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A heterostructure composed of two parallel homogeneous layers is studied in the limit as their width and the 
distance between them shrinks to zero simultaneously. The problem is considered in one dimension and the 
squeezing potential in the Schrödinger equation is chosen in the form of a piecewise constant function. As a re-
sult, two families of point interactions with bound state energy are realized from this structure. The specific fea-
ture of these interactions is the resonant-tunneling transmission of electrons through one-point singular potentials 
under certain conditions described by transcendental equations. The solutions to these equations define so-called 
resonance sets of Lebesgue’s measure zero. A particular example is the potential in the form of the derivative of 
Dirac’s delta function. For a whole family of point interactions including this example, the existence of a bound 
state is proven, contrary to the widespread opinion on the non-existence of bound states in δ′-like systems. 
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1. Introduction

The Schrödinger operators with singular zero-range po-
tentials attract a considerable interest beginning from the 
pioneering work of Berezin and Faddeev [1]. These opera-
tors describe “contact” or “point” interactions which are 
widely used in various applications to quantum physics 
[2,3]. Intuitively, these interactions are understood as 
sharply localized potentials, exhibiting a number of inte-
resting and intriguing features. The point interaction mod-
els are quite useful because they admit exact closed analy-
tic solutions providing relatively simple situations, where 
an appropriate way of squeezing to zero can be chosen to 
be in relevance with a real structure. Applications of these 
models to condensed matter physics are of particular inte-
rest nowadays, mainly because of the rapid progress in 
fabricating nanoscale quantum devices. Particularly, the 
electron transmission through heterostructures composed 
of parallel planar layers (e.g., ultrathin layered sheets) can 
be investigated in the zero-thickness limit approximation 
when their width shrinks to zero [4,5]. These structures are 
not only important in various applications, but their study 
involves a great deal of basic physics. The electron motion 
in these systems is confined in the longitudinal direction 
(say, along x  axis), which is perpendicular to the planes, 
and is free in transverse directions. The three-dimensional 
stationary Schrödinger equation of such structure can be 

separated into longitudinal and transverse parts, resulting 
in the reduced one-dimensional equation for bound states  

2( ) ( ) ( ) = ( ), =x V x x E x E′′−ψ + ψ ψ −κ (1) 

with respect to the longitudinal component of the wave 
function ( )xψ  and the electron energy E . Here ( )V x  is a 
real-valued function defined on the line < <x−∞ ∞ . The 
dimensions are chosen through the relation 2 */2 = 1m  
with *m  being an effective electron mass.  

2. Potential for a double-layer structure and its
parametrization 

In this article, we focus on the investigation of the ex-
istence of bound states in the planar heterostructure com-
posed of extremely thin layers separated by small distances 
in the limit as both the layer thickness and the distance 
between the layers simultaneously tend to zero. Here, we 
restrict ourselves to the particular case of the structure con-
sisting of two layers with widths 1l  and 2l  separated by 
distance r . Then the potential part in Eq. (1) can be writ-
ten as  

1 1

2 1 1 2

1 1

1 2

  for   0 < < ,
  for  < < ,

( ) =
 0  for  < < 0, < < ,

< < ,

V x l
V l r x l l r

V x
x l x l r

l l r x


 + + +
 −∞ +
 + + ∞

(2)
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where ( )jV x , = 1, 2j , are constants. In order to realize a ze-
ro-thickness limit, we introduce the parametrization of this 
potential via a dimensionless squeezing parameter 0ε →  as  

 , , , 1, 2, .j j j j jV a a l d j r c−ν τ= ε ∈ = ε = = ε  (3) 

In the following we denote the parametrized form of poten-
tial (2) by ( )V xε  regarding its 0ε →  limit.  

3. Existence set for a distributional ′δ -potential 

In general, the shrinking limit of potential (2) cannot be 
defined properly in terms of distributions, but this is not a 
necessary condition for realizing point interactions from 
Eq. (1) with parametrization (3) as 0ε → . However, one 
particular case should be singled out regarding the conver-
gence of the potential ( )V xε  to the derivative of Dirac’s 
delta function ( )xδ . 

Let us determine the set on the { , }ν τ -plane (see Fig. 1), 
where the limit ( ) ( )V x xε ′→ γδ  is well-defined in the sense 
of distributions. Thus, using (2) and (3) as well as the fast 
variable = /xξ ε, for any function 0( )x C∞ϕ ∈ , under the 
condition 1 1 2 2 = 0a d a d+ , we compute  

 
1 2

0

( ) | ( ) = ( ) ( )
l l r

V x x V x x dx
+ +

ε ε〈 ϕ 〉 ϕ =∫   

2 1
1 1 1 2= ( ) / 2 (0)a d d d c−ν −ν+τ  ′− ε + + ε ϕ +   

 3 2 1 2( ) ( ) ( ).O O O−ν −ν+τ −ν+ τ+ ε + ε + ε  (4) 

It follows from this asymptotic representation that the dis-
tributional 0ε →  limit ( ) ( )V x xε ′→ γδ  takes place on the 
three-dimensional plane 

 0 1 1 2 2 1 1 2 2:= { , , , | = 0}a d a d a d a dΣ +  (5) 

in the 1 1 2 2{ , , , }a d a d -space. 

As illustrated by Fig. 1, on the { , }ν τ -plane, the support 
of the ( )x′δ  distribution is the line 1 1:= KL L P L′δ ∪ ∪  with 

:= { , |1 < < 2, = 1}KL ν τ ν τ ν − , 1 := { , | = 2, = 1}P ν τ ν τ  
and 1 := { , | = 2, 1 < < }L ν τ ν τ ∞ . The remainder of expan-
sion (4) tends to zero as 0ε →  because all the powers 3−ν, 
2−ν + τ and 1 2−ν + τ  are positive on the L ′δ -line. The 
strength (a dimensionless parameter) γ  is the set function 

 1 1
1 2 1

1 2 1

2 on line ,
= 2 at point  ,

2
on line .

Kc L
a d

c d d P
d d L


γ + +
 +

 (6) 

4. Transmission matrix and its squeezed limit 

The transmission matrix Λ  of Eq. (1) for arbitrary reg-
ular potential ( )V x  defined on the interval 1 2< <x x x  
connects the values of the wave function ( )xψ  and its de-
rivative ( )x′ψ  at the boundaries 1=x x  and 2=x x  
through the matrix equation  

 2 1 11 12

2 1 21 22

( ) ( )  
= ,  = .

( ) ( )  
x x
x x

ψ ψ λ λ     
Λ Λ     ′ ′ψ ψ λ λ     

 (7) 

The matrix elements ijλ  can be expressed in terms of the 
boundary values (given at 1x  and 2x ) of linearly inde-
pendent solutions to Eq. (1) [5]. Indeed, let ( )u x  and ( )xv  
be linearly independent solutions of this equation. Then 
one can derive the following relations: 

  [ ]1
11 1 2 1 1 2= ( ) ( ) ( ) ( ) ( ) ,W x u x x u x x− ′ ′λ −v v   

 [ ]1
12 1 1 2 2 1= ( ) ( ) ( ) ( ) ( ) ,W x u x x u x x−λ −v v   

 [ ]1
21 1 2 1 1 2= ( ) ( ) ( ) ( ) ( ) ,W x u x x u x x− ′ ′ ′ ′λ −v v   

 [ ]1
22 1 1 2 2 1= ( ) ( ) ( ) ( ) ( ) ,W x u x x x x− ′ ′λ −v u v  (8) 

where ( )W x  is the Wronskian:  

 1 2( ) = ( ) ( ) ( ) ( ),  .W x u x x u x x x x x′ ′− ≤ ≤v v  (9) 

One can check from Eqs. (8) and (9) that the identity  

 11 22 12 21 = 1λ λ −λ λ  (10) 

holds true. There exists an infinite number of the linearly 
independent solutions ( )u x  and ( )xv . The representation of 
the Λ-matrix elements is essentially simplified if we 
choose these solutions obeying fixed initial conditions at 

1=x x  or 2=x x . Thus, let the solutions ( )u x  and ( )xv  ful-
fill the initial conditions  

 1 1 1 1( ) = 1,  ( ) = 0,  ( ) = 0,  ( ) = 1.u x u x x x′ ′v v  (11) 

Inserting these values into Eqs. (8) and (9), one finds the 
following representation of the transmission matrix:  

 2 2

2 2

( ) ( )
= .

( ) ( )
u x x
u x x
 

Λ  ′ ′ 

v
v

 (12) Fig. 1. Diagram of existence of distribution ( )x′δ  and point in-
teractions with bound states. See text for details. 
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In a squeezed limit one can set 1 0x → −  and 2 0x → +
, so that one-point interaction (if realized) connects the 
two-sided boundary conditions at = 0x ±  by the limit 
(called now connection) Λ-matrix. For instance, the point 
interaction realized from Eq. (1) with the potential 

( ) = ( )V x xαδ  is specified by the connection matrix 

  
1 0 ( 0) ( 0)

= ,  = .
1 ( 0) ( 0)

ψ + ψ −     
Λ Λ     ′ ′α ψ + ψ −     

  (13)  

We call this point interaction as distributional δ -potential.  
The transmission matrix of the double-layer structure 

defined by potential (2) is the product 2 0 1=Λ Λ Λ Λ , where 
jΛ  is the transmission matrix of the jth layer ( 1 = 0x  and 

2 = jx l , = 1, 2j ) and 0Λ  describes the transmission across 
the free space distance with 1 = 0x  and 2 =x r . Let 

( , )j ju xκ  and ( , )j j xκv  be a pair of linearly independent 
solutions of Eqs. (1)–(3), each restricted to the jth layer. 
Then, using the initial conditions of type (11) for each sub-
systems (layers and distance) with parametrization (3), 
according general matrix representation (12), we get (add-
ing the subscript ε) 

 ,
( , ) ( , )

= ,  = 1, 2,
( , ) ( , )

j j j j j j
j

j j j j j j

u d d
j

u d dε
κ ε κ ε 

Λ   ′ ′κ ε κ ε 

v

v
 (14) 

where  

1( , ) = cosh( ), ( , ) = sinh( )j j j j j j ju x x x x−κ κ κ κ κv  (15) 

with 

 2 2: ,j j jV a −νκ = κ + = κ + ε  (16) 

and  

 
1

0,
cosh( ) sinh( )= .
sinh( ) cosh( )

r r
r r

−

ε
 κ κ κΛ   κ κ κ 

 (17) 

In the following, for simplicity of notations, we introduce 
the abbreviations 

 , 1 1 2 2: / cosh( )cosh( )cosh( ),ij ij l l rελ =λ κ κ κ   

 0: tanh( ), , = 1, 2, : tanh( ).j j jt l i j t r= κ = κ  (18) 

Then, the explicit representation of the matrix elements of 
the product 2, 0, 1,=ε ε ε εΛ Λ Λ Λ  reads  

[ ]11, 1 2 1 2 1 1 2 2 0= 1 ( / ) ( / ) ( / ) ,t t t t tελ + κ κ + κ κ + κ κ  (19) 

[ ]12, 1 1 2 2 1 2 1 2 0= (1/ ) (1/ ) 1/ ( / ) ,t t t t tελ κ + κ + κ + κ κ κ  (20) 

[ ]21, 1 1 2 2 1 2 1 2 0= ( / ) ,t t t t tελ κ + κ + κ + κ κ κ  (21) 

[ ]22, 2 1 1 2 1 1 2 2 0= 1 ( / ) ( / ) ( / ) .t t t t tελ + κ κ + κ κ + κ κ  (22) 

In the squeezed limit (as 0ε → ), under paramet-
rization (3), for the parameters in Eqs. (19)–(22) one can 

write the following asymptotic expressions [see notations 
(16) and (18)]:  

 ( )/2 1 /2,  tanhj j j j ja t a d−ν −νκ ε ε   (23) 

and 0 0t kr → . Therefore | |jκ →∞  as 0ε → , while the 
arguments of the tanh -function must be finite because ja ’s 
may be negative ( ja ∈ ). As follows from asymptotic 
representation (23) in the limit as 0ε → , we have 

12, 0ελ →  and the diagonal elements 11,ελ  and 22,ελ  have 
finite limits if the distance r  tends sufficiently fast to zero. 

5. Resonance sets 
The element 21,ελ  as the most singular term in general 

diverges at 0ε → . However, at certain values of the pa-
rameters 1 1 2 2, , ,a d a d , a cancellation of divergences may 
occur resulting in finite limits 21,

0
lim =:ε
ε→

λ α∈ .  

There are two ways of performing such a cancellation 
procedure [6]. One of the ways is to equate the total ex-
pression for 21,ελ  in (21) to zero, resulting in the following 
constraints on the parameters 1 1 2 2, , ,a d a d :  

 
1 1 2 2

1 1 = 0c
a d a d

+ +  (24) 

on the line KL  and  

 1 1 2 2

1 2

coth( ) coth( )
= 0

a d a d
c

a a
+ +  (25) 

at the point 1P  (see Fig. 1). The solutions to both these 
equations form the so-called resonance sets in the 

1 1 2 2{ , , , }a d a d -space. Moving along the line KL  and ap-
proaching the point 1P  a splitting effect takes place describ-
ing the abrupt appearance of a countable set of hyper-
surfaces [6] which are solutions of transcendental equation 
(25). This family of point interactions is realized without 
bound states ( = 0α ).  

The point interactions with bound states (when 0α ≠ ) 
can be realized if we equate to zero only the first two terms 
in expression (21) when it is possible that 21,

0
lim 0ε
ε→

λ ≠ . In 
this case, we get the equations  

 1 1 2 2 = 0a d a d+  (26) 

on the line : { , |1 < < 2, = 2( 1)}SL = ν τ ν τ ν −  and  

 1 1 1 2 2 2tanh( ) tanh( ) = 0a a d a a d+  (27) 

at the point 2 : { , | = = 2}P = ν τ ν τ  (see Fig. 1), the solu-
tions of which form the resonance sets 0Σ  and  

0 1 1 2 2
=1,2

: { , , , | tanh( ) = 0}.j j j
j

a d a d a a d′Σ = ∑  (28) 

In fact, Eqs. (26) and (27) coincide with Eqs. (24) and (25) 
where formally one can put = 0c  though indeed 0c ≠ . 
Note that the set 0Σ  serves also as a condition for the exist-
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ence of the distribution ( )x′δ  [see Eq. (5)]. Similarly, mov-
ing along the SL -line and approaching the 2P -point, we 
also encounter with splitting the set 0Σ  into the infinite 
series of hypersurfaces forming the resonance set 0 .′Σ  The 
first four curves numbered by n = 0, 1, 2, 3 are shown in 
Fig. 2 as a section in the 1 2{ , }d d -plane, where the intensities 

1 > 0a  (barrier) and 2 < 0a  (well) are fixed constant. As 
illustrated by this figure, there are periodic forbidden zones 
in the well depth 2 ,d  while the barrier height is arbitrary.  

6. Generalized δ - and ′δ -potentials with bound states 

All the point interactions realized in the limit as 0ε →  
on the { , }ν τ -plane (Fig. 1) have been listed in [6]. Within 
this family, the interactions with bound states can appear 
only on the resonance sets 0Σ  and 0′Σ  defined by the solu-
tions of Eqs. (26) and (27). However, this happens if and 
only if the divergence of the product 1 2κ κ  in Eq. (21) is 
suppressed by an appropriate shrinking of the distance r , 
resulting in the appearance of a non-zero strength constant 
α. Therefore the separation of the layers by a non-zero 
distance r  is the necessary condition for the existence of 
bound states. Under parametrization (3), a certain family of 
the interactions for which 0α ≠  will be specified below for 
three cases: = 1ν , 1 < < 2ν  and = 2ν .  

(i) 1 < 2≤ ν : On this interval, in the limit as 0ε → , using 
expressions (23) in Eqs. (19), (21) and (22), one finds the as-
ymptotic representation of the εΛ -matrix elements as follows:  

 1 1
11, 1 1 22, 2 21 , 1 ,a d c a d c−ν+τ −ν+τ

ε ελ + ε λ + ε    

 1 2(1 )
21, 1 1 2 2 1 1 2 2( ) .a d a d a d a d c−ν −ν +τ

ελ ε + + ε  (29) 

It follows from these asymptotic expressions that in the 
limit as 0,ε →  the connection matrix 

0
= lim ε
ε→

Λ Λ  is of 

form (13) that corresponds to the δ -potential. Here, on the 
line 0 : { , | 1, 0 < < }L = ν τ ν = τ ∞  (see Fig. 1), the total 
strength α is the algebraic sum of the layer strengths 

:j j ja dα = , = 1, 2j , i.e., 1 2=α α +α  where 1 1 2 2, , ,a d a d  

are arbitrary parameters. Contrary, on the SL -line, shown 
in Fig. 1, the total strength α is non-zero and finite only 
under the constraint 1 1 2 2 = 0a d a d+ , i.e., on set (5) which 
can be referred to as the resonance set for tunneling 
through the δ -potential. In particular, if 1 2=a a− , this is a 
bisector shown in Fig. 2. Thus, on the resonance set 0Σ  
being a plane in the 1 1 2 2{ , , , }a d a d -space, we have  

 11, 22,
0 0

= = 1,lim limε ε
ε→ ε→

λ λ   

 2 2
21, 1 1 2 2

0
: ( ) ( ) .lim a d c a d cε

ε→
λ = α = − = −  (30) 

In spite of the δ -like connection matrix (13), potential (2) 
with parametrization (3) does not converge at 0ε →  to the 
distribution ( )xδ . Therefore the whole family of point in-
teractions specified by the connection matrices of form 
(13) can be referred to as generalized δ -potentials which 
“cover” the subfamily of distributional δ -potentials. As 
illustrated by Fig. 1, the line SL  is a transient set that sepa-
rates the interactions with full reflection (below line, re-
gion 1Q ), except for the line KL  (where = 0α ), and fully 
transmitted interactions (above line, region 2Q ) for which 
the Λ-matrix is the identity I . The similar definition of the 
δ -potential has been given by Šeba in [7], a point separat-
ing the half-axes with full reflection and perfect transmis-
sion was considered instead of the line SL .  

(ii) = 2ν : This case corresponds to the point 2P  in Fig. 1 
and the resonance set 0′Σ  defined by Eq. (28). This trans-
cendental equation admits a countable number of solutions if 
at least one of the layer potentials has a well profile. There are 
no solutions if both the layers are barriers. The surface with 

= 0n  passes through the origin 1 2 1 2= = = = 0a a d d . The 
limit Λ-matrix elements defined on 0′Σ  are found from the 
asymptotic representation given by Eqs. (19) and (21)–(23). 
Setting 11, 0

0
lim :{ }n n

∞
ε =

ε→
λ = θ  and 21, 0

0
lim :{ }n n

∞
ε =

ε→
λ = α , at 

the point 2P , one finds  

 1 1 1 1 1

2 2 2 2 2

cosh( ) sinh( )
= = ,

cosh( ) sinh( )n
a d a a d
a d a a d

θ −  (31) 

 1 1 1 2 2 2= sinh( ) sinh( ).n c a a d a a dα  (32) 

Thus, the connection matrix defined on the resonance set 
0′Σ  is the sequence of matrices, i.e.,  

 { } 1=0

0
= ,   = .n

n nn
n n

∞
−

θ 
Λ Λ Λ   α θ 

 (33) 

Fig. 2. The 1 2{ , }d d -plane section of four (n = 0, 1, 2, 3) three-
dimensional hypersurfaces being solutions to Eq. (28) with inten-
sities 1 2 : 0.5a a a= − = =  eV. The points of intersection of the 
bisector 1 2=d d  with the curves 2 2 1= ( )d d d  correspond to the 
resonance set for the distributional ′δ -potential. Here, * = 0.1 em m  
( em  is an electron mass), so that 1 eV = 2.62464 nm–2.  
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The particular case of potential (2) with = 0r  [8] has 
rigorously been treated by Golovaty with coworkers [9] for 
the whole family of regular functions ( )V xε  that converge 
to ( )x′δ  in the sense of distributions as 0ε → . For this 
family there are no bound states ( 21

0
lim = 0
ε→

λ ) and the 

corresponding point interactions were suggested in [10] to 
be referred to as ′δ -potentials. Here, we call all the point 
interactions which in general are realized with the connec-
tion matrix Λ  of form (15), even if potential ( )V xε  has no 
limit itself, generalized ′δ -potentials. Then the point inter-
actions realized from the potentials ( )V xε  having the dis-
tribution ( )x′δ  in the limit as 0ε → , appear to be a sub-
family of generalized ′δ -potentials. 

The equation for the bound states with negative energy 
2=E −κ  can be expressed via the elements of the trans-

mission matrix for an arbitrary regular potential ( )V xε  in 
Eq. (1) defined on a finite interval 1 2< <x x x  [11]. In-
deed, the negative-energy solutions outside this interval are 
of the form  

 1 1

2 2

e  for  < < ,
( ) =

e  for    < < ,

x

x

C x x
x

C x x

κ

−κ

 −∞ψ 
∞

 (34) 

where 1C  and 2C  are arbitrary constants and > 0κ . Insert-
ing these expressions into matrix equation (7), we find the 
following compatibility equation: 

 1
12, 11, 22, 21, = 0, > 0,−

ε ε ε εκλ + λ + λ + κ λ κ  (35) 

where in general the Λ-matrix elements depend on κ  [see 
Eqs. (19)–(23)]. However, in a squeezed limit, since 
| |jV →∞, the κ -dependence in the elements of the εΛ -mat-
rix vanishes because of asymptotic behavior (23) in the limit 
as 0ε → . Consequently, using that 12, 0ελ → , the nontrivial 
bound state > 0κ  becomes single-valued being defined only 
on one of the surfaces of the resonance set 0 .′Σ  In other 
words, on each nth surface of the 0′Σ -set defined by Eq. (28), 
the corresponding point interaction has only one bound state 
given by  

 1= ,  = 0, 1, ,n
n

n n
n

−
α

κ −
θ + θ

  (36) 

with nθ  and nα  computed from Eqs. (31) and (32). Each 
nκ  is positive because < 0.n nα θ   

7. Persistence of a bound state 

In general, for any potential (2) with finite fixed values 
1V  and 2V , there exist several bound states if one of the 

wells is sufficiently deep. However, as derived above [see, 
e.g., Eq. (36)], in the squeezed limit only a single bound 
state is shown to exist. For instance, there is the conven-
tional opinion that during shrinking a regular potential to 
the distribution ( )x′δ , all the bound states fall to −∞ , so 
that the ′δ -potential has no bound state energies at all. 
However, this contradicts to the result given by Eq. (36) 

that indicates that one of these states survives under 
squeezing to one point. In order to resolve this puzzle, it is 
reasonable to control the behavior of bound states while 
shrinking potential (2) to a ′δ -like profile. To this end, let 
us consider the function  

 
1

12, 11, 22, 21,

1 1 2 2
( ) : ,

cosh( )cosh( )cosh( )l l r

−
ε ε ε ε

ε
κλ + λ + λ + κ λ

κ =
κ κ κ

  (37) 

so that the zeroes of this function correspond to the roots of 
Eq. (35). Explicitly, due to Eqs. (18)–(22), we have 

 1 2
1 2 0

1 2
( ) = 2 (1 )t t tε

    κ κκ κ
κ + + + + + +    κ κ κ κ     

   

 
2

1 2 1 2
0 1 22

2 1 1 2
.t t t

  κ κ κ κκ
+ + + +   κ κ κ κ κ   

 (38) 

Clearly, ( ) > 0ε κ  if both jV ’s are positive and therefore 

no bound states exist. The same is true if one of jV ’s or 
both ones are negative, but satisfy the inequalities 

2 >| |jVκ , = 1, 2j . Without loss of generality, it is suffi-

cient to analyze the case 2 1V V≤  ( 2 < 0V ). Then we have 
2

2 2 2= tan( | | )t i V l−κ  and the presence of this factor in 
(38) leads to the existence of a finite number (say, 0p ) of 
zeroes , 0, = 0, 1, , 1p p pεκ −  because the argument 

2
2 2| |V l−κ  as a function of ε is uniformly bounded 

from above. In the limit as 0ε → , the escape of this finite 
number of zeroes to infinity follows from the inequalities  

 
2 2

2 , 2
2 2

1 ( 1) 1< <p
p pa a

d dε
   + π π

− κ −   ε ε   
 (39) 

valid for all 0= 0, 1,p p . On the other hand, since 
| |jκ →∞  and 0r →  as 0ε → , the asymptotic representa-
tion of function (38) reduces to  

 1 1 2 2 1 2 1 2
1 2

2 1
2 . 

t t r
t tε

 κ + κ κ κ κ κ
+ + + + κ κ κ κ 

 
 (40) 

Here, the term 1 1 2 2t tκ + κ  in general diverges at 0ε →  
and in this case all the zeroes are moving to infinity. 
Equating this term to zero, one gets in the limit as 0ε →  
the resonance set 0′Σ  defined by Eq. (28). Next, because of 
(3), we have 

 2 1 /2
1 1 2 2 1 1 1tanh ( ).t t r a c a dτ−ν −νκ κ −ε ε  (41) 

This term is finite on the set 2SL P∪  (see Fig. 1). Accord-
ing to Eqs. (30) and (35), on the line SL , in the limit as 

0ε →  only one bound state level “survives”, while the rest 
of levels tend to the accumulation point = 0κ . Similarly to 
the conventional δ -potential, the bound energy level is  
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2 2
1 1 2 2

1 1= ( ) = ( ) ,
2 2

a d c a d cκ  (42) 

valid only on plane (5). At the point 2P , we are dealing 
with the situation when all the zeroes of the function 

( )ε κ  escape to −∞ as 0ε → , except for a one zero being 
located on one of the surfaces of the resonance set 0′Σ . 
Equating asymptotic expression (40) to zero and using (41) 
at the point 2P , we obtain the bound state value  

1 2
2

2 1 1 1 2
= ,

2 ( )coth
n

ca a
a a d a a

κ
− −

(43) 

valid on the nth surface of the resonance set 0′Σ . This ex-
pression coincides on 0′Σ  with formula (36) where nθ  and 

nα  are given by Eqs. (31) and (32). Note that expression 
(43) does not depend on the parameter 2d , which was ex-
cluded because of the consideration on the set 0′Σ . On the
other hand, on the set 0′Σ , instead of formula (43), one can 
write a symmetric analogue  

1 2
2

1 2 2 1 2
= ,

2 ( )coth
n

ca a
a a d a a

κ
− −

 (44) 

which now does not depend on the parameter 1.d  Finally, 
one should emphasized that beyond the resonance sets 0Σ  
and 0′Σ , the point interactions with bound states do not exist 
at all. For these parameter values the system is opaque and 
the wave function satisfies at = 0x ±  the boundary condi-
tions of the Dirichlet type: ( 0) = 0ψ ± . 

The scenario of escaping the bound energy levels to in-
finity (except for one level) is illustrated in Fig. 3 for a 
distributional ′δ -potential. This point interaction is realized 

at the point 2P  lying on the line L ′δ . The data with 1 2=a a−  
and 1 2 :d d d= =  immediately provide its location on the 
L ′δ -line. Next, for the existence of a bound energy level as 

0ε → , these data must satisfy Eq. (28). Therefore the res-
onance set for the distributional ′δ -potential is 0 0′Σ ∩Σ . 

Then, for this potential 0 = 0κ  and for the numerical 
calculations presented in Fig. 3, we use the first two non-
trivial values of d  ( = 5.6, 10d  nm) that correspond to the 
subsets of 0′Σ  with = 1n  and = 2n . As shown in Fig. 3, for 
the data with = 1n , there are two zeroes of ( )ε κ , where 

1, 1εκ → κ  and 2,εκ  diverges at 0ε → . For the data with 
= 2n , there are three zeroes, where 1, 2εκ → κ , while 2,εκ  

and 3,εκ  diverge.  

8. Concluding remarks

There exists an ubiquitous opinion that the bound state en-
ergy levels for Schrödinger equation (1) with a regularized 
potential ( )V xε  escape to −∞ as ( ) ( )V x xε ′→ γδ  in the sense 
of distributions (γ  is a strength constant). However, in general 
this is not true, except for the point interactions with an addi-
tional δ -like potential [12], when ( ) = ( ) ( )V x x x′αδ + γδ . 
On the basis of both the analytic arguments and the nume-
rical computations, we prove that for the family of ′δ -re-
gularized potentials, a single bound energy level converges 
to a finite value, whereas the rest of energy levels escapes 
to −∞ . This is also true for the two families of point in-
teractions, called in this article generalized δ - and ′δ -po-
tentials, that cover their distributional analogues. These 
interactions are realized asymptotically as a one-point ap-
proximation of double-layer heterostructures, when the 
thickness of layers and the distance between them squeeze 
simultaneously to one point. The separated distance be-
tween the layers plays a crucial role in the existence of 
bound states for the families of generalized δ - and ′δ -po-
tentials as defined in the present paper.  
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Точкові взаємодії зі зв’язаними станами: 
наближення нульової товщини для двошарової 

гетероструктури 

Олександр В. Золотарюк, Ярослав Золотарюк 

Гетероструктура, що складається з двох паралельних 
шарів, досліджується в наближенні, коли товщина шарів та 
відстань між ними зменшуються до нуля. Проблема 
вивчається в одновимірному випадку, потенціал у рівнянні 
Шредінґера обрано у вигляді кусково-сталої функції. Для такої 
структури отримано два сімейства точкових взаємодій зі 
зв’язаними станами. Специфічною характерною рисою цих 
взаємодій є резонансно-тунельне проходження електронів 
через точковий синґулярний потенціал за певних умов, що 
задаються трансцендентними рівняннями. Рішення цих 
рівнянь визначають так звані резонансні множини нульової 
міри Лебега. Конкретним прикладом є потенціал у вигляді 
похідної від дельта-функції Дірака. Для всього сімейства точ-
кових взаємодій, включаючи і цей приклад, доведено 
існування зв’язаних станів всупереч поширеній думці про 
неіснування зв’язаних станів у δ′-подібних системах. 

Ключові слова: одновимірні квантові системи, точкові 
взаємодії, резонансне тунелювання, зв’язані стани. 
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