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A heterostructure composed of two parallel homogeneous layers is studied in the limit as their width and the

distance between them shrinks to zero simultaneously. The problem is considered in one dimension and the

squeezing potential in the Schrodinger equation is chosen in the form of a piecewise constant function. As a re-

sult, two families of point interactions with bound state energy are realized from this structure. The specific fea-

ture of these interactions is the resonant-tunneling transmission of electrons through one-point singular potentials

under certain conditions described by transcendental equations. The solutions to these equations define so-called

resonance sets of Lebesgue’s measure zero. A particular example is the potential in the form of the derivative of

Dirac’s delta function. For a whole family of point interactions including this example, the existence of a bound

state is proven, contrary to the widespread opinion on the non-existence of bound states in §'-like systems.

Keywords: one-dimensional quantum systems, point interactions, resonant tunneling, bound states.

1. Introduction

The Schrodinger operators with singular zero-range po-
tentials attract a considerable interest beginning from the
pioneering work of Berezin and Faddeev [1]. These opera-
tors describe “contact” or “point” interactions which are
widely used in various applications to quantum physics
[2,3]. Intuitively, these interactions are understood as
sharply localized potentials, exhibiting a number of inte-
resting and intriguing features. The point interaction mod-
els are quite useful because they admit exact closed analy-
tic solutions providing relatively simple situations, where
an appropriate way of squeezing to zero can be chosen to
be in relevance with a real structure. Applications of these
models to condensed matter physics are of particular inte-
rest nowadays, mainly because of the rapid progress in
fabricating nanoscale quantum devices. Particularly, the
electron transmission through heterostructures composed
of parallel planar layers (e.g., ultrathin layered sheets) can
be investigated in the zero-thickness limit approximation
when their width shrinks to zero [4,5]. These structures are
not only important in various applications, but their study
involves a great deal of basic physics. The electron motion
in these systems is confined in the longitudinal direction
(say, along x axis), which is perpendicular to the planes,
and is free in transverse directions. The three-dimensional
stationary Schrodinger equation of such structure can be
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separated into longitudinal and transverse parts, resulting
in the reduced one-dimensional equation for bound states

—y"(0)+V (y(x) = Ey(x), E=-> (1)

with respect to the longitudinal component of the wave
function y(x) and the electron energy £. Here V' (x) is a
real-valued function defined on the line —oo <x <oo. The
dimensions are chosen through the relation n2mt =1
with m" being an effective electron mass.

2. Potential for a double-layer structure and its
parametrization

In this article, we focus on the investigation of the ex-
istence of bound states in the planar heterostructure com-
posed of extremely thin layers separated by small distances
in the limit as both the layer thickness and the distance
between the layers simultaneously tend to zero. Here, we
restrict ourselves to the particular case of the structure con-
sisting of two layers with widths /; and /, separated by
distance . Then the potential part in Eq. (1) can be writ-
ten as

Vp for 0<x</,
Vy for [ +r<x<lj+Il+r,

Vx) =
0 for —o<x<0, [ <x<[+r,

2

ll+lz+l”<x<00,
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where V;(x), j =1, 2, are constants. In order to realize a ze-
ro-thickness limit, we introduce the parametrization of this
potential via a dimensionless squeezing parameter € — 0 as

V.=¢"Va;

_ _ _ T
f s aje]R{, Zj—sdj, j=12, r=gc (3)

In the following we denote the parametrized form of poten-
tial (2) by V. (x) regarding its € — 0 limit.

3. Existence set for a distributional &'-potential

In general, the shrinking limit of potential (2) cannot be
defined properly in terms of distributions, but this is not a
necessary condition for realizing point interactions from
Eq. (1) with parametrization (3) as € — 0. However, one
particular case should be singled out regarding the conver-
gence of the potential V,(x) to the derivative of Dirac’s
delta function &(x).

Let us determine the set on the {v,t}-plane (see Fig. 1),
where the limit ¥ (x) — y8'(x) is well-defined in the sense
of distributions. Thus, using (2) and (3) as well as the fast
variable &= x/g, for any function ¢(x)e Cy’, under the
condition a;d; +a,d, =0, we compute

l+ly+r
Fe@lotn = [ Vxox)dr=
0

— —ad, [82_" (dy+dy)/ 2+ gl‘V”c] 0'(0)+

+0(83_V)+ 0(82—v+r) + 0(81—v+2r). (4)

It follows from this asymptotic representation that the dis-
tributional € — 0 limit V(x) — y8'(x) takes place on the
three-dimensional plane

Xy ={ay,dy,ay,dy | qydy +aydy =0} (%)

in the {a;,d,,a,,d,}-space.

T
2__'_,_,___________ ......................... 'P
0,
L
L, !
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Lg 2
Ly
0 i
1 Y

Fig. 1. Diagram of existence of distribution 8'(x) and point in-
teractions with bound states. See text for details.
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As illustrated by Fig. 1, on the {v,t}-plane, the support
of the &'(x) distribution is the line Ly := L U B U L; with
L ={v,t|l<v<2,t=v-1}, RA:={v,1|lv=2,1=1}
and L; :=={v,t|v =2, 1<t <oo}. The remainder of expan-
sion (4) tends to zero as € — 0 because all the powers 3—v,
2—v+1 and 1-v+2t are positive on the Lg-line. The
strength (a dimensionless parameter) y is the set function

4 2c on line Ly,
y:al—l 2c+d; +d, atpoint B, (6)
dy+d, on line ;.

4. Transmission matrix and its squeezed limit

The transmission matrix A of Eq. (1) for arbitrary reg-
ular potential V' (x) defined on the interval x <x<ux,
connects the values of the wave function y(x) and its de-
rivative y'(x) at the boundaries x=x and x=0x,
through the matrix equation

A A
(\V,(xz)j_[\[\v’(xﬂ} A_( I 12) o
v'(xp) v'(x) Ay Mgy
The matrix elements A;; can be expressed in terms of the
boundary values (given at x; and x,) of linearly inde-
pendent solutions to Eq. (1) [5]. Indeed, let u(x) and v(x)

be linearly independent solutions of this equation. Then
one can derive the following relations:

My =W () [u(x2)0' () = ' (x)o(x,)],
Mo =W () ulx )o(xy) —u(e o)),
Aoy =W () [ (020" () — ' ()0 (x2)],

Aoy =W ()™ [ulq)v' ()~ (x)o()]. (8)
where W(x) is the Wronskian:
W(x)=u(x)v'(x)—u'(x)v(x), x <x<x;. )
One can check from Egs. (8) and (9) that the identity
M1k =Mahgr =1 (10)

holds true. There exists an infinite number of the linearly
independent solutions #(x) and v(x). The representation of
the A-matrix elements is essentially simplified if we
choose these solutions obeying fixed initial conditions at
X=X Or x=x,. Thus, let the solutions u(x) and v(x) ful-
fill the initial conditions

u(x)=1, u'(x)=0, v(x)=0, v'(x)=1. (11)

Inserting these values into Egs. (8) and (9), one finds the
following representation of the transmission matrix:

A :[u(xz) U(xz)}

u'(xy) v'(xy)

(12)
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In a squeezed limit one can set x; - —0 and x, — +0
, so that one-point interaction (if realized) connects the
two-sided boundary conditions at x =10 by the limit
(called now connection) A-matrix. For instance, the point
interaction realized from Eq. (1) with the potential
V(x) = ad(x) is specified by the connection matrix

:[1 0} (\l’!(-i_O)j:A(WV(_O)J' (13)
a 1) (y'(+0) v'(=0)

We call this point interaction as distributional &-potential.

The transmission matrix of the double-layer structure
defined by potential (2) is the product A = A, AygA, where
A is the transmission matrix of the jth layer (x; =0 and
xy =1;, j=1,2) and Ay describes the transmission across
the free space distance with x; =0 and x, =r. Let
u;(x;,x) and v;(k;,x) be a pair of linearly independent
solutions of Eqgs. (1)—(3), each restricted to the jth layer.
Then, using the initial conditions of type (11) for each sub-
systems (layers and distance) with parametrization (3),
according general matrix representation (12), we get (add-
ing the subscript €)

_[UJ(K],SdJ) Uj(Kj,de)

»
/ wi(k;.ed;) v(k;,ed;)

J, j=1,2, (14)

where

— R
uj(Kj,x)—cosh(Kjx), Uj(Kj,x)—Kj smh(Kjx) (15)

with
K ::\/K2+Vj:\/1<2+aja_v, (16)
and
-1 .
T cosh(xr) «  sinh(kr) . (17)
ksinh(kr)  cosh(kr)

In the following, for simplicity of notations, we introduce
the abbreviations

kij,g = kij / cosh(ic;/; ) cosh(icy/, ) cosh(xr),
t;=tanh(x;/;), i,j=1,2, fy =tanh(xr). (18)

Then, the explicit representation of the matrix elements of
the product A, = Ay Ag A reads

Mg = 1+ (/) + [ (1 /)8 + (/K |t (19)
Mo = (M)t + ()t +[1k+ (ki) |1y, (20)
Aate = Kify + Koty +[ K+ (K10 /)1115 |19 1)
Aap e = 1+ (o ftity +[ (/i) )ty + (162 /)1 1. (22)

In the squeezed limit (as &€ — 0), under paramet-
rization (3), for the parameters in Egs. (19)—(22) one can
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write the following asymptotic expressions [see notations
(16) and (18)]:

K)o~ g V2 ap, tj~ tanh(el_V/z\/aijdj) (23)

and g ~ kr — 0. Therefore |k ; | > as € — 0, while the
arguments of the tanh -function must be finite because a;’s
may be negative (a; e R). As follows from asymptotic
representation (23) in the limit as € >0, we have
M2, — 0 and the diagonal elements %) . and A,, . have

finite limits if the distance » tends sufficiently fast to zero.

5. Resonance sets
The element A,; . as the most singular term in general

diverges at € - 0. However, at certain values of the pa-
rameters a;,d;,a,,d,, a cancellation of divergences may

occur resulting in finite limits lim A,; . =to € R.
B

There are two ways of performing such a cancellation
procedure [6]. One of the ways is to equate the total ex-
pression for 15, , in (21) to zero, resulting in the following
constraints on the parameters a;,d},a,,d;:

L+ ! +c=0 24)
ady  ayd,
on the line Ly and
th d th d
coth(y/a; 1)+CO (Jay 2)+C:0 (25)

Ja | m

at the point A (see Fig. 1). The solutions to both these
equations form the so-called resonance sets in the
{a),d,,a,,d,}-space. Moving along the line Ly and ap-
proaching the point A a splitting effect takes place describ-
ing the abrupt appearance of a countable set of hyper-
surfaces [6] which are solutions of transcendental equation
(25). This family of point interactions is realized without
bound states (oo = 0).

The point interactions with bound states (when o = 0)
can be realized if we equate to zero only the first two terms
in expression (21) when it is possible that lim A, . # 0. In
this case, we get the equations 620

aldl + a2d2 =0 (26)
ontheline Lg ={v,1|1<v<2, t=2(v-1)} and
Jay tanh(fa; d)) +Ja, tanh(Ja, dy) =0 (27)

at the point P, :={v,t|v=1=2} (see Fig. 1), the solu-
tions of which form the resonance sets X, and

% ={ay,dy,ay,dy | Y \Ja; tanh(\Ja; d ;)=0}.

j=1,2

(28)

In fact, Egs. (26) and (27) coincide with Egs. (24) and (25)
where formally one can put ¢=0 though indeed ¢+ 0.
Note that the set X, serves also as a condition for the exist-
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Fig. 2. The {d],d;}-plane section of four (n = 0, 1, 2, 3) three-
dimensional hypersurfaces being solutions to Eq. (28) with inten-
sities a; =—ap =:a=0.5 eV. The points of intersection of the
bisector d| =d, with the curves dy =d,(d)) correspond to the
resonance set for the distributional 8'-potential. Here, m = 0.1m,

(m, is an electron mass), so that 1 eV = 2.62464 nm .

ence of the distribution 8'(x) [see Eq. (5)]. Similarly, mov-
ing along the Lg-line and approaching the A -point, we
also encounter with splitting the set X into the infinite
series of hypersurfaces forming the resonance set . The
first four curves numbered by n = 0, 1, 2, 3 are shown in
Fig. 2 as a section in the {d|,d, }-plane, where the intensities
a; >0 (barrier) and a, <0 (well) are fixed constant. As
illustrated by this figure, there are periodic forbidden zones
in the well depth d,, while the barrier height is arbitrary.

6. Generalized - and &'-potentials with bound states

All the point interactions realized in the limit as € —» 0
on the {v,t}-plane (Fig. 1) have been listed in [6]. Within
this family, the interactions with bound states can appear
only on the resonance sets X, and X defined by the solu-
tions of Egs. (26) and (27). However, this happens if and
only if the divergence of the product x;x, in Eq. (21) is
suppressed by an appropriate shrinking of the distance 7,
resulting in the appearance of a non-zero strength constant
o. Therefore the separation of the layers by a non-zero
distance » is the necessary condition for the existence of
bound states. Under parametrization (3), a certain family of
the interactions for which a # 0 will be specified below for
three cases: v=1,1<v<2and v=2.

(1) 1< v <2: On this interval, in the limit as € — 0, using
expressions (23) in Egs. (19), (21) and (22), one finds the as-
ymptotic representation of the A, -matrix elements as follows:

v 1-v+1

}"11,5 N1+81_ +TCl1d1C, }\’22,8 ~1+¢ Clzdzc,

hyt o~ €7V (ardy + aydy) + eV adaydye. (29)

It follows from these asymptotic expressions that in the

limit as € - 0, the connection matrix A = lim A, is of
e—>0

form (13) that corresponds to the & -potential. Here, on the
line Ly :={v,t|v=1, 0<t<oo} (see Fig. 1), the total
strength a is the algebraic sum of the layer strengths

a; :=ajdj, j=1,2,1ie, a=0q+0a, where a;,d;,a,,d,

are arbitrary parameters. Contrary, on the Lg-line, shown
in Fig. 1, the total strength o is non-zero and finite only
under the constraint a;d; +a,d, =0, i.e., on set (5) which
can be referred to as the resonance set for tunneling
through the &-potential. In particular, if ¢; = —a,, this is a
bisector shown in Fig. 2. Thus, on the resonance set X

being a plane in the {q;,d;,a,,d, }-space, we have

1im7h11,g = 1im7v227g =1,
e—0 £—0

limhay s = 00 = ~(@ydy) ¢ =~(aydy)’c.  (30)

e—>0
In spite of the &-like connection matrix (13), potential (2)
with parametrization (3) does not converge at € — 0 to the
distribution 8(x). Therefore the whole family of point in-
teractions specified by the connection matrices of form
(13) can be referred to as generalized &-potentials which
“cover” the subfamily of distributional &-potentials. As
illustrated by Fig. 1, the line Lg is a transient set that sepa-
rates the interactions with full reflection (below line, re-
gion ), except for the line Ly (where o =0), and fully
transmitted interactions (above line, region Q,) for which
the A -matrix is the identity /. The similar definition of the
8-potential has been given by Seba in [7], a point separat-
ing the half-axes with full reflection and perfect transmis-
sion was considered instead of the line Lg .

(if) v =2: This case corresponds to the point P in Fig. 1
and the resonance set X defined by Eq. (28). This trans-
cendental equation admits a countable number of solutions if
at least one of the layer potentials has a well profile. There are
no solutions if both the layers are barriers. The surface with
n=0 passes through the origin ¢ =a, =d; =d, =0. The
limit A-matrix elements defined on X{, are found from the
asymptotic representation given by Egs. (19) and (21)—(23).
Setting lim Ay, = {0,,},= and lim &, ; = {a, },0, at

g0 g0

the point P , one finds

_cosh(Jaydy) oy sinh(yJay dy) G1)
cosh(yJay dy)  \Ja sinh(yJa, dy)

o, =cxJay sinh(yJa; d))\Ja, sinh(\Jay dy).  (32)

Thus, the connection matrix defined on the resonance set
%, is the sequence of matrices, i.e.,

o0 en 0
A={A7 00 A, —[ B ] (33)

1
oLy en
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The particular case of potential (2) with » =0 [8] has
rigorously been treated by Golovaty with coworkers [9] for
the whole family of regular functions V,(x) that converge

to 8'(x) in the sense of distributions as € — 0. For this

family there are no bound states (lim A,; =0) and the
e—0

corresponding point interactions were suggested in [10] to
be referred to as &'-potentials. Here, we call all the point
interactions which in general are realized with the connec-
tion matrix A of form (15), even if potential V(x) has no

limit itself, generalized 8'-potentials. Then the point inter-
actions realized from the potentials V,(x) having the dis-

tribution &'(x) in the limit as € — 0, appear to be a sub-

family of generalized &'-potentials.

The equation for the bound states with negative energy
E=-x? can be expressed via the elements of the trans-
mission matrix for an arbitrary regular potential V(x) in
Eq. (1) defined on a finite interval x; <x <x, [11]. In-
deed, the negative-energy solutions outside this interval are
of the form

Cler
y(x)= ~
Cze b

for —oo <x <uxy,
(34)
for x, <x<oo,

where C; and C, are arbitrary constants and « > 0. Insert-
ing these expressions into matrix equation (7), we find the
following compatibility equation:

Ko+ Mg+ K Ay =0, k>0, (35)

where in general the A-matrix elements depend on k [see
Egs. (19)+23)]. However, in a squeezed limit, since
|V; [ o, the «-dependence in the elements of the Ag-mat-
rix vanishes because of asymptotic behavior (23) in the limit
as € — 0. Consequently, using that A, . — 0, the nontrivial
bound state k > 0 becomes single-valued being defined only
on one of the surfaces of the resonance set Xf. In other
words, on each nth surface of the Z{-set defined by Eq. (28),
the corresponding point interaction has only one bound state
given by
o

” :__n_I,
6,+6,

n=0,1,..., (36)

with 0, and o, computed from Eqgs. (31) and (32). Each
K, 1s positive because a0, <O0.

7. Persistence of a bound state

In general, for any potential (2) with finite fixed values
V1 and V,, there exist several bound states if one of the
wells is sufficiently deep. However, as derived above [see,
e.g., Eq. (36)], in the squeezed limit only a single bound
state is shown to exist. For instance, there is the conven-
tional opinion that during shrinking a regular potential to
the distribution &'(x), all the bound states fall to —o0, so
that the &'-potential has no bound state energies at all.
However, this contradicts to the result given by Eq. (36)
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that indicates that one of these states survives under
squeezing to one point. In order to resolve this puzzle, it is
reasonable to control the behavior of bound states while
shrinking potential (2) to a 3'-like profile. To this end, let
us consider the function

-1
KAt A e Ao TR A

Fo(0) = (37)

cosh(k,/; ) cosh(x,1, ) cosh(kr)

so that the zeroes of this function correspond to the roots of
Eq. (35). Explicitly, due to Eqgs. (18)—(22), we have

]—;(K)—{Z+[£+ﬁjtl +[£+K—th2}(l+to)+
Kq K Ky K

2
+[ﬁ+ﬁ+[‘<_+m],0]%_ (38)

K2 K K1K2 i

Clearly, F(x)> 0 if both V;’s are positive and therefore
no bound states exist. The same is true if one of Vj’s or
both ones are negative, but satisfy the inequalities
K2 >V; |, j=1,2. Without loss of generality, it is suffi-

cient to analyze the case V, <V} (V, <0). Then we have

t, =itan(y| V> |—1<2 l,) and the presence of this factor in
(38) leads to the existence of a finite number (say, pg) of

Zeroes K, ¢,

N2 |—1<2 I, as a function of & is uniformly bounded

from above. In the limit as € — 0, the escape of this finite
number of zeroes to infinity follows from the inequalities

p=0,1,..., po—1 because the argument

valid for all p=0,1,...py. On the other hand, since
|kj|—>o and » — 0 as € — 0, the asymptotic representa-
tion of function (38) reduces to

Fe~2+ it Kaly +(K1K2r +ﬁ+K—2jt1t2. (40)
K K Ky K
Here, the term ;% +x,t, in general diverges at € -0
and in this case all the zeroes are moving to infinity.
Equating this term to zero, one gets in the limit as € > 0
the resonance set X defined by Eq. (28). Next, because of
(3), we have

Kyl Katyr ~—&* Vajctanh? (€72 Jay dp).  (41)

This term is finite on the set Lg U P, (see Fig. 1). Accord-
ing to Egs. (30) and (35), on the line Lg, in the limit as
€ — 0 only one bound state level “survives”, while the rest
of levels tend to the accumulation point k = 0. Similarly to
the conventional & -potential, the bound energy level is
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1 1
= E(aldozc = 5(azd2)2c, (42)

valid only on plane (5). At the point P, we are dealing
with the situation when all the zeroes of the function
F. (x) escape to —o as € — 0, except for a one zero being
located on one of the surfaces of the resonance set X .
Equating asymptotic expression (40) to zero and using (41)
at the point P, we obtain the bound state value

. = caya,
n )
2ay coth*(Jay dy) —a; —a,

valid on the nth surface of the resonance set X(. This ex-
pression coincides on X with formula (36) where 0, and
o, are given by Eqs. (31) and (32). Note that expression
(43) does not depend on the parameter d,, which was ex-
cluded because of the consideration on the set X{, . On the
other hand, on the set X, instead of formula (43), one can
write a symmetric analogue

(43)

_ ca ay
n
2aycoth*(yJay dy) —ay —ay

which now does not depend on the parameter d;. Finally,
one should emphasized that beyond the resonance sets X
and X, the point interactions with bound states do not exist
at all. For these parameter values the system is opaque and
the wave function satisfies at x =+0 the boundary condi-
tions of the Dirichlet type: y(£0) = 0.

The scenario of escaping the bound energy levels to in-
finity (except for one level) is illustrated in Fig. 3 for a
distributional &'-potential. This point interaction is realized

K

A (44)

-100
0

—log,e

Fig. 3. Dependence of the bound state energy E = —«% on
the squeezing parameter € for v=1=2, a =-ap =0.5 eV and
¢ =10 nm. The O (#) markers correspond to the first (second) subset
of resonance set () [see Eq. (28)] with dj =dp = 5.6 (10) nm.
The inset shows the asymptotic behavior of energy E as € — 0.
Solid straight lines correspond to the exact values of £ according
to Eq. (36).
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at the point P, lying on the line Ly . The data with a; = —a,
and d| =d, = d immediately provide its location on the
Lg-line. Next, for the existence of a bound energy level as
€ — 0, these data must satisfy Eq. (28). Therefore the res-
onance set for the distributional §'-potential is Xy N Zy.

Then, for this potential 1y =0 and for the numerical
calculations presented in Fig. 3, we use the first two non-
trivial values of d (d =5.6,10 nm) that correspond to the
subsets of X, with n =1 and n =2. As shown in Fig. 3, for
the data with n =1, there are two zeroes of F(x), where
K¢ —> K and K, diverges at ¢ —> 0. For the data with
n =2, there are three zeroes, where ¥; . — «,, while i ,
and K3 . diverge.

8. Concluding remarks

There exists an ubiquitous opinion that the bound state en-
ergy levels for Schrodinger equation (1) with a regularized
potential ¥, (x) escape to —oo as V(x) — yd'(x) in the sense
of distributions (y is a strength constant). However, in general
this is not true, except for the point interactions with an addi-
tional &-like potential [12], when V(x)= ad(x)+vd'(x).
On the basis of both the analytic arguments and the nume-
rical computations, we prove that for the family of &'-re-
gularized potentials, a single bound energy level converges
to a finite value, whereas the rest of energy levels escapes
to —oo. This is also true for the two families of point in-
teractions, called in this article generalized 8- and &'-po-
tentials, that cover their distributional analogues. These
interactions are realized asymptotically as a one-point ap-
proximation of double-layer heterostructures, when the
thickness of layers and the distance between them squeeze
simultaneously to one point. The separated distance be-
tween the layers plays a crucial role in the existence of
bound states for the families of generalized 8- and &'-po-
tentials as defined in the present paper.
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ToukoBi B3aemofji 3i 3B’'A3aHMMU CTaHaAMMU:
HaBNMXXEHHS HYNbOBO| TOBLLMHW ANS ABOLLAPOBOi
reTepoCcTpyKTYpU

Onekcangp B. 3onoTaptok, Apocnas 3onoTaptok

IerepocTpykTypa, IO CKIAmAE€ThCS 3 [BOX MHapaleIbHHUX
mIapiB, JOCIHIIDKYETbCS B HAOJIMDKEHHI, KOJIM TOBILIMHA IIApiB Ta
BiICTAHP MDK HHMH 3MCHIIYIOThCA A0 Hynsa. [IpoGiema
BUBYAETHCS B OJHOBMMIPHOMY BHIIQJIKY, MOTEHIUaN Y piBHSIHHI
lpeninrepa o6paHo y BUTTSIL KycKOBO-CTanoi ¢pyHkmii. st takoi
CTPYKTYpU OTPMMAHO JIBa CIMEWCTBA TOYKOBHUX B3a€MOZIIH 3i
3B’s13aHUMHU cTaHaMH. Crieru(ivHOI0 XapaKTEPHOK PHCOI0 IHX
B3a€MOJIIH € pPE30HAHCHO-TYHENbHE IIPOXOJUKEHHS EJICKTPOHIB
yepe3 TOYKOBUII CHHTYJSPHHI IMOTEHIia]l 3a MEBHUX YMOB, IO
3aJaI0ThCSl  TPAHCLCHJICHTHUMH DIBHAHHAMHU. PilleHHS 1HX
PIBHSHDb BH3HAYalOTh TAaK 3BaHI PE30HAHCHI MHOXHHH HYJBOBOI
mipu JleGera. KoHKpeTHHM NpHKIANOM € TOTEHIIAN y BHIJIIL
noxigHoi Bin nemsra-¢yHkmii Jipaka. s Bckoro cimeiictBa TO4-
KOBHX B3a€MOJIif, BKIIIOYAIOUM 1LEH TNPHKIAT, JOBEICHO
ICHyBaHHS 3B’s3aHHMX CTaHiB BCyleped MOMIMPEHIH OyMii Ipo

HEICHYBaHHS 3B 513aHHUX CTaHIB y O'-IOIOHUX CHCTEMaXx.

KirouoBi cimoBa: OJHOBHMIpHI KBAaHTOBI CHCTEMH, TOYKOBL

B3a€MO/Iii, pe30HAHCHE TYHEIIOBAaHHSI, 3B’s13aHi CTaHU.
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