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We propose a new method of constructing the effective theory for a multicomponent low-dimensional dilute

Bose gas. The method is based on obtaining and solving renormalization group equations for all many-body in-

teractions of density-density type in the one-loop approximation. In contrast to the standard approach based on

two-body interactions, our method does not rely on the introduction of density-dependent infrared cutoff, and is

able to reproduce exactly the leading term in the energy density of the one-dimensional dilute Bose gas, and to

obtain the next term with the error of less than 2%.
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1. Introduction

Multicomponent dilute ultracold Bose gases continue to
attract the attention of researchers, not only in the context
of spinor Bose condensates [1,2] and heteronuclear Bose
mixtures [3,4], but also in the context of frustrated mag-
nets, where strong magnetic fields may lead to condensa-
tion of magnons at several wave vectors [5—10]. Multi-
component systems can exhibit a rich phase behavior,
which is usually studied using the macroscopic description
in terms of the multicomponent-field Gross—Pitaevsky ener-
gy functional containing only quadratic density-density
interaction terms. In the case of low-dimensional systems
(provided by highly anisotropic trap geometries in the case
of atomic Bose mixtures, or by magnetic materials with
strongly anisotropic exchange coupling in the case of
magnon condensates), effective two-body couplings of the
Gross—Pitaevsky-type theory are strongly renormalized
from their bare microscopic values [11].

For the one-component dilute Bose gas, there is a well-
known renormalization group (RG) approach [12-16]
based on deriving the RG equations at the critical point of
the zero chemical potential (vanishing particle density),
and terminating the RG flow at a certain density-dependent
infrared cutoff scale. For one-dimensional Bose gas, this
approach correctly reproduces the energy in the dilute limit
to be proportional to the third power of density. A slightly
different but essentially equivalent version of this approach
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[17,18], instead of the infrared momentum cutoff in the
momentum space, utilizes the so-called off-shell regulariza-
tion where the effective couplings are obtained by taking
energy-dependent two-body scattering amplitudes at a finite
negative energy determined by the chemical potential. This
sort of approach has been generalized to the multicomponent
case [9,19] and successfully applied to magnon con-
densation in frustrated spin chains and ladders [9,10].
Among other things, it has been shown that for spinor bo-
sons the renormalization tends to enhance the interaction
symmetry, effectively diminishing the spin-dependent part
of the coupling [19,20]. However, the presence of several
different densities causes an ambiguity in the procedure of
the RG flow termination in the multicomponent case.

The aim of this study is to explore a different route to
the analysis of dilute multicomponent Bose systems. In-
stead of adopting the density-dependent wave vector or
energy cutoff, we assume the presence of many-body cou-
plings from the outset, and study their renormalization in
the one-loop approximation, without assuming any infrared
cutoffs. We show that such approach leads to a system of
the renormalization group equations with a remarkable
structure that an equation for n-body coupling involves
only k-body couplings with k£ <n, so this system can be
solved sequentially. In this approach, we are able to repro-
duce exactly the leading term in the energy density of the
one-dimensional dilute Bose gas, and the next term is ob-
tained within 2% error margin.
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2. One-component Bose gas

We start by illustrating and testing our approach on the
well-known case of the 1D dilute Bose gas for which a num-
ber of exact benchmark results are known [21]. The system is
described by the euclidean action of a single Bose field y:

2
A1 = [axfavy @ -wy+ LU,

T
Ulp)= 3 —p", p=lvl, (1)
n=2
where m is the particle mass, the interaction energy U(p)
is assumed to contain many-body couplings I', .5 beside
the familiar two-body coupling I',, and we have set the
Planck constant to unity. We decompose field y =D +¢
into the “fast” component ¢ with wave vector k in the in-
terval A <|k|<A+dA and the “slow” component @ with
|k |< A, where A is the running cutoff.
Then, Aly]= A[®]+ A, [P, 0], and the quadratic in ¢
part of the action is
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We assume that at the equilibrium p=0U(p)/dp with
p=|D |2, which translates into the condition

I [@] - = 2y (@] “

that may be viewed as the consequence of the Hugenholtz—
Pines theorem [22].
Integrating over the “fast” field
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yields the action renormalization
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Expanding 3A[®] in powers of | ® |2, we obtain the fol-
lowing one-loop RG equations for couplings I
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The RG equations have a remarkable structure: an equation
for I, involves only I'; with k£ <7, so this system can be
solved sequentially. Setting the bare values of the couplings at
the initial microscopic scale Ay as ', (Ag) =g, 'y (Ay) =0,
k >3, one obtains the following behavior at A — 0:
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The microscopic scale A is roughly the inverse of the
atom size (for the gas in the continuum) or of the lattice
constant (for a lattice system), so we will assume that
Ao > mg. Using the effective couplings at A — 0, one
obtains the following expansion of the energy density e(p)
of the Bose gas in the dilute limit p — 0:
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Comparing with the known exact results [21], one can see
that the coefficient at the cubic term in density is exact,
while the coefficient at the quartic term is less than 1.5%
off (its exact value is 2n? 3). It should be emphasized that
we have not used any heuristic RG flow cutoffs.

3. Two-component Bose gas

Now we extend the approach presented in the previous
section to the model of a two-component dilute Bose gas
described by the following action:
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where a = 1, 2 and the interaction energy
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includes many-body terms depending only on densities
Pa =V, > . Obviously, many-body interactions o192
are symmetric with respect to permutations of upper indices.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2020, v. 46, No. 8



Effective many-body interactions in one-dimensional dilute Bose gases

Decomposing the fields into “slow” and “fast” com-
ponents y, = ®, +¢,, expanding the action up to quad-
ratic terms in “fast” fields ¢,, imposing the conditions

. =0U(p1,p2)/ Op,, and integrating the “fast” fields
out, one obtains the following one-loop RG equations:
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Let us consider the simplest case of equivalent compo-
nents, with equal masses m; = m, = m and interactions sym-
metric with respect to the permutation 1 <> 2. If the bare val-
ues of couplings defined at the microscopic scale A, are
Flzl :F%2 =g F122 :F%I =gy, then at A — 0 one ob-
tains the following behavior of the renormalized couplings:
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Thus, the energy density of the dilute two-component Bose
gas, in the one-loop approximation, becomes
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The minimum of this energy is achieved in a phase-
separated state if g;, > g1 and in a mixed state otherwise.

4. Summary

In summary, we have proposed a novel approach to the
analysis of multicomponent low-dimensional dilute Bose
gases. In contrast to the standard method that is based on
the Gross—Pitaevsky theory limited to two-body interac-
tions and relies on the introduction of an infrared cutoff
fine-tuned to reproduce known exact results, we explicitly
construct the effective action with many-body couplings of
the density-density type, by obtaining and solving renor-
malization group equations for the entire set of many-body
couplings in the one-loop approximation. It is shown that
the proposed approach is able to reproduce exactly the
leading term in the energy density of the one-dimensional
dilute Bose gas, and to obtain the next term with the error
of less than 2%.
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EdekTnBHi 6araTovacTMHKOBI B3aemMogii
B OOHOBUMIPHUX po3pimpkeHnx bose-rasax

O.K. Konexyk

3anporoHOBaHO HOBHiT MeTox MmoOynoBH e(heKTUBHOI Teopii
JUIst 6araTOKOMITOHEHTHOTO HU3bKOBUMIPHOTO po3pimkenoro bose-
razy. Merox O0a3yerbcsi Ha pO3B’s3aHHI B OJHONETICBOMY
HaOJIMKSHHI CUCTEMH PIBHSIHb PEHOPMIPYIH Ul ycix Oararoda-
CTUHKOBHUX B3a€MOJIM THIy T'yCTHHa-TycTHHa. Ha BigMiHy Bix
CTaHJAapPTHOTO MiZXO[Y, IO OCHOBAHMI JIMIIE HA ABOYACTUHKOBHX
B3a€EMOJIISIX, 3aIIPOIIOHOBAaHMH METOJ HE CIHPAEThCS HAa BHKOPH-
CTaHHS 3aJIOKHOTO Bil ryctiHH iH(pauepBoHoro Biacikauus. Oc-
HOBHHMIl JIOJaHOK ISl TYCTHHH eHeprii oaHoBuMipHOTro Bosze-rasy
BIATBOPIOETHCS IIMM METOAOM TOYHO, HACTYIHHH JIOAHOK

OTPUMYETHCS 3 TOXUOKOI0 MeHIIe 2%.

Kutro4oBi cioBa: HaAXOJIOJHI aTOMH, CIIHOPHI GO30HH, HU3BKO-
BuMipHUi bo3e-ras.
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