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The effect of the anisotropy of an elastic medium and a crystal on the properties of surface waves is consi-
dered. It leads to symmetry breaking of a semi-bounded space with respect to reflection. This fact affects the 
possibility of the existence and properties of surface elastic shear waves. It is shown that, while maintaining the 
crystallographic symmetry in crystals with the surface orientation (110), the anisotropy breaks the indicated 
symmetry, but retains the possibility of propagation of surface waves with their strong modification. In the case 
of an anisotropic half-space with a thin film coating, which allows the propagation of the Love waves in an iso-
tropic medium, anisotropy leads to the absence of such stationary waves. 
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1. Introduction

Investigations of surface waves (SW), despite its more 
than a century history since their theoretical prediction by 
Rayleigh (see, for example, [1]), have not lost their relevance 
until now. 

This is due to the importance of such waves both from a 
fundamental point of view and in connection with their 
technological applications (in seismology, magnetically or-
dered systems, piezoelectric crystals, in nondestructive test-
ing methods, etc.). In the currently developing nanophysics, 
the contribution of surface waves to the thermodynamic 
characteristics (for example, heat capacity) of finely dis-
persed media is the main one at low temperatures [2]. In an 
isotropic medium, in which two transverse sound velocities 
coincide, the Rayleigh surface wave is two-component — 
the displacement vector lies in the sagittal plane specified by 
the normal to the surface and the direction of wave propaga-
tion. In anisotropic systems (in a crystal lattice), the surface 
wave in the general case can also be three-component [3]. 
The conditions imposed on the symmetry of the lattice and 
the direction of wave propagation were investigated in [4] 
under which a three-component surface wave is split into a 
two-component wave polarized in the sagittal plane (Ray-
leigh polarization) and a one-component wave polarized 
perpendicular to the sagittal plane (SH wave). Such purely 
shear waves in the long-wavelength limit penetrate deep 
into the crystal much deeper than the Rayleigh-type waves 

and therefore much more strongly depend on the surface 
properties [5]. The high sensitivity to the surface properties 
makes it possible to use the surface SH waves as highly 
sensitive sensors for measuring such physical characteristics 
as, for example, the parameters of a superfluid helium film 
or the atomic mass of an impurity surface layer [6]. In addi-
tion, these one-component waves are described by scalar 
dynamic equations, which simplifies their theoretical study. 
As noted earlier, in the case of a sufficiently symmetric ge-
ometry of the problem, pure shear surface waves are split off 
from the waves of Rayleigh polarization. Therefore, when 
studying such one-component surface waves, without loss 
of generality, one can consider systems of reduced dimen-
sion (for example, two-dimensional), in which the propa-
gation of Rayleigh polarization waves is impossible. As 
well as for the waves of Rayleigh polarization, it is possible 
to consider the transition from “ordinary” SWs, in which the 
decrease in the amplitude of oscillations with distance from 
the surface occurs monotonically, to “generalized” SWs, in 
which a decrease in the amplitude of the wave is accompa-
nied by its oscillations [7, 8]. 

In the case of an ideal surface, the existence of the Ray-
leigh SWs is due to the presence of two wave components 
with polarizations in the sagittal plane. Moreover, in the 
framework of the local and linear theory of elasticity, purely 
shear surface waves are absent. Their existence in the case 
of a continuous medium is possible only when the proper-
ties of the medium bulk differ from those of the surface 
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layer or when nonlocality (spatial dispersion) is taken into 
account. The presence of a surface covering of an elastic 
half-space leads to the appearance of purely shear so-called 
the Love waves [9]. The situation can change when pass-
ing from a continuous elastic medium to a crystal lattice. It 
was shown in [5, 10] that for a certain orientation of the 
lattice axes with respect to the surface, pure shear SWs 
become possible even in the case of an ideal surface. The 
considered crystal orientation (110) is shown in Fig. 1(b). 
Surface atoms are highlighted in the figure, but it was as-
sumed that in their properties (masses and energy of inter-
action with neighbors) they did not differ from bulk atoms. 
At the same time, it was shown that with the orientation of 
the (100) surface shown in Fig. 1(a), surface shear waves 
are absent when interaction with only the nearest neighbors 
is taken into account. In [10], the question was formulated 
about the existence of surface waves when the orientation 
of an ideal surface is intermediate between these two orien-
tations, i.e., for the orientations of the form (1n0). A par-
ticular case of this orientation (120) is shown in Fig. 1(c). 

The last example differs from the two previous ones be-
cause due to the surface geometry there is no symmetry 
x x→ −  or n n→ − , where x  is the coordinate along the 
direction of the surface and n are the numbers of atoms in 
this direction. In this paper, we consider the question of the 
influence of symmetry on the properties and conditions for 

the existence of surface waves. In this case, we restrict our-
selves to systems in which the symmetry of the medium 
satisfies the condition of the indicated symmetry, but the 
elastic properties do not possess such symmetry — it is bro-
ken by the anisotropy of elastic interactions. Two models 
will be considered: an anisotropic crystal cubic lattice with 
surface orientation (110) and an anisotropic continuous 
elastic medium with a surface coating. 

2. Surface shear waves in a semi-bounded crystal 
with a square lattice and anisotropy 

of elastic properties 

Consider the modification of the model proposed earlier 
in [10] and shown in Fig. 2. 

The Fig. 2 shows the sagittal plane of the crystal, which 
is a half-space of a planar square lattice with a lattice con-
stant a and with a surface oriented perpendicular to the axis 
y . We assume that the nearest neighboring atoms interact 
and this interaction is different in the directions of the crys-
tallographic axes. In the figure, the surface atoms are high-
lighted and atoms in the volume are shown separately. Due 
to the orientation of the surface, it is convenient to separate 
atoms in layers with even numbers from the surface and 
with displacements nmv  and in layers with odd numbers 
and displacements nmu , where the first index indicates the 
number of the atom in the layer, and the second indicates 
the number of the layer. The elastic moduli are equal to µ 
and ′µ  along the two crystallographic directions (see fig-
ure). [Since shear waves with displacements perpendicular 
to the plane (XY) are considered, these are two shear moduli.] 
Due to the difference in elastic moduli, the system does not 
have symmetry with respect to reflection x x→ −  or .n n→ −  

The equations of motion for the bulk atoms for the lay-
ers highlighted in Fig. 2 have the form (for simplicity, we 
set the masses of atoms equal to unity) 

 ( )1, 1, 2, , 12n m n m n m n mu u v v+ + + +′+ µ − − +   

 ( )1, , 2, 12 0n m n m n mu v v+ + ++µ − − = , (1) 

 ( ), , 1, 1 1,2n m n m n m n mv v u u+ − −′+ µ − − +   

 ( ), 1, 1 1,2 0n m n m n mv u u− − ++µ − − = . (2) 

Fig. 1. Two-dimensional square lattice with various ideal surface 
orientations. 

Fig. 2. Anisotropic half-space model for the square lattice crystal. 
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In a bulk wave propagating along the axis x , the dis-
placements do not depend on the layer number m and have 
the form 

( ), expn mu u i t ikan= − ω + , ( ), expn mv u i t ikan= − ω + . (3) 

Substituting the expressions (3) into Eqs. (2), we obtain 
the dispersion law, which can be written for two branches 
of the in-phase ( )u v=  and antiphase ( )u v= −  oscillations 
of the nearest layers: 

 ( )1 02 sin / 2kaω = ω , u v= , (4) 

 ( )2 02 cos / 2kaω = ω , u v= − , (5) 

where ( )0 2 ′ω = µ +µ . These dependences are shown in 
Fig. 3 in the form of curves u v=  and u v= . 

In the long-wavelength limit 1ak << , the bulk waves 
have the usual spectrum of elastic waves with negative 
dispersion 2 2( / 0)d dkω >  

 ( )
3 3

0
02 sin / 2

242v
k aka ka

 ω
ω = ω ≈ − 

 
. (6) 

Let us consider the possibility for the existence of sur-
face waves. For them, the system of equations for the dy-
namics (1), (2) is supplemented by the boundary condition 
for the surface atoms 

 ( ) ( ),0 ,0 1,0 ,0 1,0 0n n n n nv v u v u− +′+ µ − +µ − = . (7) 

This equation can be rewritten as 

( ) ( ),0 ,0 1, 1 1,0 ,0 , 1 1,02 2n n n n n n nv v u u v u u+ − − − +′+ µ − − +µ − − −  

 ( ) ,0 1, 1 , 1 0,n n nv u u+ − −′ ′− µ +µ +µ +µ =  (8) 

formally introducing the displacements of the absent atoms 
outside the boundary , 1nu − . 

We consider the solution for surface waves in the form 

 
( )
( )

,

,

exp ,

exp .
n m

n m

u u i t ikan am

v v i t ikan am

= − ω + − κ

= − ω + − κ
 (9) 

Stationary surface oscillations correspond to the solutions 
with purely real values of frequency ω and wave vector k  in 
the direction of the axis x . As for the parameter κ , it can be 
both purely real in ordinary surface waves and complex in 
generalized surface waves, in which the decrease in the am-
plitude inside the crystal is accompanied by its oscillations. 
Substituting the expressions (9) into Eqs. (1), (2), we obtain 
the following system of algebraic equations: 

( ) ( ) ( )2 2
0 e e e e e e 0iak a iak iak a iakv u uκ − − κ′ω −ω +µ + +µ + = , 

  (10) 

( ) ( ) ( )2 2
0 e e e e e e 0.iak iak a iak iak au v v− − κ − − κ′ω −ω +µ + +µ + =  

  (11) 
We can use the transformed above Eq. (8) for the dis-

placements, which now have the same form (9) as in all oth-
er layers. Therefore, in this expression, the first and second 
lines are nullified separately. In this case, the displacements 
in the “layer” with 1m = −  have an amplitude ~ exp ( )aκ . 
Since in this approach the double layer with 0m =  does 
not differ from all other pairs of layers, the amplitude ratio 

/u v is preserved in it. Equating the first and second lines 
in (8) to zero, we obtain the system of equations (10), (11) 
for all layers, including the surface and the boundary con-
ditions in the form 

 ( ) ( )2 2
02 2 e e 0iak iakv u −′ω −ω + µ +µ = . (12) 

In the isotropic case with 2
0 / 4′µ = µ = ω  considered in [10], 

these equations are simplified and have a simple solution: 

 0 sin
2

ak
ω

ω = ,   
4

2
1 coscosh .
2cos

ak
ak

+
κ =  (13) 

Thus, in the case of an isotropic crystal, the parameter κ  
is purely real, and the surface wave has the ordinary form, 
and its amplitude decreases monotonically with distance into 
the interior of the crystal. In this case, it follows from (13) 
that at 0k =  and / aπ  the parameter κ  vanishes and the 
surface wave is delocalized. Maximum localization occurs at 
a value / 2k a= π  at which κ = ∞. At this point of the spec-
trum we have 0u = , i.e., only surface atoms oscillate in 
antiphase, and all other atoms are motionless. In addition, it 
follows from boundary condition (12) that 

 cosu v ak= . (14) 

Therefore, the layers oscillate relative to each other with 
different amplitudes. This difference in the vibration ampli-
tudes of even and odd layers, even in the depth of the crys-
tal, is a “memory” of the difference in oscillations of the 
surface and near-surface layers in which atoms are in differ-
ent conditions. In the limit 0k → , they oscillate in phase 
( )u v= , and in the limit /k a→ π , in antiphase ( )u v= − . In 
the long-wavelength limit for the surface and bulk waves, 
we have the asymptotics of the oscillations spectra: 

Fig. 3. Dispersion laws for the bulk and surface waves in cases 
′µ = µ  (a) and ′µ ≠ µ  (b). (The values of the parameter 0ω  in the 

two figures are different.) 
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3 3
0 0sin

62 2s
a kak ak

 ω ω
ω = ≈ − 

 
, 

3 3
0

242v
a kak

 ω
ω ≈ − 

 
. 

  (15) 
So, in the isotropic case with ′µ = µ , the splitting off for 

the frequency sω  of the surface waves from the frequency 
vω  of the bulk waves occurs only in the second order in the 

amplitude of the wave vector 3 3
0~ a k∆ω ω . In Fig. 3(a), 

the lower branch corresponds to surface waves. 
In the case of an anisotropic crystal with ′µ ≠ µ , the sit-

uation is more complicated. As shown below, the surface 
wave becomes a generalized SW. In this case, it is conven-
ient to introduce the complex quantity 

 ( ) ( )e e cos sin ,ika ikaG ak i ak−′ ′ ′= µ +µ = µ +µ + µ −µ    

  (16) 
depending only on the parameter k. In terms of this parameter, 
the oscillation equations and boundary conditions (10)–(12) 
take a simple form 

 ( ) ( )2 2
0 e 0av G G uκω −ω + + = , (16) 

 ( ) ( )2 2
0 e 0au G G v− κω −ω + + = , (17) 

 ( )2 2
02 2 0.v uGω −ω + =  (18)  

Note that in this case the amplitudes of the oscillations 
u  and v become complex. Eliminating the parameter κ  
from the system of equations (16), (17) and using the rela-
tion /u v from the boundary condition (18), we find the 
dispersion law of surface waves 

 
2

04 sin 1 sin .
2s ak ak

′ ′ω  µµ µ −µ
ω = = −  ′ ′µ + µ µ +µ 

 (19) 

Thus, the asymptotics of the dispersion law for small 
wave vectors has the form 2 2 2 4 / ( )s a k ′ ′ω ≈ µµ µ +µ . For 
comparison: the asymptotics of the dispersion law for bulk 
waves in this limit is equal to 2 2 2 ( )v a k ′ω ≈ µ +µ . The split-
ting off for the frequencies of the surface wave from the 
frequencies of the bulk waves occurs already in the first 
order in the amplitude of the wave vector: 

 ( )
( )

2

3/2 .
2

ak
′µ −µ

∆ω ≈
′µ +µ

 (20) 

For / 2ak = π , the local mode frequency reaches its max-

imum value 2 2
0/ 1 ( ) / ( ) / 2 1/ 2m ′ ′ω ω = − µ −µ µ +µ < . 

At this point, ( ) / ( )u iv ′ ′= µ −µ µ +µ . Note that, in the case 
of an anisotropic crystal, the displacements of different 
atoms are no longer in-phase or antiphase: a phase shift 
arises between them. At the point of the maximum fre-
quency, this phase shift is equal to / 2π . In the general case 
of arbitrary values of the parameter k , the ratio of the am-
plitudes of oscillations for the layers has the form 

 cos sin .u Gak i ak
v

′µ −µ
= + =

′ ′µ +µ µ +µ
  (21) 

The frequency dependence for the local mode is shown as 
the bottom curve in Fig. 3(b). 

Taking into account the dependence of the frequency on 
the wave number (19) and the ratio of the amplitudes (21) 
from equation (17), it is easy to find an expression for the 
parameter κof the wave attenuation with a distance from 
the surface: 

 exp .
2

a Gκ − =  ′µ +µ 
  (22) 

This expression shows that in the case of a stationary local-
ized surface wave with a real frequency and wave vector, the 
parameter κ  cannot be purely real, and the wave cannot be a 
simple surface wave. Let the parameter κ  be complex, 

g ipκ = + , and equate to zero the real and imaginary parts of 
relation (22). In this case, we obtain the dependences of the 
smoothly decreasing and oscillating parts of the surface 
wave on the wave vector k : 

 
( ) ( )

2

2 2 2 2

2 tantanh ,
2 tan

ag ak
ak

′µ µ
=

′ ′µ +µ + µ +µ
 (23) 

 tan tan .
2

ap ak
′µ −µ

=
′µ +µ

 (24) 

Since the oscillations of the amplitude are determined by 
a factor exp ( )iamp , the period of the oscillations is equal to 

2 2 /L p= π  and is determined by expression (24). In the 
limit 0k → , the oscillation period becomes infinite, and at 

/ 2k a= π , the oscillation period is equal to 2 2L a= . That 
is, the layers through one oscillate in antiphase. If these are v 
layers, then the u  layers also oscillate in antiphase, but with 
a different amplitude ( ) / ( )u v ′ ′= µ −µ µ +µ  and with a 
phase shift of the oscillation by / 2π . 

Formula (23) determines the dependence of the charac-
teristics of the exponential decay of the SW amplitude on 
the wave vector. From this expression it follows that in the 
limit 0k →  the surface wave is delocalized ( 0g → ), and at 

/ 2k a= π  we have exp ( / 2) ( ) / ( )ag ′ ′− = µ −µ µ +µ . Con-
sequently, in this limit with weak anisotropy ′µ −µ << µ , the 
parameter g  increases, and the wave penetration depth tends 
to zero. Note that the considered system admits a state with 
a frequency 0/ 1/ 2ω ω =  localized exactly on the surface 
atoms, which oscillate in antiphase with the amplitudes 

,0 2,0( / )n nv v +′= − µ µ . 
Thus, in the proposed model, which does not possess 

symmetry x x→ − , n n→ − , it remains possible for the exist-
ence of specific surface waves, which differ significantly 
from the SW in the isotropic case and are characterized by 
an oscillating decrease in amplitude with distance into the 
crystal. 

However, this relation between the characteristics of sur-
face waves and the properties of symmetry is not general. In 
the next section, a model is considered in which symmetry 
breaking leads to the impossibility of the propagation of 
stationary surface waves. 
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3. Dynamics of an anisotropic elastic medium with a 
thin surface coating 

As another model, consider the previous crystal lattice, 
which has different shear moduli along two orthogonal 
directions, but within of a continuous medium. In this case, 
consider the configuration of a half-space, which also does 
not have mirror symmetry of reflection relative to a plane 
perpendicular to the plane of the surface. In the case of a 
continuous medium, pure shear waves do not localize near 
an ideal surface. Therefore, in order to compare situations 
with the presence and absence of this symmetry, let us 
consider purely shear Love waves [10], which can exist in 
an isotropic medium with a half-space covered with a thin 
layer of another substance, and which are also scalar. The 
Love waves exist in the case when, for example, a half-
space with a shear modulus µ and density 0ρ  is covered 
with a layer of thickness l  of another substance with the 
same modulus, but with a higher density 0/ 1sρ ρ = > . At 
small coating thicknesses, the frequency spectrum of the 
surface wave of the type exp ( )i t ikx y− ω + − κ  has the form 

2 2 2 2 4( 1)k s l kω ≈ µ −µ −  and is split off from the frequen-
cy spectrum of the bulk waves 2 2kω = η . (The coordinate 
x  is directed along the wave propagation in the plane of the 
surface, and the coordinate y  is perpendicular to the sur-
face into the bulk of the medium.) The decrement of the 
wave amplitude with distance from the surface is deter-
mined by the parameter 2 ( 1)l k sκ ≈ − . This result can be 
obtained in a simpler model by replacing the layer with 
changed properties with a δ  function. In this case, the ef-
fective equation will have the obvious form: 

 ( ) ( )1 / ,xx yyu u u s y l u−µ −µ = − − δ   (25) 

where u  are the transverse displacements of the medium in 
the direction perpendicular to the sagittal plane ( , )x y . This 
simplified model exactly retains the results presented 
above for the spectrum of surface waves and the amplitude 
decrement. 

Let us consider an anisotropic medium with a thin coat-
ing, and assume that in two orthogonal directions the shear 
moduli have different values µ and ′µ . Keeping the desig-
nations chosen above for the coordinates ( , )x y  associated 
with the geometry of the problem, we introduce a coordinate 
system ( , )ξ η  associated with orthogonal axes along which 
the elastic bonds are characterized by shear moduli µ and ′µ , 
respectively. These two coordinate systems can be rotated 
relative to each other in the sagittal plane at an arbitrary 
angle ϕ. The geometry of the problem is shown in Fig. 4. 

In the coordinate system associated with the axes ( , )ξ η , 
the dynamical equation in the bulk of the half-space has 
the form 

 0.u u uξξ ηη′−µ −µ =   (26) 

The Fig. 4 shows the connection between the two coor-
dinate systems: 

 cos sin ,y = ξ ϕ+ η ϕ  sin cos .x = −ξ ϕ+ η ϕ   (27) 

Using these relations, we rewrite Eq. (26) in a new co-
ordinate system, taking into account the presence of a coat-
ing on the surface 0y = , similar to the case of an isotropic 
medium and Eq. (25): 

 ( ) ( )2 2 2 2sin cos cos sinyy xxu u u′ ′− µ ϕ+µ ϕ − µ ϕ+µ ϕ +   

 ( ) ( ) ( )2 sin cos 1 / .yxu s y l u′+ µ −µ ϕ ϕ = − − δ    (28) 

For a bulk wave of the form 0 exp ( )u u i t ikx= − ω +  
propagating along the surface in the direction of the axis x, 
the dispersion relation has the form 

 ( )2 2 2 2cos sin .k′ω = µ ϕ+µ ϕ   (29) 

To obtain the boundary condition, we supplement the 
considered half-space in the region 0y <  with a similar 
half-space and use the solutions that are symmetric with 
respect to the plane 0y = . Then we integrate Eq. (28) over a 
narrow region near the interface, tending the region of inte-
gration to zero. It is easy to see that in this case a boundary 
condition of the following form arises: 

 ( ) ( )2 2 2
00

sin cos 1 .y yy
u l s u ==

′µ ϕ+µ ϕ = − ω −   (30) 

Let us consider the question of the possibility for the 
existence of surface waves in this system. It is natural to 
look for a solution for such waves in the form u =

0 exp ( )u i t ikx y= − ω + − κ . A normal surface wave should 
correspond to a solution of this type with real frequency ω, 
real wave vector k , and real parameter κ . The generalized 
surface wave corresponds to the complex parameter κ . 
Substituting the solution of the indicated form into the equa-
tion in the bulk and into the boundary condition, we obtain 
the relations 

( ) ( )2 2 2 2 2 2 2cos sin sin cosk ′ ′ω = µ ϕ+µ ϕ − κ µ ϕ+µ ϕ −  

 ( )2 sin cos ,ik ′− κ µ −µ ϕ ϕ  (31) 

 ( ) ( )2 2 2sin cos 1 .l s′κ µ ϕ+µ ϕ = ω −  (32) 

Fig. 4. Anisotropic elastic half-space with the surface coating 
with thin film. 
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It follows from relation (32) that the parameter κ  at a 
real frequency (i.e., for stationary waves) can take only the 
real values. However, it follows from the first equation in 
(31) that the wave vector k  cannot be real. So, for an arbi-
trary angle ϕ, when the system does not have symmetry of 
reflection with respect to the coordinate x x→ − , there are 
no stationary surface waves. As can be seen from (31), 
they are possible only in an isotropic medium with ′µ = µ  
or in an anisotropic medium with ′µ ≠ µ , but only at angles 

0ϕ =  and / 2π  at which the indicated symmetry is restored 
even in a nonisotropic medium. In the long-wavelength lim-
it, in the case 0ϕ = , the surface wave has a frequency spec-
trum 2 2 2 4 2( 1)k l k s′ω ≈ µ −µ µ −  and its localization is char-
acterized by a parameter 2( / ) ( 1).l k s′κ = µ µ −  In the case 

/ 2ϕ = π , the corresponding characteristics have the form 
2 2 2 4 2( 1)k l k s′ω ≈ µ −µ µ −  and 2( / ) ( 1)l k s′κ = µ µ − . 

In the absence of dissipation in the system when a sur-
face wave is excited, its frequency is a real quantity, but in 
this case the values of the parameters κ  and k  become com-
plex. Excluding the quantity κ , it is easy to relate the fre-
quency ω to the complex value of the wave vector along the 
axis x: 

 ( )2 2 / ,v k Pω = ω   (33) 

where the dependence ( )v kω  corresponds to the dispersion 
law of bulk waves in an unbounded medium (29), but with 
a complex vector k  and 

 ( ) ( )
2 2

2 sin cos
1 1 1 .

sin cos
P l s ik

′µ −µ ϕ ϕ 
= + − + ′µ ϕ+µ ϕ 

  (34) 

These expressions are simplified in the case of a weak 
anisotropy of the medium with ′µ −µ << µ  and with a 
weak effect of the surface coating: ( 1) 1l s − << . When in-
troducing a complex vector k K i= + Γ , we can calculate 
the depth of penetration of the surface wave into the bulk 
in the direction of the axis x: 1 /xL = Γ  and compare it 
with the localization region in the near-surface layer in the 
direction of the y  axis: yL . In the indicated approximation, 
these parameters have the values 

 
( ) 2

1 ,
1xL

l s
µ

≈
ε− ω

   
( ) 2 ,

1yL
l s

µ
≈

− ω
 (35) 

where the parameter ε is small and equal to 

 ( )sin cos 1.′ε = µ −µ ϕ ϕ <<  (36) 

Consequently, the depth of wave penetration along the sur-
face significantly exceeds its localization near the surface. 

Conclusion 

It is shown that the nature and the conditions for the ex-
istence of shear surface elastic waves substantially depend 
on the symmetry of the properties of the elastic medium or 
the crystal lattice with respect to the symmetry of the crystal 
surface. Two models of an anisotropic square lattice and an 
anisotropic continuous medium with a coating surface are 
considered, in which the anisotropy of elastic properties 
breaks the reflection symmetry in a plane perpendicular to 
the surface plane. In the case of a crystal lattice with a sur-
face orientation (110), the existence of a surface wave re-
mains possible, but it transforms into a generalized surface 
wave with amplitude modulation, which accompanies its 
monotonic decrease into the bulk of the crystal. In addition, 
the splitting off for the spectrum of surface waves from the 
spectrum of the bulk waves increases: the corresponding 
frequencies differ already in the first order in the amplitude 
of the wave vector in the long-wavelength limit. In the model 
for an anisotropic continuous medium bounded by a surface 
with a “heavy” surface coating, the anisotropy of elastic 
moduli leads to the absence of stationary surface waves, but 
they penetrate into the bulk of the material along the surface 
over long distances, inversely proportional to the anisotropy 
of the medium. 
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Зсувні поверхневі хвилі та симетрія системи 

A. S. Kovalev, E. S. Syrkin 

Розглянуто вплив анізотропії пружного середовища та 
кристалічної гратки, яка призводить до порушення симетрії 
напівобмеженого простору відносно відбиття, на можливість 
існування та властивості поверхневих пружних зсувних 
хвиль. Показано, що при збереженні кристалографічної си-
метрії при орієнтації поверхні (110) анізотропія усуває вка-

зану симетрію, але зберігає можливість розповсюдження 
сильномодифікованих поверхневих хвиль. У випадку анізо-
тропного напівобмеженого простору з тонким покриттям, який 
допускає розповсюдження хвиль Лява в ізотропному середо-
вищі, анізотропія призводить до відсутності таких стаціонар-
них хвиль, що не згасають вздовж поверхні середовища. 

Ключові слова: поверхневі хвилі, зсувні хвилі, хвилі Лява, 
кристалографічна симетрія. 
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