.9) zero energy 0ε =  
exists always. It means that in linear spin-wave approxima-
tion the energy spectrum is gapless. In the long-wave limit 

1k   the approximation formulas for lowest energies are:  
at 1 2s s≠  

2 2
21 1 2 2 4 1 2

1 2

2
| |k

J s J s J s s k
s s

 + +
ε ≈   − 

 (A.10) 

and at 1 2s s s= =  

1 2 4 3 4( 2 )( 2 ) | |k s J J J J J kε ≈ + + + . (A.11) 

It should be noted, that the approximate formula (A.10) 
does not depend on AM interaction in rungs 3J . 

 ________  
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Ефективна низькоенергетична спінова модель 
для вузьких зигзагоподібних графенових 

нанострічок 

В.О. Черановський, В.В. Славін, Е.В. Єзерська 

У рамках спінового гамільтоніану Гейзенберга досліджено 
магнітні властивості вузьких зигзагоподібних графенових на-
нострічок з періодично вбудованими атомами перехідних ме-

талів. Запропоновано ефективну просту модель, що дозволяє 
напівякісно описати особливості профілів намагніченості роз-
глянутих систем. Ця модель може бути використана при до-
вільному значенні спіну вбудованих атомів перехідних металів. 
Аналітичні та числові розрахунки підтверджують адекватність 
запропонованої моделі. 

Ключові слова: графенові нанострічки, теорема Ліба, спінова 
модель Гейзенберга. 
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