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Critical current of dc SQUID on Josephson junctions
with unconventional current-phase relation

l. N. Askerzade ? and R. T. Askerbeyli®

'Department of Computer Engineering and Center of Excellence of Superconductivity Research, Ankara University
Ankara 06100, Turkey
E-mail: imasker@eng.ankara.edu.tr

?Institute of Physics of the Azerbaijan National Academy of Sciences, Baku AZ-1143, Azerbaijan

®Karabuk University, Department of Business Administration, Karabuk, Turkey

Received April 24, 2020, published online July 22, 2020

Here we present calculations of the critical current of dc SQUID based on Josephson junction with un-
conventional current-phase relation. We analyzed two cases of current-phase relation of junction: with anhar-
monic and Majorana term. It is shown that the changing of the critical current in the case of the small geo-
metrical inductance of dc SQUID based on Josephson junctions with unconventional current-phase relation
is determined by the amplitude of the second term in current-phase relation, the geometrical inductance of dc
SQUID and external magnetic field. In the case of the high inductance of dc SQUID unconventional terms can

be ignored.
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Introduction

It is well known that dc SQUID consists of two Joseph-
son junctions in parallel, including to superconducting loop
(Fig. 1). Suppose that a magnetic flux @, passes through
the interior of the loop. Detail description of dc SQUID on
conventional superconductor based Josephson junctions
were presented in Refs. 1, 2. In the investigations of the
dynamics of dc SQUID, the conventional current-phase re-
lation of Josephson junctions [1, 2]

I =lgsing 1)

were used. The relationship | =1.,sin¢ is fulfilled with
high accuracy for Josephson junctions on low-temperature
superconductors [3]. In the case of Josephson junctions
on high-temperature superconductors, the current-phase re-
lation becomes anharmonic [4, 5]:

I'=1¢ofo (@) =l o(sing+asin2g) , )

where anharmonicity parameter o depends on the junction
preparation technology. In general, anharmonicity in the cur-
rent-phase relation for high temperature and Fe-based super-
conductors based junctions are associated with the d-wave
behavior of the order parameter and many band character
of superconducting state in new compounds [6]. The ratio
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between the second and the first harmonics o, ranges from 0
at temperature 900 mK to a saturated value 0.77 below
100 mK in a YBa,Cu;0; grain boundary biepitaxial Joseph-
son junctions [4]. The anharmonic current-phase relation of
junctions based on Fe-based superconductors widely dis-
cussed in Refs. 7-12. The origin of anharmonicity in such
junctions related to many-band character of superconducting
state and sign-reversal symmetry of order parameter [7-12].
Dynamical properties of single Josephson junctions with
an anharmonic current-phase relation (2) were previously
studied in Refs. 13-15.

Fig. 1. Schematic presentation of dc SQUID.
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In the case of Josephson junctions based on topological
superconductors, the current-phase relation include addi-
tional fractional term [16-18]

I =g fn(@) =g [sing+msin (¢/2)]. 3

The second term in Eq. (3) related with Majorana quasi-
particles and dynamical detection of these particles seems
very challenging in condensed matter physics. The discovery
of Majorana fermions seems very interesting also from the
point of fault-tolerant quantum computing [19]. The few pa-
pers devoted to the dynamical properties of single Joseph-
son junctions with Majorana term (3) [20, 21]. In this study,
we carried out the analysis of the critical current of the dc
SQUID on Josephson junctions with unconventional cur-
rent-phase relations (2), (3).

Basic equations

The dynamics of dc SQUID in the general case de-
scribed by the system of equations [1] (see Fig. 1)
i +iy =1,
21D, 4

Pe = D, )

0= — (i, —1y),

where @ is the quantum of magnetic flux. It is well
known that [1] in the case of dc SQUID with identical
Josephson junctions, the small total inductance of loop
| =2nLl, /@, <<1 and with current-phase relation (1) is
equivalent to single Josephson junction with effective criti-
cal current I, =21, cos[(¢p; —¢,)/2] and with effective
phase ¢ = (¢, +¢,) /2 (Fig. 1). The equation for the mag-
netic field can be written as

0, —0, =(pe—2|Sin(p—ZeCOS(p. (5)

Taking into account Eq. (5), for external current i, is the true
relation

. I 0. . I .50, .
i, =—% =2c0s—&sin @ +—sin? —Esin2¢ . 6
=T 5 SIne+> > o} (6)

It means that the inductance of the superconducting loop
in dc SQUID causes additional electrodynamic anharmoni-
city to current-phase relation and should be taken into ac-
count [22, 23]. Using Egs. (2), (3) for unconventional cur-
rent-phase relation leads to final expressions for external
current in symmetric dc SQUID

izl _ COS%Sin(p+(IZSin2%+GCOS(pe)Sin 20, (7)

- I 2 Pe Pe i P
= C0S—=Sin @+ —sin“ —=sin 2¢ + mcos—=sin—- . (8
ProP e 355 @)

As followed from Eqgs. (7) and (8), inclusion of inductance
and unconventional terms in current-phase relation changes
the amplitude of second harmonic.
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Results and discussions

The presence of the second harmonic in current-phase
relations (2), (3) leads to the renormalization of critical
current l. The critical current of a Josephson junction
isamaximum value of the superconducting current
I /1o =max f, . (o) [see Egs. (2), (3)]. The critical cur-
rent I, of Josephson junction with unconventional current-
phase relation was found in [24] as an analytical solution for
the maximum point of the functions f, (o) [Egs. (2), (3)]
similarly to [25]. Calculations leads to the expression for the
renormalized critical current 1, at small parameters o <<1
and m <<1 [24]

1+ 202, anharmonic term

= m 7 )

IC
lo |1+—=+—m? Majorana term

J2 64

The critical current of a Josephson junction with uncon-
ventional current-phase relation for arbitrary values of pa-
rameters o and m calculated in Ref. 24. Last result means
that all physical parameters will be renormalized, replacing
critical current I by I, max f . (¢).

For small geometrical inductance of symmetrical dc
SQUID | <<1, from Egs. (7), (8) under small parameters
o <<1and m<<1, we can obtain final expressions for the
normalized critical current of dc SQUID

2
(Lsinz (')Ze—i-ocCOS(pej
142 Pe

i, = cos— , 10
: cos? Pe 2 to
2
2 sin® Pe. mcos e
i ={1+2——4 1071 4 LeosPe | (11)
cos? Pe cos e 2
2 2

In derivation of last Egs. (10), (11), we use above presented
results [see Eq. (9)] for critical current for Josephson junc-
tions with unconventional current-phase relation [24]. For
the small values of geometrical inductance | and different
amplitude of anharmonicity parameter o, the result of nu-
merical calculations of critical current i, presented in Fig. 2.
In the case current-phase relation with Majorana term (3)
similar calculations leads to Fig. 3. It is clear that for the
case of o =0 and m = 0 we have analytical result corre-
sponding to classical result i, =cos (¢, /2) [1]. Also it is
useful to note that obtained results are symmetrical in re-
spect to axes i, and obtained the whole picture is a periodi-
cal in respect to external the magnetic field ¢, with the
period 27. As followed from Figs. 2 and 3, the inclusion of
geometrical and intrinsic anharmonicity to consideration
changes behavior at i.(p,). Near ¢, == the amplitude of
the first harmonic in current-phase relation tends to zero
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Fig. 2. Critical current of dc SQUID with small inductance | un-
der parameters o from top to bottom.

and the critical current is determined by the amplitude of
second harmonic i, ~|I/4—a/. In the case of anharmonic
current-phase relation (2), the increase of critical current
arises at small external magnetic field ¢, <7/2 with in-
creasing of anharmonicity parameter a, while for high
magnetic field ©/2 < ¢, < and high values of o. we have
“plateau-like” behavior in Fig. 2. In the case of current-
phase relation (3), the dependence of critical current versus
external magnetic field i (¢.) reveal more monotonic
character similar to i, = cos ¢, /2 with higher amplitude in
increasing of parameter m (Fig. 3). Calculations show that
in all cases of current-phase relation [Egs. (2) and (3)] the
changing of the inductance of dc SQUID in the region 1 < 1
has small impact on presented results on Figs. 2 and 3. For
the high values of inductance of dc SQUID | >> 1, Joseph-
son inductance of junctions @ /2nl., can be ignored in
consideration of dynamical effects [1]. As a result, the
phase of Josephson junctions on superconducting loop
(Fig. 1) changes independently and in this limit is the true
system of linear equations [1]

i
=%+ 2e

|
e 9
|2—___.
2

(12)

If take into account the results of Ref. 24, the renormaliza-
tion of critical current as I, max f,  (¢) causes decreas-
ing of Josephson inductance @/ 2xl. approximately two
times. It means that in dc SQUID with high geometrical
inductance | >> 1, the unconventional effects in current-
phase relations (2), (3) can be neglected.

Thus, in this study, the influence of unconventional cur-
rent-phase relation of Josephson junction on the critical
current i, of dc SQUID was investigated. Renormalization
of critical current in junctions with anharmonic and
Majorana terms under external magnetic field was taken
into account in the limit of the small geometrical induct-
ance of dc SQUID. General expressions under external

Fig. 3. Critical current of dc SQUID with small inductance | un-
der parameters m from top to bottom.

magnetic field were obtained in this limit | < 1, which co-
incide with the conventional current-phase relation under
parameters oo =0 and m = 0. In the opposite case of high
geometrical inductance | >> 1, the unconventional effects
in current-phase relation is negligibly small.
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Kputnununm ctpym dc prosedcoHiBebkoro CKBIa
3 HETpaaULiHUM CRIiBBIAHOLLEHHAM CTpyM—dasa

I. N. Askerzade, R. T. Askerbeyli

[IpencraBneHo po3paxyHKH KPUTHYHOTO CTpyMy dc mxozed-
coniBcekoro CKBI/la 3 HeTpagumiiiHuM cTpyM-(ha30BUM CIIiBBII-
HomeHHsM. [IpoaHaii3oBaHo /iBa BUMAIKH CIiBBiTHOIICHHS CTPyMY
1 a3y 3’eTHAHHS: aHTapMOHIMHUM Ta MaifopaHiBCbKUM BHECKaMH.
[ToxazaHo, 110 3MiHA KPUTUYHOTO CTPYMY y BHIAAKy Majoi Ireo-
METPHYHOI iHAYKTUBHOCTI mko3edconiBcbkoro CKBI/la moctiii-
HOTO CTPYMY 3 HE3BHYalHMM CIIiBBiJHOLICHHSIM CTpyM—(pasa BH-
3HAYAETHCS AMILTITYOI0 IPYroro WIHA B IbOMY CHiBBiIHOIICHHI,
reoMeTpH4HOI0 iHAykTHBHICTIO 1Iboro CKBI/Ia Ta 30BHiIIHIM Mar-
HiTHUM nosieM. Y BUnaiky Bucokoi inaykruBHocti dc CKBI/la
HOCTIHHOTO CTPYMy HE3BHYaiiHi yMOBHM MOXHA irHOPYBAaTH.

Kirouosi cnosa: dc CKBI/], criBBinHOIIEHHS cTpyMY i a3y, aH-
rapMOHIiiiHI Ta MaifopaHiBCbKi BHECKH.
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