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The topology of phase portraits for nonlinear oscillators driven by a periodic force undergoes significant 
changes within a narrow interval of the driving force frequencies ν. This property leads to nonintegrability of the 
equations of motion, and stochastization of their solutions when ν is periodically modulated. Such behavior is 
due to the violation of adiabaticity and destruction of the integral manifolds, accompanied by topological rear-
rangements of the integral curves. We study specific features of such stochastic dynamics in a wide range of 
modulation periods and damping decrements. 
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Introduction 

The Hamiltonian of a nonlinear oscillator 

( ) ( )2 2 2 41 1 cos
2 4

x x Vx xf t= + ω + + ν  (1) 

can be used to describe a variety of mechanical, electronic, 
and physical systems. In particular, in [1] it was used to 
study the nonlinear ferromagnetic resonance. In the ab-
sence of a driving force (f = 0) this Hamiltonian gives 
integrable equations of motion. When ( )tν  in the driving 
term oscillates itself, with a modulation frequency that is 
amplitude-dependent, equations of motion become 
nonintegrable at f ≠ 0.  

The first study of nonlinear oscillations driven by a pe-
riodic force of low amplitude f, slowly varying frequency 

2( )/ 1tν ν << , and low damping,    γ <<ω (where γ  is the 
decrement of damping), is due to Mitropolsky [2,3]. He 
investigated the resonant oscillator dynamics by numeri-
cally solving the equations in the first approximation of 
asymptotic expansion using the Krylov–Bogolyubov–
Mitropolsky method. (It’s worth mentioning that at that 
time the only calculating tool available to him was a me-
chanical integrator.) Mitropolsky found hysteretic behavior 
of the oscillation amplitude as ( )tν  slowly crossed the res-
onant domain     .| |ν − ω <<ω   

What happens if ( )tν  crosses that domain back and 
forth many times? The dynamic behavior of the oscillator 
(1) at the slow periodic modulation of ( )tν  was not inves-
tigated till now. In this communication, we are aiming to
solve this problem.

Hamiltonian dynamics at slow varying driving force 
frequency 

To obtain the equations of the first approximation in as-
ymptotic expansions one has to substitute an ansatz 

     cos ),(x a t= ν + θ  a ≥ 0 in (1), and average it, assuming a 
and θ  to be slowly varying quantities. 

The fact that a2 and θ  form a pair of canonic variables 
of the averaged Hamiltonian [4,5] leads to the following 
equations:  

ε( )sin θ;da t
dt

= −     
2 2( ) ( ) 1 ( ) cos

2 ( )
d a t t
dt t a
θ ω − ν

= − ε θ
ν

; 

( )
2 ( )

ft
t

ε =
ν

;   23( ) 1
8

a Vaω = + . (2) 

Here ( )tν  is a periodic function. The frequency of its os-
cillation, Ω, is much less than ν. 

Poincare proved that periodic perturbation of a nonline-
ar Hamiltonian oscillatory system rules out the existence of 
analytical integrals if there is a separatrix in the phase por-
trait of the non-perturbed motion [6]. In fact, this general 
property of dynamic systems is the sufficient condition for 
the existence of random integral curves [6,7]. Therefore, in 
order to search for random solutions of Eqs. (2) we start by 
considering the topology of the phase portraits of the sys-
tem (2) at constant ν  [8]. In this case, the integral of mo-
tion W (energy) determines the phase trajectories L(W)  

4 21 (1 ) 2 cos
2

Va a a W+ − ν − ε θ = . (3)
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Let us introduce a variable action 

 2

( )

( ) ( , )
L W

J W a W d= θ θ∫  (4) 

and the period of motion along the trajectory L(W)  

 
1

( )

( ) .
L W

dT W d
dt

−θ = θ 
 ∫  (5) 

There exist three open domains of ν in which the topolo-
gies of the phase portraits (determined by Eq. (3)) are es-
sentially different. 

At cs   ν<ν  (Fig. 1a), there is one center с1 and two sad-
dle points s1± which are connected by two branches of the 
separatrix S1. Degenerated singular point “center-saddle”, 
appearing at cs   ν =ν , splits into a center с2 and a saddle 
point s2 at cs   ν >ν . At that moment the separatrix S2 ap-
pears (Fig. 1b). 

There is frequency *ν  belonging to semiaxis cs   ν >ν , at 
which the two separatrices S1 and S2 are merging into a 
joint separatrix *S  (Fig. 1c). An infinitesimal increase of ν 
at this point leads to the splitting of *S  into two separated 
separatrices S3 and S4 as shown in Fig. 1d. At *   ν =ν  both 
period’s centers are equal to 2/3(0)   4.5   1  00−ϖ = ε ≈ , and 
logarithmically diverge on separatrix. The period T(J) 
within the resonance domain R1 is shown in Fig. 2. 

The loci of the fixed points, centers and saddle points, 
determined from the equations 0a = θ =  are shown in 
Fig. 3 (thin lines,    0γ = ). The resonance curve of a dissipa-
tive oscillator (which is considered below in brief (thick 
lines, 2  1  0−γ = ) is shown in this figure as well. At 0ε →  the 
branches of the resonance curve are approaching the so-
called skeleton curve     ,( )aω = ν  which is shown by a dash-
dotted line. 

The phase trajectories are plane sections of the cylindri-
cal invariant manifolds of the system (2). The pitch of a 
helical integral curve on the cylinder with plain section (3) 
is equal to the period T(W). 

Let us perturb the system by a slow modulation of the 
frequency sin ;tν = ν + δν Ω  Ω <<δν << ν . At    ( )  JΩ<<ϖ = 

) 2 / (T J= π  there are approximate integrals of motion, i.e., 
adiabatic invariants J. However, as it follows from Kolmo-
gorov–Arnold–Moser (KAM) theory [7], in the vicinity of 
a resonant cylinder, ( ) 0n J mϖ + ν =  (n and m are integers) 
the integral manifolds J = const are destroyed. The reso-
nant domains, filled by the destroyed cylinders, are sepa-
rated by the extant isolated non-resonant manifolds. The 
countable set of the open resonant domains is everywhere 
dense but its measure is small. 

In the vicinity of a separatrix, where   ,)  (JΩ ≥ ϖ  he 
adiabaticity is violated, and a stochastic layer is formed. 
Chirikov has shown that this layer appears due to the over-
lap of the resonant domains [9,10]. The measure of this 

Fig. 1. The phase portraits of the system (2) at various values of ν . At *   ν =ν  two separatrices are merging. 
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layer at cs( )ν + δν < ν  and ( ) ∗ν − δν > ν  is exponentially 
small. A much stronger mixing of the integral curves, and 
an increase of related stochasticity, happens at *ν = ν  and 

*
cs( )ν − δν > ν  due to the essential changes of the phase 

portrait topology. Here we investigate the motion randomi-
zation in this case. 

The topology of an integral curve is changing as it 
crosses the joint separatrix *S . Integral curves, initially 
belonging to the same integral manifold before crossing 
the *S , enter different manifolds after the crossing. At the 
crossing J experiences jumps with jump magnitude, ∆J, 
essentially depending on the cross point phase θ. Overall, 
multiple crossings of *S  due to the periodic modulation of 

( )tν  lead to the randomization of integral curves. Their 
autocorrelation time is ~    2 / .τ = π Ω  Qualitatively, the ap-
pearance of a stochastic layer due to successive crossings 
of *S  at frequency modulation is similar to that at periodic 

modulation of amplitude [11]. Quantitative difference is 
caused by the specific topology of the separatrices S1 and 
S2, as well as by the appearance/disappearance of separatrix 
S2 at cs .ν   

Let us introduce a parameter ( ) ( )/J Jνε = Ω ϖ  deter-
mining the perturbation of the phase trajectory per period. 
The action J, being adiabatic invariant, is conserved with 
the accuracy 2~ ( )Jνε  during the time ~ 1/ ( )Jνε . It is 
known that the method of asymptotic expansions [12,13] 
allows one to obtain adiabatic invariants in all orders on 
the parameter .( )Jνε  However, this procedure fails at 

 ~ 1  .( )Jνε  In this case, the perturbed phase trajectory 
reaches the separatrix *S  during one period, and gets into 
the nonintegrability domain where the adiabatic invariants 
are destroyed, and the integral curve is randomized. Let us 
denote by *Jν  the crossover value of J at which an integral 
curve leaves the invariant manifolds and enters the 
stochasticity domain. The quantity *( )sJ J Jν ν∆ = ν −  can 
be evaluated using the following equation: 

 
*

* ( )
2 ( ) sdJ J

J T J
d

ν
ν νπ∆ = Ω

ν
. (6) 

Function ( )sJ ν  is shown in the inset in Fig. 2. Numerical 
solutions of Eq. (6) are shown in Fig. 4. Let us note that there 
are two asymptotic dependences of Jν∆  on ** :)    (T Jν νε =Ω  

2*(~  )Jν ν∆ ε  at 4* 1  0−
νε <  and 1/3*~ ( )Jν ν∆ ε  at 2* 1  0 .−

νε >   
Solutions of Eqs. (2) for the varying frequency ν  can 

be obtained numerically. The Poincare map of the recur-
rent stochastic trajectories in phase plane *( ), ,a θ ν  at 

–410Ω = ; 10–3; 3⋅10–2 *(  0.022; 0.17; 3.3)νε =  is shown in 
Fig. 5. Quasiperiodic KAM curves surrounding the sto-
chastic layer are not drawn there. The measure of the sto-
chastic layer vs * ,νε  shown in Fig. 4 with open boxes, is 
compatible with the solution of Eq. (6). 

The distributions F(∆τ) of the phase point jump per one 
period    2 / ,τ = π Ω   

Fig. 2. The period of motion T vs J within the resonance domain 
R1. Inset depicts the dependence of the separatrix action value Js 
on frequency ν .  

Fig. 3. The resonant curve showing loci of the fixed points of the 
dissipativeless (thin lines) and dissipative (thick lines) system.  

Fig. 4. The dependence of Jν∆  on parameter * .νε  The crossover 
values *Jν  vs Ω are shown in the inset.  
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( ) ( )2 2
1 1 1 1cos cos sin sin ,n n n n n n n na a a a

τ

− − − −

∆ =

= θ − θ + θ − θ
 

 n = 1, 2, …, (7) 

where ( )na a n= τ  and )    (n nθ =θ τ  for Poincare maps, are 
shown in Fig. 6. As one can see, the maximum of ( )F τ∆  
existing at 2  1  0 (0)−Ω= ϖ  disappears at 1   10 (0).−Ω ≥ ϖ  
These results show that the jump of J at the separatrix 
crossing can be treated as a random quantity. 

Non-Hamiltonian stochasticity 

The Hamiltonian dynamics is applicable while interac-
tions of the system with its environment can be ignored. In 
a “mean-field” approximation, the impact of the environ-
ment on the dynamics is described by damping forces and 
random disturbances in the equations of motion: 

 ( )sin ( )a
da a t t
dt

= −γ − ε θ + η   

 
1( ) ( ) ( ) cos ( )d a t t t

dt a θ
θ

= ω − ν − ε θ + η . (8) 

Here ,( )a tη  ( )tθη  are the projections of random driving 
force with small (as compared to 1−ν  ) correlation time on 
a and θ  axes [8]. 

To simplify the treatment of random disturbances, we 
simulate them by introducing a random jump at each peri-
od τ of the phase point,    0,a〈δ 〉 =  2 1/2 210 ,[ ]a −〈δ 〉 =  in the 
Poincare mapping as in [10]. As an example, the Poincare 
map of damped dynamics impacted by a random force at 
(a) 4  1  0−γ =  and (b) 3  1  0−γ =  is shown in Fig. 7. The dash 
line depicts the joint separatrix *S  of the unperturbed sys-
tem. The scale of probability is shown in Fig. 7a. As seen, 
a stable distribution of randomly walking points on a map 
is formed. At 4  1  0−γ =  the lifetime of a phase point within 
the domain filled by KAM curves at        0aγ =δ =  (depicted 
by short-dash line) is much smaller than the time spent 
within the stochasticity domain. At 3  1  0−γ =  the domain of 
stochastic dynamics disappears, and the probability distri-
bution has a maximum at the attracting focus, located not 
too far from the center c1. 

A more detailed account of the stochastic dynamics of a 
nonlinear resonant system driven by a periodic force with 
modulated frequency will be published elsewhere [14]. 

Discussion  

On a qualitative level, the investigated randomization of 
a set of integral curves of nonlinear oscillator driven by 
resonance periodic force with slowly varying frequency is 
in accord with the basic understanding of nonlinear dy-
namics [6,7]. Equation (6) allows one to evaluate the sto-
chastic trajectories measure and connect it with the param-
eters of equations of motion of the first approximation of 
asymptotic expansion (2), (8). Equations of this type can 
be used to describe a variety of nonlinear resonant mechan-
ical, physical and electronic systems [2,3] but their skele-
ton curves  (  )aω = ν  are different. The intrinsic frequency 

( )aω  can be, e.g., a smooth or a piecewise-smooth func-
tion, allowing one to perform a qualitative analysis of the 
rearrangement of separatrices for a range of ν near ( )0ω , 
and to find the domains of topological instability. In par-
ticular, the phase portraits topology of Hamiltonian sys-

Fig. 5. The Poincare maps of the stochastic trajectories on the phase plane *( ), ,a q ν  at various values of Ω. 

Fig. 6. The distributions of the phase point jumps τ∆  per one 
period    2 / .τ = π Ω   
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tems with smooth monotonic functions ( )aω  is topologi-
cally equivalent to those shown in Fig. 1. 

Notably, the breakdown of adiabaticity due to frequency 
modulation at ~ (0)Ω ϖ  leads to a formation of strong sto-
chastic layer of measure 1/3~ νε  due to the integral curves
mixing near the point of separatrix merger at *    .ν = ν   

Conclusions 

Modulation of the driving force frequency near reso-
nance gives rise to the strong stochasticity of nonlinear 
oscillatory motion if the frequency range contains the do-
main where separatrices merge and split. 

The behavior of the measure of stochastic trajectories 
set is varying with the adiabaticity parameter   / (0).νε = Ω ϖ  

At 4 10−
νε >  it is nearly proportional to 1/3ε  while at 

4 10−
νε <  it decreases as νε  as 2 .νε

Acknowlegment 

The authors are grateful for the suggestions and com-
ments by Yu.P. Stepanovsky. 
 _______ 

1. A.I. Akhiezer, A.S. Bakai, Ukr. J. Phys. 13, 355 (1969).
2. Y.A. Mitropolsky, Nestatsionrnie processy v nelineynyh

kolebatelnyh sistemah, Izdat. Acad. Nauk UkrSSR, Kyiv
(1955).

3. N.N. Bogoliubov, Y.A. Mitropolsky, Asimptoticheskie metody v
teorii nelineynyh kolebaniy, Nauka, Moscow (1974) [Asymptotic 
Methods in the Theory of Non-Linear Oscillations, Gordon &
Breach, New York (1961)].

4. A.S. Bakai, Matematicheskaya fizika, Naukova dumka, Kyiv
4, 3 (1968).

5. A.S. Bakai, Fiz. Nizk. Temp. 36, 994 (2010) [Low Temp.
Phys. 36, 792 (2010)]

6. H. Poincare, New Methods in Celestial Mechanics, AIP,
Bristol (1992).

7. V.I. Arnold, V.V. Kozlov, and A.I. Neishtadt, Matema-
ticheskie aspekty klassicheskoy i nebesnoy mehaniki,

VINITI, Moscow (1985) [Mathematical Aspects of Classical 
and Celestial Mechanics, Springer-Verlag, Berlin (2006)]. 

8. A.S. Bakai, Differentsial’nie uravneniya 2, 1428 (1966)
9. B.V. Chirikov, Phys. Rep. 52, 263 (1979)

10. G.M. Zaslavsky, Stohastichnost dinamicheskih system,
Nauka, Moscow (1984) [Chaos in Dynamic Systems,
Harwood Academic Publishers, New York (1985)].

11. A.V. Artemyev, A.I. Neishtadt, and L.M. Zelenyi, Chaos 21,
043120 (2011)

12. M. Kruskal, Adiabatic Invariants, Princeton University
Press, Princeton (1961); russian trans.: Adiabatičeskie
invarianty, Izdat. Inostr. Literatury, Moscow (1962).

13. A.S. Bakai and Ju.P. Stepanovsky, Adiabaticheskie
invarianty, Naukova dumka, Kyiv (1981).

14. O. Bakai and M. Bratchenko, (in preparation).
 ___________________________ 

Стохастична динаміка нелінійного осцилятора під 
дією періодичної сили, частота якої повільно 

змінюється 

О.С. Бакай, М.І. Братченко 

Топологія фазових портретів нелінійного осцилятора, 
який збуджується періодичною силою, зазнає значних змін у 
вузькому інтервалі частот ν рушійної сили. Ця властивість 
призводить до неінтегрованості рівнянь руху та стохастизації 
осцилятора при періодичній модуляції ν через порушення 
адіабатичності та руйнування інтегральних многовидів, вик-
ликаного перебудовою топології інтегральних кривих. 
Особливості стохастичної динаміки вивчено в широкому 
діапазоні періодів модуляції частоти та декрементів згасання 
коливань. 

Ключові слова: нелінійний осцилятор, періодична модуляція, 
стохастична динаміка. 

Fig. 7. The Poincare map of the dissipative dynamics impacted by a random force at 4   10−γ =  (a) and  10–3 (b).
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