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We have used the method of Wannier functions to calculate the frequencies and profiles of spin waves local-
ized in one-dimensional magnonic crystals due to a gradient in the bias magnetic field. This localization of spin 
waves is analogous to the phenomenon of Bloch oscillations of quantum-mechanical electrons in crystals in a 
uniform electric field. As a convenient yet realistic model, we consider backward volume magnetostatic spin 
waves in a film of yttrium-iron garnet in a bias magnetic field comprising spatially uniform, cosine and gradient 
contributions. The spin-wave spectrum is shown to have the characteristic form of a Wannier–Stark ladder. The 
analytical results are verified using those obtained using numerical micromagnetic simulations. The physics of 
spin-wave Bloch oscillations combines the topics of magnonic crystals and graded magnonic index — the two 
cornerstones of modern magnonics. 
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The concept of elementary excitations is one of the cor-

nerstones of modern physics, including such an important 
and quickly developing part of it as physics of superlattices 
and nanostructures. Just as the dynamics of crystal structures 
is determined by the spectrum of phonons (quanta of normal 
modes of collective elastic vibrations of atoms), the dynam-
ics of magnetically ordered systems is described using the 
concept of elementary magnetization excitations — spin 
waves (SWs) — and their quanta — magnons. SWs deter-
mine the high-frequency dynamics and relaxation of the 
magnetization in magnetic materials, as well as their ther-
mal and kinetic properties [1–5]. 

The behavior of plane waves in artificial periodic media, 
e.g., superlattices, is analogous to well-investigated case of 
electron waves in crystals. For instance, the waves’ band 
structures are similar to the valence and the conduction 
bands in semiconductors. Hence, after application of the 
well-developed methods of quantum mechanics and solid-
state physics to such new artificially nanostructured mate-
rials, properties of elementary excitations in photonic [6,7], 
acoustic [8,9], and magnonic [10–13] crystals were suc-
cessfully investigated.  

Among other interesting effects, such a well-known phe-
nomenon as Bloch oscillations (localization) [14] is also not 
unique to electrons in crystals but can occur for any waves 
in periodic media with graded properties. Bloch oscillations 
were observed, for instance, in optical (photonic) [15,16] 
and acoustic (phononic) [17,18] structures. A similar phe-
nomenon was investigated in arrays of cold atoms [19–21] 
and in the systems with a strong spin-orbit coupling in gra-
dient magnetic field [22,23]. However, neither experimental 
[24–28] nor theoretical [29–31] investigations did give the 
evidence of SW localization in realistic magnetic nanostruc-
tures with graded properties. Actually, the task of studying 
Bloch oscillations was not posed in these experimental 
works, so the temperature [28] and bias magnetic field 
[24–27] gradients were chosen too small for these oscilla-
tions to be detected. As to the theoretical studies, the pos-
sibility of existence of Bloch localization in magnetic sys-
tems was confirmed in principle, but only for models far 
from realistic, experimentally realisable magnonic crystals. 
In Refs. 29 and 32, only nonlinear excitations were consid-
ered, whose behavior obeys laws different to those for linear 
elementary excitations of the SW type. In Refs. 30 and 31, 
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concrete calculations of the excitations spectra in the form 
of a Wannier–Stark ladder were performed. However, only 
discrete models with exchange interactions between spins 
were considered. Yet, for the sizes of realistic nanostruc-
tures, the most suitable is the phenomenological model of a 
continuous medium dominated by the magneto-dipolar 
interaction [1,2,33]. 

In this article, we present results of analytical and nu-
merical calculations that show Bloch oscillations and their 
spectra in the form of Wannier–Stark ladder for the back-
ward volume magnetostatic spin waves (BVMSWs) in 
magnonic crystals with realistic sizes and geometry. We 
consider a thin film of yttrium-iron garnet (YIG) in a bias 

magnetic field parallel to the film’s surface (along the x  
axis). This external bias magnetic field is a sum of three 
terms: (1) a spatially uniform term, (2) cosine term (which 
forms the analogue of superlattice), and (3) a slowly vary-
ing linear term. The geometry of the problem is presented 
in Fig. 1. We assume that the sample is in the saturated 
state and that the static average magnetization of the film is 
co-directional with it. We treat the magnetization of the film 
as the sum of the saturation magnetization and a weakly 
excited term (i.e., an SW), which has two spatial compo-
nents ( ( ), ) exp ( )( )y zx x i tµ µ Ω .  

To find the frequencies of spin waves Ω , we use the 
Landau–Lifshitz equation,  

 ___________________________________________________  

 
( ) ( ) ( )
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0

0
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 ______________________________________________  

where the term 0Gxγµ  describes the field gradient, 
0H Hω = γµ , where H  is the spatially uniform component 

of the magnetic field, M  is the saturation magnetization, 
M Mω = γ , 0µ  is the permeability, γ  is the gyromagnetic 

ratio, a is the period of the cosine static magnetic field, and 
values 2 /K a= π  , and 0h hω = γµ  correspond to the scale 
and the amplitude of the field modulation. The dynamical 
dipolar field is 

 ( ) ( ) 1ˆ y yd
y

′∂
µ = − ∫ µ ⋅∇

∂
′

− ′
h r

r r
. (2) 

If 0G = , the solution of Eq. (1) is a standard linear ei-
genfrequency and eigenfunction problem. In this case, we 
denote the SW solutions as ( , )ym k x  and ( , )zm k x , and 
corresponding frequencies as ( )kω . In accordance with the 
Bloch theorem for a periodic potential, we can employ the 
usual for magnonics, photonics and phononics presentation 
for elementary excitations, representing the two SW com-
ponents as  
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Setting 0G =  in Eq. (1), we obtain an infinite system of 
linear algebraic equations for coefficients ( )nD k  and 

( )nT k   

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

1 1

1 1

,
2

,
2

h
n H n n n

h
n n n n n

i k T k D k D k D k

i k D k k T k T k T k

+ −

+ −

ω ω = ω + +


 ω− ω = Ξ + +


 (4) 

where 
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nk d
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  π 
− − −  

  Ξ = ω +ω
 π

− 
 

. (5) 

We consider the case when 1/h Hω ω <<  . This allows 
us to approximate the full solution of the problem Eqs. (4), 
(5) by a finite-sized subset of the basis states and leads to 
the standard diagonalization of the characteristic matrix of 
finite size for Eq. (4). As a result, we obtain the expected 
picture of the band dispersion ( )kω , which is usual for 
crystals.  

The magnonic bands are ordered in frequency from top 
to down. As our numerical calculations show (Fig. 2, black 
dash lines), with parameters chosen here the periodic field 
modulation induces a large first band gap, while the other 
(higher order) band gaps are significantly smaller and the 

Fig. 1. The geometry of the problem is shown. A thin magnetic 
film of thickness d  is magnetised along the x  axis by a bias mag-
netic field comprising spatially uniform H , cosine cos( )h Kx , and 
gradient xG  contributions. SWs propagate (with a wave vector k ) 
also along the x  axis (BVMSW geometry). The period of the 
cosine field contribution is a  =3 µm, and so, 2 /K a= π . 
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allowed bands are increasingly flat. So, we can try to limit 
our model to the first and second bands only. In this ap-

proximation, the characteristic equation takes the following 
simple biquadratic form 

 ___________________________________________________  

 [ ][ ]
2 2 2

2 2
0 1 1 0( ) ( ) 0.

2 2 4
h h h

H H H Hk k
     ω ω ω  ω − ω Ξ + ω − ω Ξ + − Ξ +ω Ξ +ω =   
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The magnonic dispersion relations for the first, ( )k+ω , and second, ( )k−ω  , bands can be found analytically as 

 ( ) ( ) ( ) ( )( )22 2 2 2
0 1 0 1 0 1 1 0

1 .
2 H h H H H hk±
  ω = ω Ξ +Ξ +ω ± ω Ξ −Ξ + ω Ξ +Ξ +Ξ Ξ +ω ω   

 (7) 

 ______________________________________________  

Using Eq. (7), we can find the analytical expression for 
the gap gap∆  between the first and the second bands as  

 ( )gap 2
hH

H
Ha a+ −

ωωπ π   ∆ = ω −ω ≈ Ξ +ω    Ξ ω   
, (8) 

where 0 1( / ) ( / )a aΞ = Ξ π = Ξ π . In the first approximation 
by the small parameter /h Hω ω  , the band gap is linear in 

/h Hω ω .  
Figure 2 shows the magnonic dispersion relations in the 

first Brillouin zone, calculated for a uniform bias magnetic 
field of 185 mT spatially modulated by an additional cosine 
static magnetic field with a period of 3 µm. The calculations 
are shown for different amplitudes of the field modulations: 
panels (a) and (b) correspond to the field amplitudes of 0hµ = 
= 5 mT and 0hµ  = 10 mT, respectively. The SW branches 
are calculated for two different finite-sized subsets of the 
basic states: numerically with the extended scheme by 
Eqs. (4), (5), shown by black dashed lines, and analytically 
for the first two bands by Eq. (7), shown by red solid lines. 
As expected, the analytical result gives a good approxima-
tion in the case of 0hµ  = 5 mT, while the discrepancy be-
tween analytical and numerical calculations increases for 

0hµ  = 10 mT.  
At the next step, we use the eigenvalues ( )kω  given by 

Eq. (7) and the corresponding eigenfunctions ( , )ym k x , 
( , )zm k x  given by Eq. (3) calculated for 0G =  to construct 

solutions of the problem with a nonzero field gradient. So, 
we return to Eq. (1) with 0G ≠ . Our task is to find new 
eigenvalues Ω  and new eigenfunctions, ( )y xµ  and ( )z xµ . 
Now the magnetic excitations in the sample cannot be pre-
sented in the form of the expansion (3). Indeed, firstly, 
such a representation is a consequence of the Bloch theorem, 
i.e., of the periodicity of the potential, while this periodicity 
is broken when the gradient is nonzero. Secondly, the matrix 
elements of the new graded potential proportional to Gx 
diverge if the eigenfunctions are not loсalized. So, we must 
use basis functions that are loсalized in the real space. In 
this case, Wannier functions [34,35] are a good choice.  

The scheme common in the problem of electron local-
ization in crystals in a uniform electric field is applied to 
one band with an assumption of non-interacting bands. 
Due to the large first band gap in our magnonic crystal, an 

Fig. 2. (Color online) The SW frequency is shown as a function 
of the wave number in the first Brillouin zone. The cosine static 
magnetic field with a period of 3 µm has the modulation ampli-
tude of 0hµ  = 5 mT (a) and 0hµ  = 10 mT (b). The black dash 
lines show the calculations by Eqs. (4), (5) with the indices n  vary-
ing from 0–10 (only the first 7 bands are shown). The red solid 
lines show the analytical calculations by Eq. (7), i.e., n  = 0,1. The 
grey stripe in panel (a) shows the first band gap, which is almost 
the same in the two approximations. The grey stripe and the red 
hatched stripe in (b) show the first band gap for numerical and 
analytical calculations, respectively. Both in panels (a) and (b), 
the uniform bias magnetic field is 0Hµ  = 185 mT, the saturation 
magnetization is M  = 200 kA / m, / 2γ π = 28 GHz/T, and the 
film thickness is d  =1 µm. 
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interband tunnelling between the first and second band is 
negligible, which allows us to find the Wannier–Stark lad-
der spectrum in the isolated first band.  

We determine two sets of Wannier functions for both 
components of the SW in the usual way  

 ( ) ( )
/

/

e , ,
2

a
ikR

y
a

aa x R dk m k x
π

−π

− =
π ∫   

 ( ) ( )
/
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π

−π
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π ∫ , (9) 

where ( , )ym k x  and ( , )zm k z  are the solutions (3) of the 
eigenproblem with 0G = , described above. nR n a= ⋅ , 
where n are integers, are coordinates of the external field 
maxima, which are analogues of the atomic positions in a 
crystal. The Wannier functions have sharp extrema near 
the corresponding R  (Fig. 3a). This is the source of or-
thogonality of Wannier functions 

 ( ) ( ) ( )*dxa x R a x R f R R− =′− ∆ − ′∫ ,  

 ( ) ( ) ( )*dxb x R b x R g R R− =′− ∆ − ′∫ ,  

 ( ) ( ) ( )*dxa x R b x R s R R− =′− ∆ − ′∫ , (10) 

which we employ below. It follows from Eqs. (1), (4) and 
(9) that constants f  and g  are real, while constant s is 
imaginary.  

Further, we represent unknown profiles ( )x zµ  and 
( )y zµ  as superpositions of Wannier functions (9): 

 ( ) ( ) ( )y
R

x A R a x Rµ = −∑ ,  

 ( ) ( ) ( )z
R

x B R b x Rµ = −∑ . (11) 

To obtain the coefficients ( )A R  and ( )B R , we substi-
tute Eq. (11) into Eq. (1). At the length scale of variation of 
Wannier functions, Gx GR≈ , and so, integrating both parts 
of the equations by x  and using Eq. (10), we rewrite 
Eq. (1) as  
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∫
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where ( )k+ω  is determined by Eq. (7). 
In k-representation, Eq. (12) takes the following form  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*

0

0

,

.

sA k B k k G B k
f k
sB k A k k G A k
g k

+

+

 ∂
Ω = ω − γµ
 ∂


∂Ω = ω + γµ ∂

  (13) 

From Eq. (13), we obtain an equation for one of the un-
known functions, for instance, for ( )A k   

 ( ) ( ) ( )( ) ( )
*22

0
s sA k A k k G A k
g f k

  ∂ Ω = ω + − γµ Ω 
∂  

.  

  (14) 

This is a differential equation of the first order with con-
stant coefficients, and so, it has a standard solution:  

Fig. 3. (Color online) (a) Examples of Wannier functions 
( )ib x R−  centred around the iR  ( 0, 1, 2)i = ± ±  points, calculated 

using Eq. (9), are shown for 0hµ  = 10 mT, 0Hµ  = 185 mT, 
a = 3 µm, d  = 1 µm, M  = 200 kA/m. (b) The profiles of loсalized 
SWs, calculated using Eqs. (11), (14) for the central level 

2
0 +Ω ≈ ω  of the corresponding Wannier–Stark ladder 0hµ =

= 5 mT – red (Re(µz)) and dash black (–Im(µy)) lines, 0hµ =

= 10 mT – dash-dot magenta (Re(µz)) and dash green (–Im(µy)) 
lines), are shown for a field gradient of 0Gµ  = 40 mT/mm. 
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*s sIm

g f
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The dispersion relation can be found from the periodic 
boundary condition  

 ( ) 
2A k A k n
a
π = + 

 
, (16) 

where n are integer. From Eqs. (15) and (16), we obtain a 
quadratic equation  

 2 2 0n Ga +Ω −Ω⋅ ⋅ γα − ω = ,  (17) 

where ( )( )
/

22

0

aa k dk
π

+ +ω ′ ′= ω
π ∫ .  

The solution of Eq. (17) is 

2 2
0 0

1 ( ) 4
2n n Ga n Ga +
 Ω = ⋅ γµ α + ⋅ γµ α + ω  

, 

which can be written in the form of the Wannier–Stark 
ladder,  

 2
0

1
2n n Ga+Ω ≈ ω + ⋅ γµ α , (18) 

if the gradient of external magnetic field is small enough, 
i.e., 2 2

0( ) 4Ga +γµ α ω  .  

Equation (18) shows that an energy band of a magnonic 
crystal, with initial dispersion relation ( )k+ω , in a weakly 
graded field gives rise to the Wannier–Stark ladder with 

central level 2
0 +Ω ≈ ω  and the distance between levels 

0
1
2

Gaγµ α . For instance, the Wannier–Stark ladder in the 

first band, as calculated using Eq. (18) for 0Gµ  = 40 mT/mm 
and 0hµ  = 5mT, consists of a set of levels with the central 
level at 0Ω ≈  7.498 GHz and with the distance between 

Fig. 4. Spatial maps of the SW amplitude distribution are shown for 0hµ  = 10 mT, 0Hµ  = 0.5 T, a  = 3 µm, d  = 1 µm, and 
M = 200 kA/m and the indicated values of the magnetic field gradient. The greyscale shows the results of the numerical simulations 
(darker color corresponds to greater Fourier amplitude of spin waves). The dashed and dotted lines show the top and bottom boundaries 
of the whole BVMSW band in a uniform film, while the dash-dotted line corresponds to the bottom edge of the first magnonic band 
estimated from the empty-lattice approximation. 
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neighbouring levels δ  of about 3.6 MHz. For the amplitude 
of the field modulation of 0hµ  = 10mT and the same field 
gradient, these values become 0Ω ≈  7.586 GHz and δ ≈
≈ 3.45 MHz. Figure 3b shows profiles of localized SWs 
that corresponding to the central level of the Wannier–
Stark ladder and the two values of the amplitude of the 
field modulation.  

The results of the analytical theory presented above are 
in agreement with those obtained from micromagnetic simu-
lations performed using MuMax software [36]. The simula-
tions are run in the time domain and their results are con-
verted into the frequency domain using standard Fourier 
techniques [37]. Figure 4 shows the spatial maps of the SW 
amplitude distributions for different value so the magnetic 
field gradient and excitation by a uniform microwave mag-
netic field with a spectrum centred at 18 GHz and spectral 
bandwidth of 10 MHz. This microwave field couples to 
the magnetization precession where the frequency matches 
either uniform ferromagnetic resonance (FMR) frequency 
(at about 17.2 GHz) or that corresponding to the band edges 
in the Brillouin zone centre, i.e. 2 /k n a= π , where n is an 
integer number. At zero gradient, only the FMR mode is 
excited and then very weakly. At finite values of the field 
gradient, the Wannier–Stark ladder spectrum is formed. 
However, the individual levels are not very well resolved, 
owing to the very small frequency splitting between the 
neighbouring levels.  

In summary, we have used analytical theory based on the 
method of Wannier functions and numerical simulations to 
study the spectrum of BVMSW in magnonic crystals sub-
jected to a graded magnetic field. Our results demonstrate 
that this field gradient can lead to Bloch oscillations of 
loсalized SWs, with their spectrum having the characteristic 
form of the Wannier–Stark ladder. Here, we have presented 
results for magnonic crystals formed by applying using a 
cosine-modulated bias magnetic field to a thin film of YIG. 
Strictly speaking, such a bias magnetic field does not sat-
isfy one of the Maxwell equations, div 0=B . The account 
of a corresponding out-of-plane non-uniform bias magnetic 
field, which would ensure that the equation is satisfied, does 
not change substantially our theory. Moreover, the field 
should be treated as a general effective magnetic field, rep-
resenting, e.g., modulated anisotropy or exchange bias [38]. 
We have also performed similar calculations and obtained 
similar results for other 1D magnonic crystals, e.g., those 
formed by arrays of long rectangular strips. The calculations 
can be generalised to other SW geometries, to the case of 
dipole-exchange SWs, to graded magnonic crystals formed 
via spatial modulation (periodic and linear) of the magnonic 
index through other mechanisms [39], and to the case of a 
spatial variation of the lattice constant a.  
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Cпектр Ваньє-Старка блохівських коливань 
магнітодіпольних спінових хвиль у градієнтних 

одновимірних магнонних кристалах 

О.В. Тартаковська, A.S. Laurenson, V.V. Kruglyak 

Використано метод функцій Ваньє для розрахунку частот 
та профілів спінових хвиль, які локалізовані в одновимірних 
магнонних кристалах завдяки градієнту поля, яке підмагнічує. 
Така локалізація спінових хвиль аналогічна появі блохівських 
коливань квантово-механічних електронів у кристалах в одно-
рідному електричному полі. Розглянуто модель магнітоста-
тичних зворотних об’ємних спінових хвиль у плівці залізо-
ітрієвого гранату у полі підмагнічення, що включає просто-
рово однорідний, косинусний та градієнтний внески. Показа-
но, що спектр спінових хвиль має характерну форму сходів 
Ваньє–Старка. Результати аналізів перевірено з використанням 
результатів, які отримано за допомогою чисельного мікромаг-
нітного моделювання. Фізика блохівських коливань спінових 
хвиль об’єднує дослідження магнонних кристалів та градієнт-
ного магнонного індексу — двох фундаментальних основ су-
часної магноніки. 

Ключові слова: спінові хвилі, блохівські коливання, однови-
мірні магнонні кристали. 
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