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Comparative analysis of the temperature dependences of resistivity ρ(T), excess conductivity σ′(T), 
pseudogap (PG) Δ*(T), and thermoelectric power S(T), measured on textured YBa2Cu3O7–δ (YBCO) polycrystals 
with different charge carrier density nf, depending on the level of doping with oxygen, modified by annealing, 
has been carried out. It is shown that for an optimally doped (OD) sample with Tc = 90 K (sample S1), σ′(T) near 
Tc is well described by the Aslamazov–Larkin (AL-3D) and Maki–Thompson (MT-2D) fluctuation theories, 
demonstrating 3D–2D crossover with increasing temperature. The crossover temperature T0 was used to deter-
mine the coherence length along the с axis, ξс(0). With a decrease in nf (samples S2 with Tc = 84 K and S3 with 
Tc = 80 K), the MT contribution is suppressed, and the σ′(T) dependence obeys the Lawrence–Doniach model, 
which is typical for samples with defects. The dependence Δ*(T) obtained for S1 has a form typical for OD sin-
gle crystals of YBCO with a maximum at Tpair ~ 114 K and a linear section descending to T01 ~ 94 K, which li-
mits the region of superconducting fluctuations above Tc. As nf decreases, the shape of Δ*(T) noticeably changes 
and becomes typical for YBCO films with a symmetric maximum at Tpair, which is the BEC–BCS transition 
temperature in high-Tc superconductors. As nf decreases, the slope S(T) changes from positive to negative, 
demonstrating a feature at the PG opening temperature T*. Accordingly, the dependence of S(T)/T on log T 
changes from linear to nonlinear, which indicates a change in the nature of interactions in the YBCO electronic 
subsystem with decreasing nf, since S/T ~ 1/nf. 
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1. Introduction

The study of the mechanism of superconducting (SC) 
pairing in high-temperature superconductors (HTSCs), 
which still remains unclear, is still one of the central direc-
tions of research in condensed matter physics. Understand-
ing the mechanism of SC pairing is extremely important 
for the search for HTSCs with even higher, preferably 
room, critical temperatures, Tc, for the transition to the SC 
state. It is believed that the study of the so-called pseudo-
gap state [1–3], which is observed in the region of the 
phase diagram corresponding to the appropriate concentra-
tion of charge carriers less than optimal, which is usually 
called the region of “underdoped” states, can shed light on 
this, as well as a number of other issues. Pseudogap (PG) is 

a special state of matter, which is characterized by a re-
duced (but not to zero) density of electronic states (DOS) 
at the Fermi level [4, 5]. It should be emphasized that the 
pseudogap state is fundamentally different from the super-
conducting one, in which the SC gap opens and DOS is 
zero [6]. In HTSC cuprates of the YBa2Cu3O7–δ (YBCO) 
type, the pseudogap opens at the characteristic temperature 
T* >> Tc. As a result, in a wide temperature range below 
T*, HTSCs have a number of unusual properties due to, as 
it is now commonly believed, the rearrangement of the Fermi 
surface [7–9]. However, the physical reason for the occur-
rence of the PG state is also not completely clear and contin-
ues to be the subject of extensive discussions [10–14]. 

There are two main groups of models for explaining the 
PG in cuprates. The first is based on the idea that PG is a 
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precursor to superconductivity and arises as a result of the 
formation of paired fermions, the so-called local pairs 
(LPs) below T* [3, 7, 15–19] with the subsequent estab-
lishment of their phase coherence at Tc [20]. Thus, this 
model states the superconducting nature of the PG. In one 
version of such model [3, 16, 17], the superconducting 
transition is considered as a Bose–Einstein condensation 
(BEC) of gas of electron pairs, considered as bosons with a 
charge of 2e. This model works at low-electron concentra-
tions, which exactly corresponds to the PG region in the 
HTSC cuprates. Unfortunately, the BEC model does not 
discuss the SC pairing mechanism, which leads to the ap-
pearance of such bosons above Tc. 

The second group of models assumes that the origin of 
the PG state is associated, for example, with low-energy 
antiferromagnetic fluctuations [7, 21, 22], since in the re-
gion of low hole concentrations all known HTSC cuprates 
are antiferromagnetic dielectrics [3, 7, 8]. The charge 
(CDW) [7, 8] and spin (SDW) [2, 7, 23] density waves, 
structural distortions [24], as well as recently developed 
ideas on modulation of the order parameter in HTSC (pair-
density wave (PDW) state) [14, 25 (and references therein)], 
on which there is a strong scattering of electrons, leading 
to a pseudogap rearrangement of their spectrum, are also 
not excluded. In such models, the non-superconducting 
nature of the PG state is stated. Thus, at present, there is 
still no consensus on the nature of the PG and its relation 
to superconductivity. 

It is well known that all properties of HTSC cuprates 
are determined by the density of charge carriers nf, which 
can vary in a wide range depending on the doping level 
[3, 7, 26, 27]. In YBCO nf changes as a result of oxygen 
intercalation, and the maximum Tc ~ 91 K corresponds to 
the stoichiometric material at δ = 0 [26]. In this paper, we 
report on the measurement of temperature dependences of 
the resistivity ρ(T) and the thermoelectric power (TEP) 
S(T) in three textured polycrystalline YBCO samples with 
different nf, which changed as a result of annealing the 
samples. For brevity, we will refer to the samples as S1, S2, 
and S3. From measurements of ρ(T), data were extracted 
on the excess conductivity, σ′(Т), and, accordingly, on the 
temperature dependence of the fluctuation conductivity 
(FLC) and pseudogap, Δ*(T). The calculation of the de-
pendences Δ*(T) was carried out in the model of local pairs 
[1, 3, 15–17], and the results were compared with the cor-
responding dependences ρ(Т) and S(Т) in order to find a 
correlation between the various features found in the PG 
phase in different experiments. As far as we know, the 
Seebeck coefficient S(T) has not yet been compared with 
the temperature dependences of resistance and PG. 

The results obtained show that in the region of supercon-
ducting (SC) fluctuations near Tc, FLC of the optimally doped 
sample S1 is perfectly described by the classical fluctuation 
theories of Aslamazov–Larkin (3D-AL) [28] and Hikami–
Larkin (HL) (fluctuation contribution of Maki–Thompson 

(2D-MT) [29–31], and the shape Δ*(T) is the same as in the 
YBCO films without defects [3, 17]. D is the dimension of 
the HTSC electronic subsystem. In the S2 and S3 samples, 
MT contribution is completely suppressed, and σ′(Т) is 
described in Lawrence–Doniach model most likely as a 
result of defects arising during annealing [24]. Simultane-
ously the shape of Δ*(T) and S(T) is also changed. It has 
been found that regardless of the density of charge carriers, 
S(T) of all three samples clearly changes the slope at the PG 
opening temperature T*. A discussion of these and other 
results obtained is given below. 

2. The experiment 

The samples were parallelepipeds with a length of 10 mm 
and a cross-section of 3 by 2 mm, cut from a pellet of tex-
tured polycrystalline YBa2Cu3O7–δ with a diameter of 30 mm 
and a thickness of 5 mm, obtained by solid-phase synthesis 
from yttrium and copper oxides and barium carbonate [32]. 
Initially, the sample had a value of Tc ~ 90 K (S1). A de-
crease in the oxygen content and, consequently, the density 
of charge carriers nf, and, therefore, Tc, was achieved by 
thermal vacuum annealing. Initially, three 90 K samples 
were prepared. The second was annealed at temperature 
~ 350 °C and the third one was annealed at temperature 
~ 400 °C, both in an oxygen-free environment for half an 
hour. After the first annealing Tc = 84 K was obtained 
(sample S2), and eventually the sample S3 with Tc = 80 K 
was prepared.  

The electrical resistivity was measured in a wide tem-
perature range from ~ 290 K to Tc utilizing the four-point 
probe technique with stabilized measuring current of up to 
10 mA. Silver epoxy contacts were glued to the extremities 
of the sample in order to produce a uniform current distri-
bution in the central region where voltage probes were 
placed. To measure S(T), potential contacts were clamped 
to the upper surface of the sample and were usually located 
at a distance of ~ 6 mm from each other. Thermoelectric 
power measurements were carried out by using the diffe-
rential method over the same temperature range. A tempe-
rature gradient of ~ 1 K was maintained throughout the 
measurements. A differential thermocouples made from 
copper and constantan and calibrated with a silicon diode 
sensor (DT 470) were used to measure the temperature of 
the test sample, while thermoelectric voltage (ΔV) develo-
ped across the sample due to the temperature gradient (ΔT) 
was measured by a Keithley 2000 Multimeter. The ther-
moelectric power S(T) calculated from the linear fits of ΔV 
vs ΔT curve was corrected for copper electrodes to obtain 
absolute thermoelectric power values [33]. More details of 
the experimental technique are given elsewhere [34].  

A feature of polycrystals is that their nf can change no-
ticeably upon annealing the sample, both in an oxygen 
atmosphere (to increase nf) and without it (to decrease nf). 
However, in the case of a strong change in nf, various 
kinds of defects can appear in the samples [24], which can 
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affect the measurements of ρ(T) and, to a much lesser ex-
tent, S(T), since the Seebeck coefficient is measured at low 
currents and is a characteristic of material, and not a spe-
cific sample with its defects. 

3. Results and discussion 

3.1. Resistivity, critical temperature, and thermoelectric 
power 

Figure 1 displays the temperature dependences of the 
resistivity, ρ(T), and the absolute TEP, S(T), of all three 
polycrystalline YBa2Cu3O7δ samples with different oxygen 
content, and, consequently, with different Tc: S1 — Tc = 90 K, 
S2 — Tc = 84 K, and S3 — Tc = 80 K. As usual, Tc was 
determined by extrapolating the linear portion of the ρ(T) 
dependence at SC transition to its intersection with the 
temperature axis [35], that is, Tc ≡ Tc (ρex = 0). In the case 
of S1, the width of the resistive transition δTc = Tc(0.9ρN) − 
– Tc(0.1 ρN) ≈ 2.5 K is rather narrow, but increases almost 
fourfold for sample S3. However, since the linear portion 
of the ρ(Т) dependence at the SC transition is well pro-
nounced for all samples, this approach makes it possible to 
determine the values of Тс with an accuracy of ± 0.1 K 
(Table 1). All dependences ρ(Т) exhibit metallic behavior 
and are linear above T*: ρN(T) = ρ0 + aT, with a slope a = 
= dρ/dТ ≈ 5.76 μΩcm/K (S1). ρ0 is the residual resistance, 
which the extrapolated ρN(T) cuts off on the Y axis. The 
slope was calculated by approximating the experimental 
curves on a computer and confirmed the linear behavior of 
ρ(T) with a root-mean-square error of 0.023 ± 0.002 in a 
given temperature range for all samples. 

As can be seen from Table 1, the resistivity of the 
samples during annealing increases markedly. However, 
with a decrease in Tc from 90 K to 84 K, the slope of ρ(T) 
practically does not change. This fact suggests that in our 
samples at large nf, the Matthiessen’s rule is fulfilled in a 
good approximation, namely: ρ = ρ0 + ρid, where ρid is the 

resistivity of an ideal crystal [36]. In our case, this is, in 
fact, the resistivity of an unannealed sample containing a 
minimum number of defects. It can be seen from the Table 1 
that the resistivity of the samples upon annealing actually 
increases due to an increase in ρ0, which occurs as a result 
of an increase in the number of defects. In contrast to 
YBCO single crystals, in which twins and pronounced twin 
boundaries are present, in good polycrystals such defects 
can be point defects arising with an increase in the number 
of oxygen vacancies in the CuO2 planes [37]. 

With a decrease in Tc to 80 K, the slope still slightly in-
creases to dρ/dТ = 6.12 μΩ/K (S3). Note that a similar in-
crease in dρ/dT is observed both in films [17] and in YBCO 
single crystals [26] with decreasing nf. At the same time, the 
residual resistivity ratio, defined as ρ(300 K)/ρ(100 K), slight-
ly decreases from 1.4 (S1) to 1.27 (S3), which also indicates 
an increase in the number of defects during annealing.  

As expected, sample S1 has the highest Tc = (90.0 ± 0.1) K 
and the smallest ρ(T = 100 K) = 2350 μΩ⋅cm, as well as 
the lowest maximum value Smax = 1.93 μV/K. In this case, 
the dependence S(T) is almost linear with a positive slope, 
which changes to negative clearly at T* (Fig. 1). For sam-
ples S2 and S3, the resistivity ρ(100 K) is 1.26 and 1.51 
times higher, respectively (Table 1). In this case, S(T) of 
both samples at high temperatures is also close to linear 
and, curiously, with almost the same but already negative 
slope, which increases almost 2 times at T ≤ T*. A change 
in the slope S(T) with decreasing nf in YBCO was reported 
in a number of works [38–40], but the fact that the slope 
changes precisely at T = T* was shown for the first time. 
For a more precise definition of T*, we use the criterion 
(ρ(T) – ρ0)/aT [41]. In the normal state (ρN(T) – ρ0)/aT = 1, 
but deviates downward from unity at T = T*, which makes 
it possible to obtain T* values with an accuracy of ± 0.3 K 
[35, 37, 41]. According to the model of LPs [1, 3, 15–17] 
at T = T* part of the normal electrons is transformed into 
local pairs, which transfer charge without dissipation. We 
believe that this is precisely what leads to an increase in the 
slope and to faster growth of S(T) below T*. Having reached 
the maximum, S(T) begins to decrease rapidly and, together 
with the resistance, turns to zero also practically in Tc. In 
Fig. 1, these portions of the S(T)curves are not shown in 
order not to overload the figure.  

Fig. 1. (Color online) The temperature dependences of resistivi-
ty ρ and Seebeck coefficient S for YBa2Cu3O7-δ polycrystals S1 
(Tc = 90 K), S2 (Tc = 84 K) and S3 (Tc = 80 K). 

Table 1. Changes in the parameters of the YBa2Cu3O7–δ poly-
crystal upon annealing 

Samples Tc, K ρ(300 K), 
µΩ⋅cm 

ρ(100 K), 
µΩ⋅cm 

ρ0, 
µΩ⋅cm 

dρ/dT, 
µΩ⋅cm/K 

S1 90 3540 2350 1874 5.76 

S2 84 4230 2950 2513 5.75 

S3 80 4940 3550 3053 6.12 
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At the first stage, the thermoelectric power data were 
analyzed within the ‘‘Two band model with modified linear 
T-term”. This model was originally proposed to describe 
the temperature dependences of the Seebeck coefficient in 
CeNix compounds [43]. But then it was successfully used 
for S(T) analysis in HTSC systems [40, 42, 44], taking into 
account the assumption of a Lorentz resonance near the 
Fermi level. The following formulas were used to analyze 
the data: 

2 2
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B T
=
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, 02( )FE E
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where AT shows the conduction of metallic holes and B/T 
the conduction of the semiconductor type electrons. 0E  
and Г are the center and width of the resonance, respec-
tively. The theory is based on a localized band in density 
of states D(E) near the Fermi level, which is superimposed 
on a broadband [40]. Accordingly, the value 0( )FE E−  
determines the position of the Fermi level relative to the 
middle of the peak D(E) (see Fig. 3(a) in Ref. 40). This 
resonance peak gives the characteristic temperature de-
pendence of TEP. To explain the temperature dependence 
of TEP in HTSCs, the linear term Tα  was added to Eq. (1) 
for S(T), which represents the contribution of the normal 
band [40, 44, 45]: 

 2 2
ATS T

B T
= +α

+
. (2) 

Equation (2) has been used to fit TEP data for HTSCs by 
many research groups, and the results obtained showed 
good agreement with experimental results, especially well 
above cT  [40, 45 and references therein) ]. However, from 
Eq. (2), the TEP is expected to become zero at 0 K, but for 

HTSCs, the TEP drops to zero just below cT . To eliminate 
this inconsistency, the temperature T has been replaced by 

0( )sT T−  in Eq. (2) as shown below [45]: 
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where 0  s cT T≈  is the temperature of zero TEP for HTSCs. 
Temperature dependencies of experimental TEP data 

for samples S1, S2, and S3 are shown in Fig. 2. The expe-
rimental S(T) data were fitted to the formula (3) (red 
curves) and the fitting parameters are given in Table 2. 
Let’s note the following. Model (3) gives good agreement 
between the experimental and calculated curves for all 
samples, and with reasonable values of the parameters. 
Unlike Y1–xPrxBa2Cu3Oy [40], with a decrease in the con-
centration of charge carriers, all parameters are gradually 
increased. Interestingly, both the width of the resonance 
peak Г and the value 0( )FE E−  increase linearly. That is, 
as well as in Y1–xPrxBa2Cu3Oy the Fermi level moves to the 
upper edge of the band [40], suggesting the observed in-
crease in the TEP value [46]. However, it should be noted 
that the fitting is incomplete. Indeed, all theoretical 
curves deviate downward from the experiment at T ≤ T 

*. 
This result seems to be quite reasonable since it is be-
lieved that at T ≤ T 

*, the PG opens in the HTSCs and the 
rearrangement of the Fermi surface begins [5, 7–9]. 

As a result, the Lorentz resonance near the Fermi level 
can be suppressed, making the model (3) inapplicable. In 
addition, the black dashed curves in the figure correspond 
to model (2) and clearly do not fit the experiment. There-
fore, model (2) is not considered in detail. We awaited 
more information, comparing the S(T) data with the results 
of the FLC and PG analysis as shown below. 

3.2. Fluctuation conductivity 

The linear ρ(T) above T* was proven to be an integral 
feature of the normal state of cuprates (e.g., YBCO) [47], 
which is characterized by the stability of the Fermi surface 
[5, 7–9], as mentioned above. At T ≤ T 

* the ρ(T) deviates 
downward from the linearity, resulting in appearance of the 
excess conductivity ( )T′σ : 

 1 1( ) ( ) ( )
( ) ( )N

N
T T T

T T
′σ = σ −σ = −

ρ ρ
, (4) 

Fig. 2. (Color online) Temperature dependences of S for 
YBa2Cu3O7–δ polycrystals S1 (T* = 125 K), S2 (T* = 138 K), and 
S3 (T* = 143 K) in comparison with theoretic models (2) (black 
dashed curves) and (3) (red solid curves). 

Table 2. Results of experimental data processing within the 
framework of the model (3) 

Samples Tc,  
K 

A, 
μV 

B, 
K 

α, 
μV/K2 

EF − E0, 
meV 

Γ, 
meV 

Ts0, 
K 

S1 90 52 22 0.0127 0.026 3.43 88 

S2 84 570 40.5 0.017 0.285 6.32 84 

S3 80 800 46 0.026 0.4 7.17 78 
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where 0 (  )N T aTρ = +ρ  is the resistivity of the sample in 
the normal state, extrapolated to the low temperature re-
gion. It is worth noting that at T = T* not only ρ(T) deviates 
downward from linearity but also DOS at the Fermi level 
begins to gradually decrease, which means the opening of 
PG [2, 4, 5]. In addition, at T = T* the Fermi surface is be-
lieved to change [7–9], most likely because of the for-
mation of the LPs just below T* [3, 15, 16]. Thus the proper 
determination of T* is of a primary importance for the FLC 
and PG analysis. Fortunately, the above precise method for 
finding T* allows a quite well way of determining T* with 
sufficient accuracy.  

In accordance with modern concepts [1, 3, 15, 16, 27, 
48–51], the small coherence length in combination with the 
quasi-layered structure of HTSCs leads to the formation of 
a noticeable, in comparison with conventional superconduc-
tors, range of SC fluctuations, ,flT∆  in cuprates above cT . 
In this range, fluctuating Cooper pairs (FCPs) behave in a 
good many ways like ordinary SC pairs, but without long-
range order (the so-called “short-range phase correlations”) 
[1–3, 10–16, 48], and the excess conductivity, ( )T′σ , obeys 
the classical fluctuation theories [28–31]. Usually, in YBCO, 

01 –fl GT T T∆ = =  (10–20) K, where GT  is the Ginsburg 
temperature, down to which the Bogolyubov mean-field 
theory works. The range of flT∆  is determined by a change 
in the oxygen stoichiometry, the presence of impurities 
and/or structural defects which have a significant effect on 

( )T′σ  and, accordingly, on the implementation of various 
models for describing the FLC above cT  [24, 28–31, 47]. 
Importantly, as mentioned above the behavior of TEP in 
the range of SC fluctuations has not yet been studied in 
detail. 

In order to estimate the FLC within the local pair 
model [1, 3, 15, 16], it is also necessary to determine the 
critical temperature in the mean-field approximation, mf

cT  
[3, 51, 52], which limits the range of critical fluctuations 
around cT , in which the order parameter Bk T∆ <  [52, 53]. 

The mf
cT is an important parameter of both FLC and PG 

analysis since it determines the reduced temperature
mf

c
mf

c

T T
T
−

ε = , which is included in all equations. In HTSCs 

near cT , the FLC is always described by the Aslamazov–
Larkin [28] equation for any 3D systems [3, 35, 51, 54]: 

 
2

1/2
3 3 32 (0)AL D D

c

eC
h

−′σ = ε
ξ

. (5) 

To determine mf
cT  we use an approach proposed by Beasley, 

et al.: from Eq. 5, σ′–2(T) ~ ε ~ T – mf
cT  and is zero when 

T = mf
cT  [52]. The result is shown in Fig. 3, using S1 as an 

example. Also shown are cT , the Ginsburg temperature
mf

G cT T> , and 3D–2D crossover temperature 0T . Using the 
same approach, mf

cT  for all samples was obtained (Table 1). 
Having determined both T*, σ′(T) and mf

cT , we can plot the 

dependences ln σ′ versus lnε for each sample. Figure 4 shows 
results for S1 (a) and S3 (b). As in all cuprates [24, 54], near 

cT , ln σ′ in both S1 and S3 is well described by Eq. (5). 
In the figure, these are straight red lines (1) with a slope 
λ = −1/2. This is because at 0T T<  the coherence length 
along the c axis, 1/2( ) (0)c cT d−ξ = ξ ε >  = 11.67 Å, which 
is the YBCO unit cell size along the c axis [55], and FCPs 
can interact in the entire sample volume forming the 3D 
state. It should be noted that S1 demonstrates the behavior 
of FLC, which is characteristic of well-structured YBCO, 
both films [53] and single crystals [54]. Indeed, above the 
3D–2D crossover temperature 0T  (marked as ln ε0 = −5.25 
in the figure) the data deviates above the 3D–AL line and 
can be well described by the 2D Maki–Thompson (2D–
MT) equation of the Hikami–Larkin theory [29]:  

 
2

2
1 1 1 2ln ( / )

8 1 / 1 1 2MT D
eC
d

 +α+ + α′σ = ⋅ ⋅ δ α ⋅  −α δ +δ+ + δ 

, (6) 

where 2 1[ (0) ]2 /c d −α = ξ ε  is the coupling parameter, 

 
2(0)16 c

Bk T
d ϕ

ξ δ = β τ π  

 (7) 

is the pair-breaking parameter, 0 0/ 8 /BT h k Aφτ β = π ε = ε
is the lifetime of the FCPs and A = 2.998⋅10−12 sK. The 
factor 1.203( / )abβ = ξ , where  is the mean free path and 

( )ab Tξ  is the coherence length in the ab plane, corresponds 
to the case of the clean limit ( )> ξ  [3, 29, 31]. On a double 
logarithmic scale Eq. (6) is the solid blue curve in Fig. 4(a), 
which perfectly describes the data in the range between 01T  
(ln ε01= − 3.45 in the figure) and 0T . This is because at 

0 01T T T< <  01( )cd T d> ξ >  ≈ 4 Å [55], which is the dis-
tance between the conducting CuO2 planes. Thus the planes 

Fig. 3. Temperature dependence of the inverse square of the ex-
cess conductivity, σ′–2(Т), for the polycrystal of YBa2Cu3O7-δ 

with cT  = 90 K (sample S1), which determines mf
cT  = 91.9 K. The 

arrows also show cT , the Ginzburg temperature GT , and the 
3D–2D crossover temperature 0T . 
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are connected by the Josephson interaction forming the 
2D fluctuating state of cuprates [29, 30]. Accordingly, at 

0T T=  0( )c T dξ =  [3, 35, 53, 54]. This allows the determi-
nation of the coherence length along the с axis [51, 54] 

 0(0)c dξ = ε . (8) 

Taking found 0T ≈ 92.4 K (ln ε0 ≈ –5.25) into account, from 
the Eq. (8) we find (0)cξ  = (0.86 ± 0.02) Å (S1), which is a 
typical value of (0)cξ  for optimally doped untwined YBCO 
single crystals with close cT  = 91.6 K [54]. In turn, S3 
demonstrates the behavior of FLC, which is characteristic 
of YBCO films with defects [52] and indicates the for-
mation of point defects in the sample upon annealing, as 
mentioned above [37]. Indeed, above 0T ≈ 92 K (denoted 
in the figure as ln ε0 = − 4.08), the data deviate downward 
from the 3D–AL line [Fig. 4(b)] and can be well described 
by the Lawrence–Doniach (LD) [56] equation of the 
Hikami–Larkin theory [29]: 

 
2

1

16 1 2LD LD
eC

d
−′σ = ε

+ α

. (9) 

In this equation, we note that σ′ will diverge as 1/2−ε  (3D 
behavior) when the temperature is close to mf

cT , and that σ′ 
will go as 1−ε  dependence (2D behavior) at sufficiently 

high temperature such that 2 ( ) / 1c T dξ < . On a double lo-
garithmic scale, this is the solid green curve in Fig. 4(b), 
which perfectly describes the data in the range between 

01T ≈ 102 K ( 01lnε  = − 2.05 in the figure) and 0T . Taking 
found 0T  into account, from the Eq. (8) we find (0)cξ  = 
= (1.52 ± 0.02) Å (S3), which, as expected, increased with 
decreasing cT  in accordance with the theory of supercon-
ductivity [6]. Above 01T  the CuO2 planes are no longer 
related by the correlation interaction [27, 30], since now 

01( )с Т dξ < , the experimental data completely deviate 
down from the theory. It is clear that 01 01( )с Т dξ =  and fi-
nally 01 0 01/d d= ε ε =  = (4.5 ± 0.3) Å [3, 35, 53, 54], 
which is close to the inter-planar distance in YBCO [55]. 
Found from the FLC analysis (0)cξ  are important parame-
ters for calculating the temperature dependences of PG, as 
will be shown below.  

3.3. Analysis of the pseudogap temperature dependence  

To analyze the excess conductivity σ′(T) in the entire 
temperature range from *T  down to GT  we use equation [17]  

 
2 * *

4
* *

0 0

(1 / )exp ( / )( )
16 (0) 2 sinh (2 / )c c c

e T T TT A − −∆′σ =
ξ ε ε ε

, (10) 

where *( )1  /T T−  determines the number of pairs arising 
at *T T≤ , and *exp( / )T−∆  gives the number of pairs de-
stroyed by thermal fluctuations below pairT  [3, 17]. The 
equation (10) is based on ideas from Leridon, et al. [57] 
but markedly modified to provide the best fit for σ′(T) over 
the entire temperature range from *T  down to GT . In addi-
tion, it was successfully used to describe the excess conduc-
tivity in different HTSCs [3, 17, 24, 35, 54, 58] including 
FeAs-based superconductors [59]. Solving Eq. (10) with 
respect to *( )T∆ , we obtain the equation for the PG [17]: 

Fig. 4. (Color online) ln σ′ vs ln ε of the YBa2Cu3O6.94 polycrystal with Tc = 90 K [S1, gray dots, (a)] and after annealing to the Tc = 80 K 
[S3, green dots, (b)] in comparison with fluctuation theories: 3D-AL (red solid lines 1), 2D-MT [blue solid curve 2, (a)], and LD [green 
solid curve 3, (b)]. ln (εG) determines the Ginzburg temperature TG, ln(ε0) determines the crossover temperature T0, and ln (ε01) deter-
mines T01, which limits the region of the SC fluctuations from above. 

Table 3. Parameters of the FLC analysis of YBa2Cu3O7–δ 
polycrystal at different annealing  

Samples mf
cT , K TG, K T01, K ξc(0), Å d01, Å 

S1 91.91 92.0 94.8 0.86 4.82 

S2 90.62 90.7 99.7 1.4 4.41 

S3 90.8 90.8 102.5 1.52 4.24 
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*( )T∆ =  

2

4 * * *
0 0

1 1ln 1
( ) 16 (0) 2 sinh(2 / )c c c

T eT A
T

   = −  ′σ ε ξ   ε ε ε 

, 

  (11) 

where ( )T′σ  is the experimentally determined excess con-
ductivity. 

In addition to *T , mf
cT , ε, and (0)cξ , which were al-

ready defined above, both equations contain *( )GT∆ , the 
theoretical parameter *

0cε  [57] and the coefficient 4A , 
which has the same meaning as the C-factor in the theory 
of FLC [30]. It is believed, that in cuprates *( )GT∆  = Δ(0), 
which is a SC energy gap at T = 0 [17, 60, 61]. Thus, *( )GT∆  
determines the actual PG value in the sample. Note that 
in the model of LPs, all parameters included in Eqs. (10) 
and (11) can be directly determined from experiment [3, 17, 
24, 35, 54], as discussed below. 

To find *( )GT∆ , we plot the experimental values of ex-
cess conductivity in coordinates ln σ′ vs 1/T [3, 17] (Fig. 5) 
and approximate them by the theoretical dependences 
ln σ′(1/T) calculated by the Eq. (10) (red curve in Fig. 5). 
With this construction, the shape of the theoretical curve 
turns out to be very sensitive to the value of *( )GT∆  
[17, 24, 35]. The best approximation is achieved at the 
value of the Bardeen–Cooper–Schrieffer (BCS) ratio 

* *2 (0) / 2 5) 2( / .B c G B cD k T T k T= ∆ = ∆ =  for S1. *D =(5±0.2) 
is a typical value for YBCO, suggesting the strong cou-
pling limit for HTSCs [62]. To find the theoretical pa-
rameter *

0cε  [57] we use the experimental fact that in the 
region 01 02ln ln lnс сε < ε < ε  (refer to Fig. 6) σ′−1 ~ exp(ε) 
[17, 24, 54]. As a result, in the temperature range

01 02с сε < ε < ε , ln(σ′−1) is a linear function of ε with a slope 
*α  = 17, which defines the parameter *

0cε  =1/ *α  ≈ 0.059 
for S1 (refer to inset to Fig. 6). Now the coefficient 4A  can 
be determined. For this, using Eq. (10), the dependence 

σ′(T) is calculated with the parameters already found and, 
selecting 4A , is combined with the experiment in the re-
gion of 3D–AL fluctuations, where ln σ′ is a linear function 
of ln ε with the slope λ = −1/2 [29, 30, 49, 52] (Fig. 6, 
red curve). The fit gives 4A  = 0.22 for S1. For all the 
samples under study, the similar graphs were obtained as 
in Figs. (5), (6), and the corresponding parameters were 
found for samples S2 and S3 (Table 4). 

Having determined all necessary parameters (refer to 
Tables 1, 2, and 3) we were able to plot the temperature 
dependences PG, *( )T∆ , for all samples. For example, the 
curve *( )T∆  for S1 is calculated using Eq. (11) with the 
following set of parameters: *T  = 125 K, mf

cT  = 91.91 K, 
(0)cξ  = 0.86 Å, *

0cε  = 0.059, and 4A  = 0.22. The corres-
ponding parameters determined for S2 and S3 are listed in 
the tables. The results are shown in Fig. 7(a)–(c) together 
with ρ(T) and S(T). S1 demonstrates *( )T∆  [Fig. 7(a)], 
which is typical for optimally doped (OD) single crystals 
with a moderate number of defects and very likely without 
twins [63]. The pseudogap *( )T∆  sharply increases in the 
range *

pairT T T> >  demonstrating maximum at pairT  ~ 114 K, 
which is characteristic of OD YBCO single crystals [64]. 
Recall that pairT  corresponds to the temperature at which 
LPs transform from strongly bound bosons SBBs into 
FCPs [3, 17]. As in OD YBCO single crystals, below pairT , 
the *( )T∆  dependence becomes linear with a positive slope 
down to 01T  (red line in the figure). In addition, *( )T∆  
shows a minimum at T = 01T , a maximum at about 0T , and 
a final small minimum at GT . This behavior of *( )T∆  near 

cT  is typical for all well structured HTSCs [35, 54, 63], 
including even FeSe [65].  

Fig. 5. (Color online) ln σ′ as a function of 1/T of the sample S1 
in the entire temperature range from *T  down to mf

cT  (gray dots). 
Red curve is approximation of experimental data by Eq. (10) with 
a set of parameters given in the text. The best approximation is 
achieved at the value of the BCS ratio * *( )2 /G B cD T k T= ∆  = 5.2. 

Fig. 6. (Color online) ln σ′ as a function of ln ε (dots) of the sam-
ple S1 in the entire temperature range from *T  down to GT . Red 
curve is approximation of experimental data by Eq. (10) with a 
set of parameters given in the text. Insert: ln (1/σ′) as a function 
of ε. The red straight line denotes the linear part of the curve between 

01сε  = 0.03 and 02сε  = 0.12. The corresponding values of 01ln( )сε  
and 02ln( )сε  are indicated by arrows on the main panel. The slope 

*α  = 17 determines the parameter * *
0 1 /сε = α ≈  0.059 [57]. 



A. L. Solovjov, V. B. Stepanov, and Yu. A. Kolesnichenko 

890 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 10 

Upon annealing, not only cT  changes, but the shape of 
the dependences *( )T∆  also changes noticeably [Figs. 7(b) 
and (c)]. Ultimately, at cT  = 80 K, the shape of the *( )T∆  
becomes the same as in well-structured YBCO films [17] 
and single crystals [54], with a wide maximum at Tpair. 
Indeed, the more defects, the more isotropic the sample 
[37]. However, the behavior of *( )T∆  near cT  is noticeably 
violated, namely: the minimum at 01T  and the maximum at 
T0 disappear, but the minimum remains at GT . Most likely, 
this is a feature of polycrystals with defects, which leads to 
very low values of pairT  observed in the experiment. As can 
be seen from Table 4, the values of *D  and *

pair( )T∆  re-
mains almost independent on the charge carrier density fn . 
At the same time, as expected, the “fundamental” value of 

* )( 0) (t∆ =∆  [60, 61] noticeably decreases upon annealing, 
that is, with a decrease in fn . This result seems reasonable, 
since a decrease in GT  with decreasing fn  is clearly ob-
served for both YBCO [17] and BiSCCO (Bi-2212) cuprates 
[66]. In Fig. 7, in addition to *( )T∆ , are also shown ρ(T) and 
S(T) for each specimen S1, S2, and S3, allowing details of 
the behavior of PG and TEP to be analyzed.  

Above *T , S(T) is perfectly approximated by the model 
(3), as noted above (red curves at the bottom of Fig. 7). At 

*T T≤  the slope of the S(T) curves markedly changes. 
Comparison with *( )T∆  convincingly shows that the 
growth of S(T) begins precisely at *T . It is currently be-
lieved that the opening of PG in cuprates at *T  is accom-
panied by a rearrangement of the Fermi surface [7–9, 67] 
due to the formation of bound fermions, the so-called LPs 
[10–16]. As a result, model (3) does not fit the S(T) data 
below *T . However, since the resistivity decreases below 

*T , it can be concluded that LPs can transfer electric 
charge without dissipation [16], which can lead to the ob-
served increase in S(T). Interestingly, with a decrease in 
the density of charge carriers nf upon annealing, S(T) in-
creases by more than 6 times (Table 4). Figure 7 also 
shows that TEP of all three samples reaches maximum at 
T01, then begins to decrease in the region of SC fluctua-
tions, and, as expected, rapidly drops to zero below GT . 
The fact that the TEP demonstrates a maximum precisely 
at 01T T=  was also discovered for the first time. 

 

Table 4. Parameters of the pseudogap analysis of YBa2Cu3O7-δ at different annealing  

Samples *T , K pairT , K *
0cε  4A  *D , K *

pair( )T∆ , K *( )GT∆ , K Smax, μV/K 

S1 125 114 0.06 0.22 5.2 245 236 1.93 
S2 138 100 0.09 0.33 5.4 237 226 9.0 
S3 143 107 0.22 0.17 5.0 239 200 12 

 

Fig. 7. (Color online) (a) Upper panel: the temperature dependence of the pseudogap *( )T∆  for sample S1 (dots) calculated using Eq. 
 (11) with the set of parameters given in the text. The red line denotes the linear part of *( )T∆  below pairT . Arrows indicate the cor-
responding characteristic temperatures. Solid curve is guidance for eye. Bottom panel: ( )Tρ  (blue dots) and S(T) (gray dots) for S1. 
Red line denotes ( )N Tρ  extrapolated to low T. Red curve is a fit of the S(T) data by the model (3). (b) Upper panel: the temperature 
dependence of the pseudogap *( )T∆  for sample S2 (dots) calculated using Eq. (11) with the set of parameters given in the text. Ar-
rows indicate the corresponding characteristic temperatures. Solid curve is guidance for eye. Bottom panel: ( )Tρ  (blue dots) and 
S(T) (gray dots) for S2. Red line denotes ( )N Tρ  extrapolated to low T. Red curve is a fit of the S(T) data by the model (3). (c) Every-
thing is the same for sample S3. 
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3.4. Analysis of the thermopower dependence on charge 
carrier density 

Unfortunately, there is no consensus on the mechanism 
that governs the thermoelectric power in cuprates. While 
phonon drag has been invoked to explain the temperature 
dependence in Bi2Sr2CaCu2O8+x (Bi-2212) [68], it is not 
satisfactory for the case of YBCO where neither electron-
phonon nor mass-enhancement mechanisms are adequate 
[69, 70]. It is believed that both the temperature and dop-
ing dependence of S are of electronic origin at least below 
100 K [67]. It has been shown theoretically that in the limit 
of dominant impurity scattering, ,( )(/ ~ / / )1e fS T C T n e  
where eC  is the electronic specific heat, fn  is the density 
of charge carriers, and e is the charge of the electron [71] 
for a wide range of strongly correlated electron systems 
[72]. Therefore, at low temperature the thermoelectric 
power approximately represents the electronic heat capaci-
ty per charge carrier [67]. To elucidate the evolution of 
TEP and clarify the possible change of electron interaction 
in our samples with decreasing fn  upon annealing, we 
analyzed the S/T vs log T curves within the framework of 
the model developed. The results are shown in Fig. 8. As 
can be seen from the figure, three different types of S/T vs 
log T behavior are observed. 

Recall that the line marking the approximate position of 
the pseudogap temperature *T  on the YBCO phase dia-
gram falls to zero at *p = 0.19 ± 0.01, which corresponds 
to critical doping, below which, as is known, a PG appears, 
i.e., so-called quantum critical point [7, 8]. At the same 
time, at H = 0, the *T  line intersects the SC dome approxi-
mately at *p  = 0.16 [8], which corresponds to the OD 
YBCO system, roughly to our sample S1 ( cT  = 90 K). As a 
result, in this case S/T, exhibits a perfect log (1/T) depen-
dence from ~ 280 K down to GT , with the expected change 
of the slope at *T  (Fig. 8). For sample S2 with doping 
less than *p  ( cT  = 84 K), S/T is nonlinear at high T, but 
becomes linear below *T  (Fig. 8). That is, the expected 

dependence log (1/T) is observed in a wide temperature 
range at *T T< . This result is in good agreement with 
the dependence of S/T on log (1/T) obtained in [67] for 
La1.6–xNd0.4SrxCuO4 (Nd-LSCO) with p relatively close to *p . 
For sample S3 with doping much less than *p  ( cT  = 80 K), 
S/T is nonlinear, in the whole temperature range of inte-
rest, from ~ 280 K down to GT , and undergoes a large in-
crease at low temperature. This result is in good agree-
ment with the dependence of S/T on log (1/T) obtained in 
[67] for Nd-LSCO with *p p< . The observed similarity 
with the results obtained at Nd-LSCO suggests that there 
are three different regimes of quantum criticality in both 
materials: relatively flat in the Fermi liquid state, which we 
probably observe for S1, logarithmically divergent at the 
critical point *p p=  and a jump in the ordered state, which 
are typical signs of a quantum phase transition in HTSCs at

*p p≤ . According to Ref. 67 we can conclude that these 
observations suggest that *p  is a quantum critical point, 
below which some order sets in, causing the reconstruction 
of the Fermi surface, the fluctuations of which are presum-
ably responsible for the logarithmic thermoelectric power. 
We also believe that the possibility of observing such be-
havior of TEP in our samples is most likely associated with 
a rather high degree of impurity scattering in YBCO poly-
crystals due to the presence of defects, taken into account 
in the theory [71].  

4. Conclusion 

For the first time, a comparative analysis of the tempe-
rature dependences of resistivity ρ(T), fluctuation conduc-
tivity σ′(T), pseudogap *( )T∆  and thermoelectric power 
S(T), measured on optimally doped textured YBa2Cu3O7–δ 
(YBCO) polycrystals before and after annealing, has been 
carried out. Annealing was performed in two stages, which 
led to a noticeable decrease in cT  from 90 K (sample S1) to 
84 K (S2) and, finally, to 80 K (S3), most likely due to a 
decrease in the charge carrier density fn . The resistance of 
the samples in the course of annealing noticeably increas-
es, but the slope dρ/T in the region of linear behavior of 
ρ(T) above *T  practically does not change. This suggests 
that, in our samples at large fn , Matthiessen’s rule is satis-
fied in a good approximation. That is, the resistance of the 
sample during annealing actually increases due to an in-
crease in ρ0, which occurs as a result of an increase in the 
number of point defects in the sample. This conclusion is 
supported by the results of the FLC analysis. In the case of 
S1, ln σ′ vs ln ε demonstrates a clear contribution of 2D–MT 
fluctuations above the 3D–2D crossover temperature 0T , 
which is typical of well-structured HTSCs [Fig. 4(a)]. Af-
ter annealing (sample S3), the MT term is completely sup-
pressed, and ln σ′ vs ln ε above 0T  is described by the LD 
model typical of HTSCs with defects [Fig. 4(b)]. 

In contrast to the resistivity, the temperature depen-
dence of the PG, *( )T∆ , turned out to be more informative 
(Fig. 7). S1 demonstrates *( )T∆  [Fig. 7(a)], which is typical 

Fig. 8. (Color online) S/T as a function of log T for samples S1 
(gray dots, *T  = 125 K), S2 (blue dots, *T  = 138 K), and S3 (green 
dots, *T  = 143 K). All solid lines and curves are eye guidance. 
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for optimally doped single crystals with a moderate num-
ber of defects and without twins [63]. It is shown that 

*( )T∆  sharply increases in the range *
pairT T T> >  demon-

strating maximum at pairT  ~ 114 K, which is characteristic 
of OD YBCO single crystals [64]. Below pairT , the *( )T∆
dependence becomes linear with a positive slope down to 

01T  (red line in the figure). In addition, *( )T∆  shows a mi-
nimum at T = 01T , a maximum at about 0T , and a final 
small minimum at GT . This behavior of *( )T∆  near cT  is 
typical for all HTSCs [35, 54, 63], including even FeSe 
[65]. Upon annealing the dependences *( )T∆  change no-
ticeably [Figs. 7(b), and 7(c)]. Ultimately, at cT  = 80 K, 
the shape of the *( )T∆  becomes the same as in well-
structured YBCO films [17] and single crystals [54], with a 
wide maximum at pairT . Indeed, the more defects, the more 
isotropic the sample [37]. However, the behavior of *( )T∆  
near cT  is noticeably violated, namely: the minimum at 01T  
and the maximum at 0T  disappear, but the minimum re-
mains at GT . Most likely, this is a feature of polycrystals 
with defects, which leads to very low values of pairT  ob-
served in the experiment. But the values of *D  and *

pair( )T∆  
remains almost independent on the charge carrier density 

fn  (Table 4), while, as expected, the “fundamental” value 
of *( )GT∆  = Δ(0) [60, 61] noticeably decreases upon an-
nealing, i.e., with decreasing of fn . This result seems rea-
sonable since a decrease in *( )GT∆  is clearly observed for 
both YBCO [17] and BiSCCO (Bi-2212) cuprates [66] 
with decreasing in fn . However, due to the lack of a rigor-
ous PG theory, it is impossible to draw an unambiguous 
conclusion from these results about the change in the elec-
tronic interactions in the sample.  

Somewhat unexpectedly, it turned out that the study of 
TEP provides more relevant information. The S(T) analysis 
was carried out in two stages. We first tried to describe S(T) in 
terms of the ‘‘Two band model with modified linear T-term” 
which is based on the fact that the TEP in HTSCs is similar to 
heavy fermion systems with mixed-valence [42, 43]. The re-
sults shown in Figs. 2 and 7 by red curves describe the data 
well, but only above *T , making it impossible to obtain 
information about the change of interaction in the electron-
ic subsystem in the pseudogap state. Then we examined 
the S(T) data within the approach proposed in Ref. 67. 

Unfortunately, there is still no consensus on the mecha-
nism that governs the thermoelectric power in cuprates. 
However, it is believed that both the temperature and dop-
ing dependence of S are of electronic origin at least below 
100 K [67]. It has been shown theoretically that in the limit 
of dominant impurity scattering, 1( )( )/ ~ / /e fS T C T n e , 
where Ce, is the electronic specific heat, nf is the density of 
charge carriers, and e is the charge of the electron [71] for 
a wide range of strongly correlated electron systems. To 
elucidate the possible change of electron interaction in our 
samples with decreasing nf upon annealing, we analyzed 
the S/T vs log T within this theory using the approach de-
veloped in Ref. 67. Three different types of dependences of 

S/T on log T were observed (Fig. 8), which suggests that 
the mechanism of electronic interaction in YBCO changes 
upon annealing, since S/T ~ 1/ fn . 

It is shown that S1 ( cT  = 90 K) exhibits rather unusual, 
almost flat dependence of log (1/T) from ~ 280 K to GT , 
with the expected change in slope at *T . This dependence 
is typical for p ≥ *p , where reduced charge carrier density 

*p  corresponds to the quantum critical point in cuprates 
[8, 67]. Accordingly, S2 ( cT  = 84 K) exhibits nonlinear S/T 
at high T, but, as expected, a clear log (1/T) dependence is 
observed over a wide temperature range at T < *T . This 
result is in good agreement with the dependence of S/T on 
log (1/T) obtained in [67] for La1.6–xNd0.4SrxCuO4 (Nd-LSCO) 
with p ≤ *p . Ultimately, for sample S3 with doping much 
less than *p  ( cT  = 80 K), S/T is nonlinear, in the whole 
temperature range of interest, from ~ 280 K down to GT , 
and undergoes a large increase at low temperature. This 
result is in good agreement with the dependence of S/T on 
log (1/T) obtained in [67] for Nd-LSCO with p < *p . The 
observed similarity with the results obtained at Nd-LSCO 
suggests that there are three different regimes of quantum 
criticality in both materials: relatively flat in the Fermi 
liquid state, which we probably observe for S1, logarithmi-
cally divergent at the critical point p ≤ *p  and a jump in 
the ordered state at p < *p , which are typical signs of a 
quantum phase transition in HTSCs at p ≤ *p . According 
to Ref. 67 we can conclude that these observations suggest 
that *p  is a quantum critical point, below which some or-
der sets in, causing the reconstruction of the Fermi surface, 
the fluctuations of which are presumably responsible for 
the logarithmic thermoelectric power. The possibility of 
observing such behavior of TEP in our samples is most 
likely due to a rather high degree of impurity scattering in 
YBCO polycrystals due to the presence of grain bounda-
ries, which is assumed in the theory [71].  
______________ 

1. V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phys. Rep. 
349, 1 (2001). 

2. A. A. Kordyuk, Fiz. Nizk. Temp. 41, 417 (2015) [Low Temp. 
Phys. 41, 319 (2015)]. 

3. A. L. Solovjov, Pseudogap and Local Pairs in high-Tc 
Superconductors, Superconductors – Materials, Properties and 
Applications, A. M. Gabovich (ed.), InTech. Rijeka (2012), 
Chap. 7, p. 137. 

4. H. Alloul, T. Ohno, and P. Mendels, Phys. Rev. Lett. 63, 
1700 (1989).  

5. Takeshi Kondo, A. D. Palczewski, Y. Hamay, A. D. 
Palczewski, Y. Hamaya, T. Takeuchi, J. S. Wen, Z. J. Xu, 
G. Gu, and A. Kaminski, arXiv:1208.3448v1 (2012).  

6. P. G. De Gennes, Superconductivity of Metals and Alloys, 
W. A. Benjamin, INC., New York–Amsterdam (1966), p. 280.  

7. L. Taillefer, Scattering and pairing in cuprate superconductors, 
Annu. Rev. Condens. Matter Phys. 1, 51 (2010). 

8. S. Badoux, W. Tabis, F. Laliberte, G. Grissonnanche, 
B. Vignolle, D. Vignolles, J. Beard, D. A. Bonn, W. N. Hardy, 

https://doi.org/10.1016/S0370-1573(00)00114-9
https://doi.org/10.1063/1.4919371
https://doi.org/10.1063/1.4919371
https://doi.org/10.1103/PhysRevLett.63.1700
https://doi.org/10.1146/annurev-conmatphys-070909-104117


Comparative analysis of the temperature dependences of the resistivity, pseudogap and thermoelectric power 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 10 893 

R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Nature 
(London) 531, 210 (2016).  

9. Y. Y. Peng, R. Fumagalli, Y. Ding, M. Minola, S. Caprara, 
D. Betto, M. Bluschke, G. M. De Luca, K. Kummer, 
E. Lefrançois, M. Salluzzo, H. Suzuki, M. Le Tacon, X. J. Zhou, 
N. B. Brookes, B. Keimer, L. Braicovich, M. Grilli, and 
G. Ghiringhelli, Nat. Mater. 17, 697 (2018).  

10. V. Mishra, U. Chatterjee, J. C. Campuzano, and M. R. Norman, 
Nat. Phys. 10, 357 (2014). 

11. S. Dzhumanov, E. X. Karimboev, U. T. Kurbanov, O. K. 
Ganiev, and Sh. S. Djumanov, Superlattices and Micro-
structures 68, 6 (2014).  

12. S. A. Kivelson, and S. Lederer, PNAS 116, 14395 (2019). 
13. N. J. Robinson, P. D. Johnson, T. M. Rice, and A. M. Tsvelik, 

Rep. Prog. Phys. 82, 126501 (2019).  
14. D. Chakraborty, M. Grandadam, M. H. Hamidian, J. C. S. 

Davis, Y. Sidis, and C. Pépin, Phys. Rev. B 100, 224511 (2019).  
15. V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995). 
16. M. Randeria, Nature Phys. 6, 561 (2010). 
17. A. L. Solovjov and V. M. Dmitriev, Fiz. Nizk. Temp. 32, 139 

(2006) [Low Temp. Phys. 32, 99 (2006)]. 
18. T. Dubouchet, B. Sacepe, J. Seidemann, D. Shahar, 

M. Sanquer, and C. Chapelier, Nature Phys. 15, 233 (2019).  
19. K. Lee, K. Kamiya, M. Nakajima, S. Miyasaka, and S. Tajima, 

J. Phys. Soc. Jpn. 86, 023701 (2017). 
20. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999). 
21. I. I. Mazin, Nature (London) 464, 183 (2010). 
22. A. J. Drew, Ch. Niedermayer, P. J. Baker, F. L. Pratt, S. J. 

Blundell, T. Lancaster, R. H. Liu, G. Wu, X. H. Chen, 
I. Watanabe, V. K. Malik, A. Dubroka, M. Rössle, K. W. 
Kim, C. Baines, and C. Bernhard, Nat. Mater. 8, 310 (2009).  

23. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011). 
24. R. V. Vovk and A. L. Solovjov, Fiz. Nizk. Temp. 44, 111 

(2018) [Low Temp. Phys. 44, 81 (2018)].  
25. Zengyi Du, Hui Li, Sang Hyun Joo, Elizabeth P. Donoway, 

Jinho Lee, J. C. Séamus Davis, Genda Gu, Peter D. Johnson, 
and Kazuhiro Fujita, Nature 580, 65 (2020).  

26. Y. Ando, S. Komiya, K. Segawa, S. Ono, and Y. Kurita, 
Phys. Rev. Lett. 93, 267001 (2004).  

27. M. S. Grbic, M. Pozek, D. Paar, V. Hinkov, M. Raichle, 
D. Haug, B. Keimer, N. Baricic, and A. Dulcic, Phys. Rev. B 
83, 144508 (2011).  

28. L. G. Aslamazov and A. L. Larkin, Phys. Lett. A 26, 238 
(1968); L. G. Aslamazov and A. L. Larkin, Fizika Tverd. 
Tela 10, 1104 (1968) [in Russian].  

29. S. Hikami and A. I. Larkin, Mod. Phys. Lett. B 2, 693 (1988).  
30. Y. B. Xie, Phys. Rev. B 46, 13997 (1992) 
31. J. B. Bieri, K. Maki, and R. S. Thompson, Phys. Rev. B 44, 

4709 (1991). 
32. S. I. Bondarenko, V. P. Koverya, A. V. Krevsun, and S. I. 

Link, Fiz. Nizk. Temp. 43, 1411 (2017) [Low Temp. Phys. 43, 
1125 (2017)]. 

33. V. N. Svetlov, A. L. Solovjov, and V. D. Stepanov, Fiz. 
Nizk. Temp. 38, 83 (2012) [Low Temp. Phys. 38, 64 (2012)]. 

34. R. H. Kropschot and F. J. Blatt. Phys. Rev. 116, 617 (1959). 

35. A. L. Solovjov, L. V. Omelchenko, V. B. Stepanov, R. V. Vovk, 
H.-U. Habermeier, H. Lochmajer, P. Przyslupski, and 
K. Rogacki, Phys. Rev. B 94, 224505 (2016). 

36. F. Rullier-Albenque, H. Alloul, and R. Tourbot, Phys. Rev. 
Lett. 91, 047001 (2003). 

37. A. L. Solovjov, L. V. Omelchenko, E. V. Petrenko, G. Ya. 
Khadzhai, R. V. Vovk, D. M. Sergeyev, and A. Chroneos, 
Submitted to Scientific Reports, (2021). 

38. P. J. Ouseph and M. Ray O’Bryan, Phys. Rev. B 41, 4123 
(1990). 

39. V. E. Gasumyants, V. I. Kaidanov, and E. V. Vladimirskaya, 
Physica C 248, 255 (1995).  

40. O. S. Komarova and V. E. Gasumyants, Phys. Solid State 52, 
625 (2010). 

41. E. V. L. de Mello, M. T. D. Orlando, J. L. Gonzalez, E. S. 
Caixeiro, and E. Baggio-Saitovich, Phys. Rev. B 66, 092504 
(2002).  

42. L. Forro, M. Raki, J. Y. Henry, and C. Ayache, Solid State 
Commun. 69, 1097 (1989) 

43. V. Gottwick, K. Glass, F. Horn, F. Steglich, and N. Greve, 
J. Magn. Magn. Mater. 47, 536 (1985). 

44. L. Forro, J. Lukatela, and B. Keszei, Solid State Commun. 
73, 501 (1990). 

45. E. Altin, D. M. Gokhfeld, F. Kurt, and Z. D. Yakinci, 
J. Mater. Sci: Mater Electron. 24, 5075 (2013). 

46. A. V. Dmitriev and E. S. Tkacheva, Moscow University 
Phys. Bull. 3, 38 (2014). 

47. B. P. Stojkovic and D. Pines, Phys. Rev. B 55, 8576 (1997). 
48. H. Alloul, F. Rullier-Albenque, B. Vignolle, D. Colson, and 

A. Forget, EPL 91, 37005 (2010). 
49. W. Lang, G. Heine, P. Schwab, X. Z. Wang, and D. Bauerle, 

Phys. Rev. B 49, 4209 (1994).  
50. R. V. Vovk, N. R. Vovk, G. Ya. Khadzhai, and O. V. 

Dobrovolskiy, Solid State Commun. 204, 64 (2015). 
51. A. L. Solovjov, E. V. Petrenko, L.V. Omelchenko, R. V. 

Vovk, I. L. Goulatis, and A. Chroneos, Sci. Rep. 9, 9274 
(2019). 

52. B. Oh, K. Char, A. D. Kent, M. Naito, M. R. Beasley, T. H. 
Geballe, R. H. Hammond, A. Kapitulnik, and J. M. Graybeal, 
Phys. Rev. B 37, 7861 (1988).  

53. A. L. Solovjov, H.-U. Habermeier, and T. Haage, Fiz. Nizk. 
Temp. 28, 24 (2002) [Low Temp. Phys. 28, 17 (2002)]. 

54. A. L. Solovjov, E. V. Petrenko, L. V. Omelchenko, R. V. Vovk, 
I. L. Goulatis, and A. Chroneos, Sci. Rep. 9, 9274 (2019). 

55. G. D. Chryssikos, Physica C 254, 44 (1995). 
56. W. E. Lawrence, and S. Doniach, Proc. of Twelfth Int. Conf. 

Low Temp. Phys., Kyoto, Japan (1970), E. Kanda (ed.), 
Keigaku: Tokyo, 361 (1970). 

57. B. Leridon, A. Défossez, J. Dumont, J. Lesueur, and J. P. 
Contour, Phys. Rev. Lett. 87, 197007 (2001). 

58. R. V. Vovk, N. R. Vovk, A. V. Samoilov, I. L. Goulatis, and 
A. Chroneos, Solid State Commun. 170, 6 (2013). 

59. A. L. Solovjov, L. V. Omelchenko, A. V. Terekhov, K. Rogacki, 
R. V. Vovk, E. P. Khlybov, and A. Chroneos, Mater. Res. 
Express 3, 076001 (2016). 

https://doi.org/10.1038/nature16983
https://doi.org/10.1038/nature16983
https://doi.org/10.1038/s41563-018-0108-3
https://doi.org/10.1038/nphys2926
https://doi.org/10.1016/j.spmi.2014.01.004
https://doi.org/10.1016/j.spmi.2014.01.004
https://doi.org/10.1073/pnas.1908786116
https://doi.org/10.1088/1361-6633/ab31ed
https://doi.org/10.1103/PhysRevB.100.224511
https://doi.org/10.1038/374434a0
https://doi.org/10.1038/nphys1748
https://doi.org/10.1063/1.2171509
https://doi.org/10.1038/s41567-018-0365-8
https://doi.org/10.7566/JPSJ.86.023701
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1038/nature08914
https://doi.org/10.1038/nmat2396
https://doi.org/10.1103/RevModPhys.83.1589
https://doi.org/10.1063/1.5020905
https://doi.org/10.1038/s41586-020-2143-x
https://doi.org/10.1103/PhysRevLett.93.267001
https://doi.org/10.1103/PhysRevB.83.144508
https://doi.org/10.1016/0375-9601(68)90623-3
https://doi.org/10.1142/S0217984988000369
https://doi.org/10.1103/PhysRevB.46.13997
https://doi.org/10.1103/PhysRevB.44.4709
https://doi.org/10.1063/1.5008405
https://doi.org/10.1063/1.3679137
https://doi.org/10.1103/PhysRev.116.617
https://doi.org/10.1103/PhysRevB.94.224505
https://doi.org/10.1103/PhysRevLett.91.047001
https://doi.org/10.1103/PhysRevLett.91.047001
https://doi.org/10.1103/PhysRevB.41.4123
https://doi.org/10.1016/0921-4534(95)00173-5
https://doi.org/10.1134/S1063783410040013
https://doi.org/10.1103/PhysRevB.66.092504
https://doi.org/10.1016/0038-1098(89)90493-6
https://doi.org/10.1016/0038-1098(89)90493-6
https://doi.org/10.1016/0304-8853(85)90487-1
https://doi.org/10.1016/0038-1098(90)90372-I
https://doi.org/10.1007/s10854-013-1526-2
https://doi.org/10.1103/PhysRevB.55.8576
https://doi.org/10.1209/0295-5075/91/37005
https://doi.org/10.1103/PhysRevB.49.4209
https://doi.org/10.1016/j.ssc.2014.12.008
https://doi.org/10.1038/s41598-019-45286-w
https://doi.org/10.1103/PhysRevB.37.7861
https://doi.org/10.1063/1.1449180
https://doi.org/10.1038/s41598-019-45286-w
https://doi.org/10.1103/PhysRevLett.87.197007
https://doi.org/10.1016/j.ssc.2013.07.011
https://doi.org/10.1088/2053-1591/3/7/076001
https://doi.org/10.1088/2053-1591/3/7/076001


A. L. Solovjov, V. B. Stepanov, and Yu. A. Kolesnichenko 

894 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 10 

60. J. Stajic, A. Iyengar, K. Levin, B. R. Boyce, and T. R. 
Lemberger, Phys. Rev. B 68, 024520 (2003). 

61. Y. Yamada, K. Anagawa, T. Shibauchi, T. Fujii, T. Watanabe, 
A. Matsuda, and M. Suzuki, Phys. Rev. B 68, 054533 (2003). 

62. K. W. Wang and W. Y. Ching, Physica C 416, 47 (2004). 
63. A. L. Solovjov, L. V. Omelchenko, R. V. Vovk, O. V. 

Dobrovolskiy, S. N. Kamchatnaya, and D. M. Sergeev, 
Current Appl. Phys. 16, 931 (2016).  

64. A. L. Solovjov, L. V. Omelchenko, R. V. Vovk, and S. N. 
Kamchatnaya, Fiz. Nizk. Temp. 43, 1050 (2017) [Low Temp. 
Phys. 43, 841 (2017)]. 

65. A. L. Solovjov, E. V. Petrenko, L. V. Omelchenko, E. Nazarova, 
K. Buchkov, and K. Rogacki, Fiz. Nizk. Temp. 46, 638 
(2020) [Low Temp. Phys. 46, 538 (2020)]. 

66. Ya. Ponomarev, M. Mikheev, M. Sudakova, S. Tchesnokov, 
and S. Kuzmichev, Phys. Status Solidi C 6, 2072 (2009). 

67. R. Daou, O. Cyr-Choinière, F. Laliberté, D. LeBoeuf, 
N. Doiron-Leyraud, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough, 
and Louis Taillefer, Phys. Rev. B 79, 180505(R) (2009). 

68. H. J. Trodahl, Phys. Rev. B 51, 6175 (1995). 
69. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 51, 3104 

(1995). 
70. J. L. Tallon, J. R. Cooper, P. S. I. P. N. de Silva, G. V. M. 

Williams, and J. W. Loram, Phys. Rev. Lett. 75, 4114 (1995). 
71. K. Miyake and H. Kohno, J. Phys. Soc. Jpn. 74, 254 (2005). 
72. K. Behnia, D. Jaccard, and J. Flouquet, J. Phys.: Condens. 

Matter 16, 5187 (2004).  
 ___________________________  

Порівняльний аналіз температурних залежностей 
питомого опору, псевдощілини та термоЕРС 
у полікристалах YBa2Cu3O7–δ при зниженні 

щільності носіїв заряду 

A. L. Solovjov, V.B. Stepanov, Yu. A. Kolesnichenko 

Проведено порівняльний аналіз температурних залежно-
стей надлишкової провідності σ′(T), псевдощілини (ПЩ) 
Δ*(T) та термоЕРС S(T) в текстурованих полікристалах 
YBa2Cu3O7–δ з різною щільністю носіїв заряду nf в залежно-
сті від рівня допування киснем. Показано, що для опти-
мально допованого (ОД) зразка з Тс = 90 К (зразок S1), σ′(T) 
поблизу Тс добре описується флуктуаційними теоріями 
Асламазова–Ларкiна (АЛ-3D) і Макi–Томпсона (МТ-2D), та 
демонструє 3D–2D кросовер при підвищенні температури. 
При температурі кросовера T0 визначено довжину когерен-
тності вздовж осі с, ξс(0). При зменшенні nf  (зразки S2 з Тс = 
= 84 К та S3 з Тс = 80 К) внесок МТ пригнічується, а залеж-
ність σ′(T) підпорядковується теорії Лоренца–Доніаха (ЛД), 
що типово для зразків з дефектами. Отримана для S1 залеж-
ність Δ*(T) має типовий вигляд для ОД монокристалів YBCO 
з максимумом при Tpair ~ 114 К та лінійною ділянкою, що 
спадає до Т01 ~ 94 К, яка обмежує область надпровідних 
флуктуацій вище Тс. При зменшенні nf форма Δ*(T) помітно 
змінюється та стає типовою для плівок YBCO з симетричним 
максимумом при Tpair, яка є температурою БЕК–БКШ пере-
ходу у високотемпературних надпровідниках. Зі зменшенням 
nf нахил S(T) змінюється від позитивного до від’ємного та 
демонструє особливість при температурі відкриття ПЩ Т*. 
Відповідно, залежність S(T)/T від log T змінюється від 
лінійної до нелінійної, що вказує на зміну характеру 
взаємодій в електронній підсистемі YBCO при зменшенні nf, 
оскільки S/T ~ 1/ nf. 

Ключові слова: високотемпературна надпровідність, флук-
туаційна провідність, термоЕРС, полі-
кристали YBCO. 
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