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A novel family of disordered systems is proposed. This family belongs to the class of systems containing ran-
dom substitutional non-Hermitian impurities. We limit our consideration to a rather simple case when the pres-
ence of substitutional point defects results in the model Hamiltonian featuring a diagonal disorder. In contrast to 
known models of non-Hermitian impurities, the nonzero density of states for each isolated from the host impuri-
ty is restricted to a continuous band of finite width. A method to construct corresponding impurity Hamiltonians 
is provided. 
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1. Over the past two decades, quantum systems that are 

described by non-Hermitian Hamiltonians were under in-
tensive and sustained investigation [1–5]. Albeit real-world 
realizations of non-Hermitian systems can be thought of as 
quite exotic, their existence is not proscribed by any fun-
damental law [6–8]. Recently, examples of such systems 
began to propagate at a steady pace within certain meta-
materials and optical lattices. The availability of nontrivial 
experimental data resurged the theoretical activity in this 
already well-established field. 

Meanwhile, a novel shift of scientific interest happened 
in this sphere: attention to disordered non-Hermitian sys-
tems has been considerably increased. In particular, sys-
tems with non-Hermitian impurities got into focus [9–11]. 
Below we are making an effort to improve understanding 
of the main principles on which physically-consistent non-
Hermitian impurity models should be devised. 

Given that this study attempts to go beyond conven-
tional impurity models for solid-state systems with the dia-
gonal disorder, we dedicate it to Prof. Viktor Bar’yakhtar, 
who celebrates his 90th birthday in the August of this year, 
and whose contribution to the theory of crystal state has 
long been widely recognized beyond dispute. 

2. To move on to substantive issues, consider a generic 
inhomogeneous system, which Hamiltonian Ĥ  can be di-
vided into two parts: the host one ( )ˆ hH  that represents the 

initial clean system, and the impurity one ( )ˆ dH  that con-
tains the introduced disorder. So one has that 

 ( ) ( )ˆ ˆ ˆ= .h dH H H+  (1) 

We presuppose that only off-diagonal elements in the ma-
trix, which represents the separated above host Hamiltonian, 
are non-zero: 

 ( ) †

,

ˆ = ,h
nm n m

n m
n m

H t c c

≠

∑  (2) 

while the impurity part of the Hamiltonian consists exclu-
sively of diagonal on-site operators: 

 ( ) †ˆ = .d
n n n

n
H c cε∑  (3) 

It should be pointed out that non-diagonal matrix ele-
ments nmt  remain intact between different realizations of 
the disordered system. In contrast, diagonal matrix ele-
ments nε  do vary between them. Indeed, we will take for 
granted that the host Hamiltonian is Hermitian: 

 *= .nm mnt t  (4) 

When diagonal elements nε  are all real, we are dealing, 
as a matter of fact, with a Hermitian full Hamiltonian. 
Usually, Hamiltonians of this sort are interpreted as a 
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spinless tight-binding model for a single isolated electronic 
band. In this particular case, †

nc  and mc  stand for Fermi 
creation and annihilation operators, which indices n and m 
enumerate lattice sites of the underlying crystal structure. 
Respectively, non-diagonal matrix elements nmt  represent 
hopping integrals calculated between the nth and mth site, 
and the remaining nε ’s are on-site potentials in this single-
electron Hamiltonian. The values of on-site potentials usu-
ally are assumed to be randomly distributed in the crystal 
lattice. On-site potentials can take one of just two fixed 
values with a given probability, which corresponds to the 
model of a binary alloy with the diagonal disorder (also 
frequently named after Lifshitz) or are allowed to vary 
within a specified energy interval for each site (the Ander-
son model), etc. 

Nevertheless, the mentioned detail in the spatial distri-
bution or in imposed magnitude constraints for on-site po-
tentials will have no impact on what follows, and thus we 
are not confined in this study to any specific type of avail-
able impurity models. For instance, even those models that 
take into account spatial correlations between on-site po-
tentials are not excluded. Just to reiterate: no restrictions 
are enforced on the impurity model, except that the disor-
der is to be present only in diagonal matrix elements of the 
full Hamiltonian. Without any loss of generality, we can 
assume that the mean value of random on-site potentials 
meets the requirement 

 = 0,n
n
ε∑  (5) 

which is achieved by the proper choice of the energy axis 
origin. 

In the impurity problem, the main objective is to calcu-
late in one way or another the Green’s function of the dis-
ordered system 

 1ˆ ˆ= ( ) ,G H −ε −  (6) 

which can be expressed through the host Green’s function 

 ( ) ( ) 1ˆ ˆ= ( )h hG H −ε −  (7) 

by means of the Dyson equation 

 ( ) ( ) ( )ˆ ˆ ˆ ˆˆ= .h h dG G G H G+  (8) 

As a consequence, the Green’s function of the disordered 
system can be expanded into the following series: 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ= h h d hG G G H G+ ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ .h d h d hG H G H G+ +  
  (9) 

Afterwards, the terms of the series are individually aver-
aged over all possible distributions of on-site potentials in 
the actual crystal lattice, and a doable partial summation of 
the resulting series is performed. In this stage, the transla-
tional invariance of the host Green’s function ( )ˆ hG  is com-
monly exploited as a simplifying factor. The restoration 

of the translational invariance of the Green’s function Ĝ , 
which comes from the configurational averaging, is exer-
cised as well [12]. It is worth mentioning here that the im-
purity part of the Hamiltonian ( )ˆ dH  serves as a perturba-
tion in this technique. 

In effect, we are not going to take advantage of the 
translational invariance of the host Green’s function ( )ˆ hG  
hereinafter. Therefore, the host Hamiltonian ( )ˆ hH  can, in 
principle, represent a system that lacks translational inva-
riance altogether. Moreover, it can be even assumed that 
the host Hamiltonian per se characterizes a system with 
a structural disorder. 

On the other hand, there is an alternative approach to 
calculate the Green’s function Ĝ  of the disordered system. 
In this method, the initial system is based on the impurity 
part of the Hamiltonian ( )ˆ dH . Accordingly, the Green’s 
function of the initial system reads 

 ( ) 1ˆˆ = ( ) .dg H −ε −  (10) 

It is, indeed, diagonal in the site representation by the virtue 
of the diagonal character of the impurity Hamiltonian ( )ˆ dH . 
Corresponding diagonal matrix elements 

 1( ) =
0n

n
g

i
ε

ε − ε +
 (11) 

are often named locators. It is not difficult to express the 
Green’s function of the disordered system Ĝ  through the 
locator Green’s function 

 †ˆ = ( )n n n
n

g g c cε∑  (12) 

with the help of the respective Dyson equation: 

 ( )ˆ ˆˆˆ ˆ= .hG g gH G+  (13) 

Subsequently, the Green’s function of the disordered sys-
tem can be expanded into a structurally different series: 

 ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ= ,h h hG g gH g gH gH g+ + +  (14) 

where, contrary to Eq. (9), the host Hamiltonian ( )ˆ hH  is 
acting as a sort of perturbation. 

It is readily understandable that within the locator 
method the disordered system under consideration is effec-
tively comprised of separate subsystems, which are charac-
terized by their particular Green’s functions — the locators 

( )ng ε , and are interacting with each other by the means of 
the hopping integrals nmt  that, in turn, make up the host 
Hamiltonian ( )ˆ hH . 

3. In a kind of a thought experiment on the disordered 
system, nothing prohibits to gradually diminish all the val-
ues of hopping integrals simultaneously. Finally, we will 
get that = 0, ,nmt n m∀ . As a result, the disordered system 
at issue will break down into individual isolated subsys-
tems that belong to their respective lattice sites. When on-
site energies are real, these subsystems are simply repre-
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senting energy levels of localized electronic states. At each 
site, the locator, as a sound Green’s function, satisfies the 
causality condition, 

 Im ( ) = ( ) < 0,n ng ε −πδ ε − ε  (15) 

the local density of states is, as it ought to be, normalized 
to unity, 

 1 Im ( ) = ( ) = 1,n ng d d
+∞ +∞

−∞ −∞

− ε ε δ ε − ε ε
π ∫ ∫  (16) 

and the Kramers–Kronig relation is obviously fulfilled: 

 
Im ( )1 1v.p. = = Re ( ).n

n
n

g
d g

+∞

−∞

′ε
′− ε ε

′π ε − ε ε − ε∫  (17) 

It has been suggested in Ref. 13 to assign random comp-
lex values to on-site potentials. Inevitably, the Hamiltonian 
of the corresponding disordered system becomes non-Her-
mitian. Indeed, the host Hamiltonian still remains Her-
mitian as in Eq. (2), while all the non-Hermiticity is con-
tained in the impurity part of the Hamiltonian (compare 
with Eq. (3)) 

 ( ) †ˆ = ( ) , > 0,d
n n n n n

n
H i c cε − γ γ∑  (18) 

where nγ  is the broadening of the energy level residing 
at the nth lattice site, and all on-site potentials nε  are real. 

Since we will be concerned below only with the physi-
cality of this non-Hermitian model, any particulars in the 
spatial distribution of its on-site parameters are irrelevant 
for our purposes. Usually, the presence of an imaginary 
part in the diagonal matrix elements of the Hamiltonian is 
attributed to the presence of dissipation of some kind. Let 
us look on the other side, employ once again the locator 
approach and switch off intersite interactions that are de-
termined by the hopping integrals. Then, the disordered 
system will decompose into individual on-site subsystems, 
characterized by locators (compare with Eq. (11)) 

 1( ) = .n
n n

g
i

ε
ε − ε + γ

 (19) 

It appears that these subsystems despite featuring non-
Hermiticity are physically consistent. Just as in the case 
of a Hermitian Hamiltonian (see Eq. (15)), the causality 
condition is, of course, met, 

 2 2Im ( ) = < 0,
( )

n
n

n n
g

γ
ε −

ε − ε + γ
 (20) 

the local density of states, which possesses a familiar 
Lorentzian shape, is also (see Eq. (16)) normalized to unity 

 2 2
1 = 1,

( )
n

n n
d

+∞

−∞

γ
ε

π ε − ε + γ∫  (21) 

and the real and imaginary parts of each locator ( )ng ε , 
likewise in Eq. (17), are connected through the Kramers–
Kronig relation: 

 2 2
1 v.p.

[( ) ]( )
n

n n
d

+∞

−∞

γ
′ε

π ′ ′ε − ε + γ ε − ε∫ 2 2= .
( )

n

n n

ε − ε

ε − ε + γ
 (22) 

Thus, we are dealing with a set of subsystems repre-
sented by energy levels, which are, as opposed to the con-
ventional case, arbitrarily broadened. As long as we are 
concerned only with their respective Green’s functions 

( )ng ε , defined by Eq. (19), the isolated subsystems in 
question are behaving in a physically correct manner. 

However, their local densities of states remain nonzero 
at all energies. Switching on the host Hamiltonian back 
will not spoil the disordered system. At that, finite in their 
values hopping integrals are transferring a collective exci-
tation from one site to another, at which their inherent sub-
systems exhibit infinite spectra. In other words, there is a 
conflict between the finite bandwidth due to intersite hop-
ping and the infinite bandwidths of unperturbed local den-
sities of states. This brings up the question of whether the 
proper system of Wannier functions can be in principle 
devised for this particular model. 

It is worth emphasizing, that complex on-site potentials 
are not unknown in the physics of disordered systems and 
naturally appear as the outcome of the coherent potential or 
average T-matrix approximations. The only distinction is 
that on-site potentials in these methods are not random, but 
are identical on all translationally invariant lattice sites. 
However, within the applicability restrictions of these ap-
proximations, the imaginary part of the on-site potential 
differs from zero only inside the resulting continuous elec-
tronic bands. 

4. It would be desirable to modify the non-Hermitian 
model of the disordered system in such a way that the 
spectrum of each isolated subsystem will have a restricted 
bandwidth, which is comparable to the bandwidth generat-
ed by hopping integrals in the Hamiltonian with the exclu-
sively Hermitian disorder. With this in mind, let us choose 
a single continuous band for the local density of states of 
each isolated subsystem. By way of an example, the men-
tioned local density of states can be shaped in a semiellip-
tical manner that is frequently used for simplicity to model 
the host electronic band in a tree-dimensional binary alloy 
problem: 

 2 2Im ( ) ( ) < 0,n n ng wε − − ε − ε  (23) 

 < < , > 0.n n n n nw w wε − ε ε +   

Outside of the site-dependent energy interval of width 
2 nw , the imaginary part of the locator is set to zero. Due to 
the dedicated shape, it is not so difficult to normalize the 
initial local density of states to unity, 
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 2 2
2

2 ( ) = 1.
wn n

n n
n wn n

w d
w

ε +

ε −

− ε − ε ε
π ∫  (24) 

Thus, for the imaginary part of the locator, we finally get 

 2 2
2

2Im ( ) = ( ) .n n n
n

g w
w

ε − − ε − ε  (25) 

The real part of the locator can be reconstructed by resort-
ing to the Kramers–Kronig relation, 

 
2 2

2 2
( )2 2v.p. = ( ).

wn n
n n

n
n nwn n

w
d

w w

ε +

ε −

′− ε − ε
′ε ε − ε

′ε − επ ∫  (26) 

When energy falls inside the subsystem band, both preced-
ing results combine to yield 

 2 2
2

2( ) = ( ) ( ) ,n n n n
n

g i w
w

 ε ε − ε − − ε − ε  
 (27) 

 < < .n n n nw wε − ε ε +   

Below the subsystem band, the proper expression for 
the locator can be obtained by analytic continuation: 

 2 2
2

2( ) = ( ) ( ) ,n n n n
n

g w
w

 ε ε − ε + ε − ε −  
 (28) 

 < .n nwε ε −   

One can proceed likewise for those energies that exceed 
the upper edge of the subsystem band. The resulting ex-
pression for the locator reads 

 2 2
2

2( ) = ( ) ( ) ,n n n n
n

g w
w

 ε ε − ε − ε − ε −  
 (29) 

 > .n nwε ε +   

At this stage of calculations, the construction of the il-
lustrative locator should be considered as completed. 
Nonetheless, our main challenge is to devise a physically 
sound, but simultaneously non-Hermitian, impurity part of 
the Hamiltonian. This can be achieved by taking recipro-
cals of on-site locators: 

 ( ) † †1ˆ = ,
( )

d
n n n n n

nn n
H c c v c c

g
 
ε − ≡ ε 

∑ ∑  (30) 

where nv  is the corresponding, generally speaking com-
plex, on-site impurity perturbation. It is straightforward to 
calculate each reciprocal due to the chosen semielliptic 
locator model. 

Indeed, the resulting expression for the on-site impurity 
perturbation depends on the relative energy position 
against the subsystem band. Since there is, be it recalled, a 
certain amount of disorder, the locator bandcenter nε , and 
the bandwidth 2 nw  are both site-dependent. For those en-

ergies that are inside the band of the given subsystem at the 
nth site, the impurity perturbation has the form 

 2 21= ( ) ( ) ,
2n n n nv i w ε + ε − − ε − ε  

 (31) 

 < < .n n n nw wε − ε ε +   

At energies that are below the band bottom, for nv  one has 

 2 21= ( ) ( ) ,
2n n n nv w ε + ε + ε − ε −  

 (32) 

 < ,n nwε ε −   

while above the locator band, the respective expression 
reads 

 2 21= ( ) ( ) ,
2n n n nv w ε + ε − ε − ε −  

 (33) 

 > .n nwε ε +   

It should be noted that on-site impurity perturbation ap-
pears to be energy-dependent. This feature of the on-site 
perturbation is not unique to non-Hermitian impurities and 
can be found in generic Hermitian impurity models [14]. 
More importantly, the impurity perturbation tends to a fi-
nite real on-site potential, as energy moves away from the 
locator band: 

 , | | .n n n nv w≈ ε ε − ε   (34) 

Therefore, the impurity Hamiltonian under considera-
tion behaves as fundamentally non-Hermitian one only 
when energy belongs to at least one of the locator bands. 
Outside of the energy interval that covers all those bands, 
the impurity Hamiltonian drops its non-Hermitian charac-
ter. Consequently, at energies that are lying far outside of 
the energy domain encompassing all locator bands, the im-
purity Hamiltonian reduces to the commonly-used model 
with the diagonal disorder and random on-site potentials. 

5. In essence, we have proposed above a consistent 
method of constructing non-Hermitian impurity models for 
inhomogeneous systems with the diagonal disorder. To 
summarize, we assume that the Hamiltonian of the disor-
dered system can be expressed in the site representation, 
which automatically implies the presence of a certain un-
derlying spatial structure. Substitutional impurities are 
treated as individual self-contained subsystems, each of 
which is entitled to exist independently, while a Hermitian 
hopping part of the Hamiltonian is not randomized and 
glue these subsystems together. 

We do not provide any specifics of the internal structure 
of the aforementioned subsystems and acknowledge that 
they might be governed by some hidden quantum numbers. 
We characterize subsystems by locators — valid Green’s 
functions that are diagonal in the site representation and 
belong to just one site. 

To devise a dedicated type of locator, we postulate first-
ly the outline of its imaginary part, which can be confi-
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gured according to any continuous function of energy that 
attains exclusively non-positive values. Then, the corre-
sponding local density of states is to be normalized, and 
the real part of the locator should be restored through the 
Kramers–Kronig relation. 

Following these three easy steps, a theoretically legiti-
mate locator can be fully specified. At this point, we take 
advantage of the fact that the function, which defines the 
shape of the imaginary part of the locator, may be designed 
in a way to have nonzero values only inside a fairly narrow 
energy interval. At that, particular parameters of this func-
tion can be used to introduce disorder. Moreover, impuri-
ties can be modeled by mixing locators of qualitatively 
different types. 

In this approach, the actual on-site impurity perturba-
tions are obtained by calculating reciprocals of correspond-
ing locators and, thus, are inevitably energy-dependent. 
Given that impurities in the proposed model are non-
Hermitian only inside a sufficiently narrow energy window 
and are resembling conventional real random on-site po-
tentials outside of this window, it is quite appropriate to 
place respective disordered systems in a separate family. 
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До теорії систем з негермітовим безладом 
заміщення 

Ю.В. Скрипник, В.М. Локтєв 

Запропоновано нове сімейство невпорядкованих систем. 
Це сімейство належить до класу систем, що містять випадко-
ві негермітові домішки заміщення. Розгляд обмежено досить 
простим випадком, коли наявність точкових дефектів замі-
щення призводить до модельного гамільтоніану з діагональ-
ним безладом. На відміну від відомих моделей негермітових 
домішок, ненульова густина станів для кожної ізольованої 
від основного кристалу домішки наявна лише у неперервній 
зоні кінцевої ширини. Наведено спосіб побудови відповідних 
домішкових гамільтоніанів. 

Ключові слова: негермітова домішка, локатор, локальна гус-
тина станів, безлад.
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