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We study numerically the integrable turbulence in the framework of the focusing one-dimensional nonlinear 
Schrödinger equation using a new method — the “growing of turbulence”. We add to the equation a weak con-
trolled pumping term and start adiabatic evolution of turbulence from statistically homogeneous Gaussian noise. 
After reaching a certain level of average intensity, we switch off the pumping and realize that the “grown up” 
turbulence is statistically stationary. We measure its Fourier spectrum, the probability density function (PDF) of 
intensity and the autocorrelation of intensity. Additionally, we show that, being adiabatic, our method produces 
stationary states of the integrable turbulence for the intermediate moments of pumping as well. Presently, we 
consider only the turbulence of relatively small level of nonlinearity; however, even this “moderate” turbulence 
is characterized by enhanced generation of rogue waves. 
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1. Introduction 

The theory of integrable turbulence is one of the hottest 
topics in modern physics of nonlinear phenomena. The 
integrable turbulence is a state of an integrable system with 
infinite number degrees of freedom, such that many of them 
are exited in a random way. This state should be described 
statistically, and this is the subject of the integrable turbu-
lence theory, the concept of which was introduced in [1] by 
one of the authors of the present paper. 

The analytical approach to the theory of integrable tur-
bulence is possible in two opposite situations:  

1. When the nonlinearity is weak. In this case one can 
use the expansion in powers of nonlinearity. This way was 
outlined in [1].  

2. When the turbulence can be treated as an ensemble of 
solitons. The kinetic theory of rarefied solitonic gas was 
suggested in [2] and essentially improved in [3]. Later, 
wavefield statistical characteristics of rarified solitonic gas 
were studied in [4,5].  

Yet a lot of many interesting types of integrable turbu-
lence (the turbulence with intermediate level of nonlinearity, 
the theory of dense solitonic gas) remain out of limits of 
analytical theory and can be studied by implementation of 
massive numerical experiments only [6–14]. 

In the present paper we study the most important and 
popular integrable system described by the focusing one-
dimensional nonlinear Schrödinger equation (1D-NLSE) 
and suggest a new approach — the “growing of integrable 
turbulence”. We add to the 1D-NLSE a small adiabatic 
pumping term, making the waves of small amplitude unsta-
ble, and observe development of this instability starting with 
statistically space-homogeneous Gaussian noise. When the 
average intensity reaches a certain controlled level, we 
switch off the pumping and leave the “grown up” state to 
develop according to the conservative 1D-NLSE. We realize 
that this “grown” turbulence isn’t only statistically homoge-
neous, but is statistically stationary as well. We examine the 
Fourier spectrum of this system, the probability density 
function (PDF) of intensity and the autocorrelation of in-
tensity. Additionally, we verify that, being adiabatic, our 
method produces stationary states of the integrable turbu-
lence for the intermediate moments of pumping as well. 

Presently, we limit ourselves with the “grown up” turbu-
lence of relatively small level of nonlinearity, which is chara-
cterized by the ratio of the potential energy (related to non-
linearity) to the kinetic one (related to dispersion) of around 
1/5. However, even for this case, the PDF of intensity has 
“fat tail”, indicating enhanced generation of rogue waves. 
We will continue our numerical experiments in the future. 
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The paper is organized as follows. In the next Section we 
describe our numerical methods. In Section 3 we discuss the 
two scenarios of the pumping — the linear and the nonlinear 
ones. In Section 4 we demonstrate our results. The final 
Section contains conclusions. 

2. Numerical methods 

Without loss of generality, we examine statistics of so-
lutions for the following system of equations: 

 2
0( = 0, ) = ( ), | | = 1,t x A f x fψ  (1) 
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where t  is time, x  is spatial coordinate, ψ  is the wavefield, 
( )f x  is the function describing statistics of the initial 

noise, 0 1A   is the noise amplitude and p̂ is the pumping 
operator (linear or nonlinear). For the numerical study, we 
consider the periodic problem [ / 2, / 2]x L L∈ −  with a very 
large period, = 256L π; the overline denotes spatial averag-
ing over this period:  
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In the absence of the pumping term ˆ = 0p , Eq. (2) is the 
1D-NLSE of the focusing type, which conserves an infinite 
series of invariants [15,16]. The first three of these invari-
ants are wave action (in our notations equals to the average 
intensity) 
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Here lH  is the kinetic energy, nlH  is the potential energy, 
= 2 /k m Lπ  is the wavenumber, m Z∈  is integer and kψ  is 

the Fourier-transformed wavefield 
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In the case of system (1)–(2), the invariants of the 

1D-NLSE change with time until the wave action 2= | |N ψ  
reaches unity, and then remain constant for all later times. 
For adiabatic turbulence growth from one state close to the 
stationary state of the integrable turbulence to another, we 

take very small pumping, such that the motion is governed 
primarily by the terms of the 1D-NLSE, and also start simu-
lations from small noise, 0 1A  , so that at the start of the 
growth stage the dynamics is almost linear (and, in the ab-
sence of the pumping, the linear turbulence would be sta-
tionary). 

For numerical simulations, we use the pseudo-spectral 
Runge–Kutta fourth-order method in adaptive grid, with the 
grid size x∆  set from the analysis of the Fourier spectrum of 
the solution, see [7] for detail. The time step t∆  changes 
with x∆  as 2=t h x∆ ∆ , 0.1h ≤ , in order to avoid numerical 
instabilities. We have checked that, after turning off the 
pumping, the first ten integrals of motion of the 1D-NLSE 
are conserved by our numerical scheme up to the relative 
errors from 10–10 (the first three invariants) to 10–6 (the 
tenth invariant) orders. 

The initial conditions are taken as white noise with wide 
super-Gaussian Fourier spectrum: 

 ( )
1/2

( ) = exp | | / ,n nn
k

k

C
f x k ikx i

L
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with = 32n  and = 4θ . Here n is the exponent defining the 
shape of the Fourier spectrum, θ is characteristic width in 
the k -space, kφ  are random phases for each k  and each real-

ization of the initial conditions, 1/
1 1/= 2 /n

n nC +π Γ  is the 

normalization constant such that 2| | = 1f  (see, e.g., Eq. (25) 
in [7]) and Γ  is Gamma-function. The noise spectrum is 
wide, as its characteristic width is much larger than unity, 

1θ . Also, for 0 = 1A , the noise would have ratio of the 
potential energy to the kinetic one equal to  
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see [14], that corresponds to weakly nonlinear wavefield. 
Below we will use the potential-to-kinetic energy ratio α 
to estimate the nonlinearity level of the wavefield. 

After turning off the pumping, we start measurement of 
the statistical functions, averaging them over the ensemble 
of 200 random realizations of initial conditions. We have 
checked that larger ensemble size does not change the re-
sults. We examine the ensemble-averaged kinetic ( )lH t〈 〉  
and potential ( )nlH t〈 〉 energies, the fourth-order moment of 

amplitude 4 2 2
4 = | | / | |κ 〈 ψ 〉 〈 ψ 〉 , the PDF ( , )I t  of relative 

wave intensity 2 2=| | / | |I ψ 〈 ψ 〉 , the wave-action spectrum 

 2( ) = | | / ,k kS t k〈 ψ 〉 ∆  (10) 

where = 2 /k L∆ π  is the distance between neighbor har-
monics, and the autocorrelation of the intensity 
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Here ...〈 〉 means averaging over the ensemble of initial 
conditions and, in the latter relation, the overline denotes 
spatial averaging over the y  coordinate. Note that, at = 0,x  
the autocorrelation equals to the fourth-order moment, 

2 4(0, ) = ( )g t tκ , and at x →∞  it must approach to unity, 

2 ( , ) 1g x t → . For the wave-action spectrum and the PDF, we 

use normalization conditions =kS dk N∫  and ( ) = 1I dI∫ , 

respectively. Below we will also compare our numerical 
results for the PDF with the exponential function 
 ( ) = e ,I

R I −  (12) 

describing the distribution of intensity for a superposition 
of a multitude of uncorrelated linear waves with random 
Fourier phases [17]. 

3. The pumping term 

First, let us consider scenario of the linear pumping 
ˆ =p b . In this case, the wave action evolves as  

 = 2 ,dN bN
dt

 (13) 
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1 for ln / .
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The characteristic time scale Lt  due to the effect of dis-
persion is connected with the characteristic length scale 0  
describing the function ψ  as 2

0=Lt  , see, e.g., [18]. At the 
initial time, the length scale is inverse-proportional to the 
noise spectral width, 0 1/ θ  , see Eq. (8). Our numerical 
experiments indicate that, at the final time, the wave-action 
spectrum has the same characteristic width in the k -space 
as the initial noise, kδ θ , so that we may assume 

0 1/ θ   and 21/Lt θ  for all times. The nonlinear time 
describing the characteristic time scale due to nonlinearity 
is inverse-proportional to the wave action (average intensi-
ty), = 1/NLt N . The latter changes from 2

0A  at the initial 
time to 1 at the final time. Finally, the characteristic time 
scale due to the pumping term equals to 1/ 2Pt b , see 
Eq. (14). Thus, we can reach both (i) the adiabatic regime 
of the pumping and (ii) the close to linear evolution at the 
start of the growth stage only if  

 2 2
02 2

0

1 1 1 2 .
2

b A
bA

↔ θ
θ
     (15) 

For instance, if we start from the initial noise amplitude 
2

0 = 10A −  and use the pumping coefficient 610b − , then 
the required evolution time before turning off the pumping 
is 6

0= ln / 4.6 10pft A b− ≈ ⋅ . For the statistical study in-
volving ensembles with hundreds of realizations of initial 
conditions, such evolution times are difficult to reach with 
the currently available numerical resources. 

We can also choose the nonlinear pumping term, for in-
stance, proportional to the wave action, ˆ =p cN . In the 
sense of dependence on the wave action, such a pumping is 

similar to the saturating pumping modeling of the ultra fast 
fiber lasers [19]. Then, the wave action evolves as  

 2= 2 ,dN cN
dt

 (16) 
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and the characteristic time scale due to the pumping effect 
is inverse-proportional to the initial intensity, 2

01/ 2 .Pt cA  
This leads to a different set of relations necessary for both 
(i) the adiabatic regime of the pumping and (ii) the close to 
linear evolution at the start of the growth stage,  

 2 2
02 2 2

0 0

1 1 1 2 1 and .
2

c A
A cA

↔ θ
θ
     (18) 

Thus, if we use parameters 2
0= = 10c A −  similar to those 

for the described above linear pumping case, the required 
evolution time before turning off the pumping =pft  

2 2 5
0 0(1 ) / 2 5 10A cA= − ≈ ⋅  turns out to be one order of 

magnitude smaller. 
There is also another advantage of the nonlinear pump-

ing, that is especially valuable in combination with numer-
ical schemes utilizing adaptive grids. Specifically, the ap-
pearance of large gradients that require usage of fine 
discretization is expected mostly when the wave action 
(average intensity) reaches unity order, 1N  ; such a beha-
vior is confirmed experimentally by the performance of our 
numerical scheme. For the linear pumping scenario, the sys-
tem spends in evolution from = 1/ 2N  to = 1N  the time 

1/2 = ln 2 / 2t bδ , as can be easily calculated from Eq. (14). 
For the considered above parameters 2

0 = 10A −  and 6= 10b − , 
it equals to 5

1/2 3.5 10tδ ≈ ⋅ . For the nonlinear pumping with 
2

0= = 10c A − , the corresponding time 1/2 = 1/ 2 = 50t cδ , 
i.e., four orders of magnitude smaller. 

Thus, for the nonlinear pumping, the system spends 
most of its evolution having very small wave action, when 
the adaptive numerical scheme resolves the wavefield ac-
curately using comparatively small number of points . 
Simulation of unit evolution time = 1tδ  with our method 
requires 3( log )    operations – ( log )    for the 
FFT multiplied by 2( )   time steps – that results in huge 
advantage in the overall simulation time compared to the 
linear pumping scenario. 

For this reason, in the present paper we use only the 
nonlinear pumping term proportional to the wave action, 
ˆ =p cN , and determine the evolution time for the growth 

stage via relation (17). However, we have checked that us-
age of the linear pumping term leads to qualitatively the 
same results for the statistical functions describing the 
integrable turbulence after turning off the pumping. 
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4. Results 

In order to confirm the adiabatic process of turbulence 
growth from one state close to the stationary state of the 
integrable turbulence to another, we perform several nu-
merical experiments. 

In the first experiment, we start from the initial noise 
with amplitude 2

0 = 3 10A −⋅ , use nonlinear pumping term 
ˆ =p cN  with 2= 10c − , wait until the wave action reaches 

unity, turn off the pumping and measure the statistical 
functions. Figure 1a demonstrates the ensemble-averaged 
kinetic lH〈 〉  and potential nlH〈 〉 energies and the fourth-
order moment of amplitude 4κ  versus time =e pft t t−  af-
ter the moment pft  when the pumping was turned off. As 
shown in the figure, the three functions do not change with 

time for sufficiently long evolution, so that at = 0et  the 
turbulence can already be considered as very close to sta-
tionary. For > 0et , the potential-to-kinetic energy ratio 
turns out to be =| | / 0.212nl lH Hα 〈 〉 〈 〉 ≈ , i.e., only about 
6% larger than for the initial white noise scaled to unit ave-
rage intensity, see Eq. (9); the small value of α indicates 
that the turbulence is weakly nonlinear. For > 0et , the 
fourth-order moment equals to 4 2.12κ ≈ , that is slightly 
larger than the value of 2 characterizing a superposition of 
a multitude of uncorrelated linear waves with random 
phases. The latter hints that the rogue waves are generated 
slightly more frequently than for a purely linear system. 

To ensure that, after turning off the pumping, the 
integrable turbulence is very close to stationary, we follow 
[14] and compare the statistical functions averaged over 

Fig. 1. (Color online) (a) Ensemble-averaged kinetic energy lH〈 〉 , potential energy nlH〈 〉 and the fourth-order moment 4κ  versus time 
=e pft t t− , where pft  is the moment when the pumping is turned off; the initial noise amplitude is 2

0 = 3 10A −⋅ , the final average in-
tensity is unity, = 1fN . (b) – (d) Averaged over ensemble and time statistical functions of the integrable turbulence after the pumping is 
turned off: (b) the wave-action spectrum kS , (c) the PDF ( )I  of relative wave intensity 2 2=| | / | |I ψ 〈 ψ 〉  and (d) the autocorrelation of 
intensity 2( )g x . In figures (b) – (d), all lines except for the green dashed lines correspond to the experiment with the initial noise ampli-
tude 2

0 = 3 10A −⋅ . In particular, the black lines mark the statistical functions for the initial noise, the blue lines indicate the interrupted 
growth stage with the final intensity 2= 10fN −  and time averaging in [0,20]et ∈ , the cyan — 2= 9 10fN −⋅  with [0,20]et ∈ , the pink — 

= 1fN  with [0,20]et ∈  and the red — = 1fN  with [80,100]et ∈ . The green dashed lines show the experiment with the initial noise 
amplitude 2

0 = 10A −  and the final intensity = 1fN , with the results averaged over time [0,20]et ∈ . The insets in panels (b) – (d) show 
the same functions as in the main figures with smaller scales, and the brown dash-dot line in panel (c) indicates the exponential PDF (12). 
The PDF for the initial noise is not shown, as it coincides (by construction) with the exponential PDF. 
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ensemble of initial conditions and two different time inter-
vals [0, 20]t∈  (indicated with magenta lines in Figs. 1b–1d 
and [80,100]t∈  (red lines) — for the wave-action spec-
trum kS , the PDF ( )I  of relative wave intensity =I  

2 2| | / | |= ψ 〈 ψ 〉  and the autocorrelation of intensity 2 ( )g x . 
As shown in the figures, the results are identical, so that 
after turning off the pumping the integrable turbulence can 
be considered stationary. 

In Figs. 1b–1d, the magenta and the red lines also coin-
cide with the dashed green line, which indicates results for a 
different numerical experiment with the same parameters as 
for the first experiment, except for the smaller initial noise 
amplitude 2

0 = 10A − . The match of the results confirms that 
the initial noise for the first experiment 2

0 = 3 10A −⋅  is 
small enough to seed the adiabatically growing integrable 
turbulence. 

We now describe the basic features of statistical func-
tions shown in Figs. 1b–1d for the first experiment (magenta 
and red lines). In particular, the wave-action spectrum in-
herits the flat profile of the noise spectrum at small and 
moderate wavenumbers | | 4k ≤ , and decays slightly slower 
than exponential at large wavenumbers | | 10k  , Fig. 1b. 
The PDF deviates from the exponential function (12), ex-
ceeding it significantly at large intensities, Fig. 1c; for = 20,I  
the excess reaches about 2 orders of magnitude. Together 
with the slightly elevated fourth-order moment 4 2.12κ ≈  
compared with the value of 2 characterizing a superposi-
tion of a multitude of uncorrelated linear waves, this is a 
sign of enhanced appearance of rogue waves. The autocor-
relation of intensity is a bell-shaped function at small dis-
tances | | 1x   with the maximum slightly larger than 2, 

2 2 4max ( ) = (0) = 2.12g x g κ ≈ , and is nearly indistin-
guishable from unity at larger distances | | 4x  . 

As we have shown, when the wave action reaches unity 
and we turn off the pumping, the resulting integrable tur-
bulence is practically stationary. To confirm that, during 
the growth stage, the turbulence goes through the similar 
almost-stationary states defined by the current set of the 
(very slowly changing) integrals of motion, we perform 
two more experiments, in which we turn off the pumping 
earlier. Namely, in the first of these experiments we turn 
off the pumping when the wave action reaches 2= 10fN −  
(blue lines in Figs. 1b–1d), time averaging over [0, 20]et ∈ ), 
and in the second — at 2= 9 10fN −⋅  (cyan lines, [0, 20]).et ∈  
Repeating the procedure described above, for each of these 
two experiments we have compared the statistical func-
tions averaged over the ensemble of initial conditions and 
two different time intervals [0, 20]et ∈  and [80,100]et ∈ , 
and found no difference (the curves corresponding to 

[80,100]et ∈  are not shown in the figure for better visibility). 
Hence, we can conclude that, during the growth stage, the 
intermediate states are also very close to the stationary 
states of the integrable turbulence. 

Note that for the additional experiment with 2= 10fN − , 
after turning off the pumping, the potential-to-kinetic energy 
ratio and the fourth-order moment equal to 32.02 10−α ≈ ⋅  
and 4 2.001κ ≈ , while for the experiment with =fN  

29 10−= ⋅  — to 21.83 10−α ≈ ⋅  and 4 2.008κ ≈ . Hence, 
even though at these intermediate states the turbulence is 
almost linear, the fourth-order moment indicates increasing 
deviation from Gaussian statistics. 

For the two intermediate states with 2= 10fN −  and 
2= 9 10fN −⋅ , the PDF and the autocorrelation of intensity 

shown in Figs. 1c and 1d almost coincide with the exponential 
PDF (12) and the autocorrelation of intensity for the initial 
noise, respectively. The most significant change with the 
final intensity fN  is observed for the wave-action spec-
trum — compare the black (initial noise), blue 2( = 10 ),fN −  
cyan ( 2= 9 10fN −⋅ ) and pink or red ( = 1fN ) lines in 
Fig. 1b. While the flat profile at small and moderate wave-
numbers | | 4k ≤  goes up with increasing final intensity (we 
remind that the wave-action spectrum is normalized to 
intensity), at large wavenumbers the spectrum acquires tails 
that decay nontrivially with the wavenumber and widen with 
increasing fN . At = 1fN , the turbulence is weakly nonlin-
ear, 0.212α ≈ , and the tails decay slightly slower than ex-
ponentially. 

From the results presented above, we can conclude that 
the integrable turbulence can be grown adiabatically from 
a small noise by a temporary addition of a small pumping 
term. During this process, the turbulence goes consequen-
tially through states, that a very close to the stationary 
states of the integrable turbulence defined by the current 
set of the (slowly changing) integrals of motion. 

5. Conclusions 

In the present paper we have suggested a new approach 
to the studies of integrable turbulence, that consists in adia-
batic growing of turbulence from small noise by a temporary 
addition of a small pumping term to the core integrable 
equation. The small level of the initial noise ensures the 
close to linear evolution of the system at the start of the 
growth stage, thus making the turbulence at this time al-
most stationary. The usage of a small pumping term, such 
that its influence is much smaller than that of all other 
terms, allows us to grow the turbulence adiabatically, i.e., 
when the dynamics is defined mostly by the core integrable 
equation and the main role of the pumping is reduced to 
the slow change of the integrals of motion. In combination, 
this design allows the adiabatic process of turbulence 
growth from one state very close to the stationary state of 
the integrable turbulence to another, with the intermediate 
states defined by the current set of the integrals of motion. 

We have performed a numerical experiment designed ac-
cording to these principles and confirmed the described 
above behavior. As a seed for the turbulence growth, we have 
used a wide-spectrum noise, that led us to weakly nonlinear 
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turbulence after the finish of the growth stage. Our motiva-
tion was two-fold: first, noise in nature has typically wide 
spectrum and, second, our preliminary simulations have 
shown that narrower initial noise requires more simulation 
time. The same preliminary experiments demonstrate the 
dependency: the narrower the noise spectrum, the larger the 
nonlinearity of the resulting integrable turbulence. We will 
continue this line of study in the future publications. 

Nevertheless, even the resulting weakly nonlinear tur-
bulence is characterized by the heavy-tailed PDFs of rela-
tive wave intensity and elevated value of the fourth-order 
moment 4 > 2κ , that indicate enhanced generation of 
rogue waves. The wave-action spectrum inherits the profile 
of the noise spectrum at small and moderate wavenumbers, 
and decays slightly slower than exponential at large wave-
numbers. The autocorrelation of intensity turns out to be a 
bell-shaped function at small distances, and quickly con-
verges to unity at larger distances. 

Until now, the studies of integrable turbulence were fo-
cused on examination of specific initial conditions, such as 
the condensate [7,20], the cnoidal wave [11], the partially 
coherent wave [6,9,14] and its superposition with the con-
densate [8], and also the soliton gas [12,13,21,22]. In all 
such studies, it was implicitly assumed that the initial con-
ditions were somehow prepared by an external actor, that 
resembles a setting of a laboratory experiment. We believe 
that our approach of adiabatically growing integrable tur-
bulence is very promising, as it accounts explicitly for gene-
ration of the initial conditions and may model processes in 
nature more accurately. We will continue our studies with 
this approach in the near future. 
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Розвиток інтегрованої турбулентності 

Д.С. Агафонцев, В.Є. Захаров 

Чисельними методами вивчено інтегровану турбулентність 
у межах фокусування одновимірного нелінійного рівняння 
Шредінгера за допомогою нового методу «зростання турбу-
лентності». До рівняння додається керований доданок, що 
описує слабке накачування, та досліджується адіабатична 
еволюція турбулентності зі статистично однорідного гаусівсь-
кого шуму. Виявлено, що після вимкнення накачування турбу-
лентність, яка виникла, є статистично нерухомою. Виміряно 
спектр Фур’є цієї турбулентності, функцію густини ймовірнос-
ті інтенсивності та автокореляцію інтенсивності. Показано, 
що, являючись адіабатичним, запропонований метод створює 
стаціонарні стани інтегрованої турбулентності також для про-
міжних моментів накачування. Розглянуто лише турбулент-
ність з відносно невеликим рівнем нелінійності; проте навіть 
така «помірна» турбулентність характеризується посиленням 
генерації «особливих» хвиль (rogue waves). 

Ключові слова: інтегральна турбулентність, накачування, не-
лінійне рівняння Шредінгера. 
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