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Within the framework of an idealized theoretical model, we study the effect of external static homogeneous 
exchange and magnetic field on the spin part of the singlet wave function of two electrons. We begin by revising 
the traditional (textbook) approach to the spin singlet. Basing our own approach solely on the property of invari-
ance under rotations of the coordinate system and using the theory of spinor invariants, we derive a generalized 
representation of the spin singlet whose main feature is that the spins are in mutually time-reversed states. We 
show that exactly this feature predetermines the actual form of the Hamiltonian of interaction with the external 
field and stipulates time evolution of the singlet. Some applications of these results to the theory of superconduc-
tivity and spin chemistry are presented. In particular, it is shown that the case of ferromagnetic superconductors 
constitutes a good illustration of the validity of our quantum-mechanical consideration. 
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1. Introduction

The aim of this paper is to study theoretically the effect 
of external static homogeneous exchange and magnetic 
fields on the spin part of a singlet wave function of two 
electrons. For fear of possible misreading, we shall first of 
all formulate our exact statement of the problem. The ide-
alized model accepted in this paper does not take into ac-
count any electromagnetic or exchange interactions be-
tween the electrons of the singlet. Moreover, to make our 
consideration uniform, we completely disregard orbital 
degrees of freedom and concentrate only on spin dynamics. 
Surprisingly, although the thus stated problem concerns the 
basics of quantum mechanics and has important applica-
tions in related sciences, it is not discussed in standard 
textbooks [1–6], and we are unaware of the correct solu-
tion to it in literature. For example, if we choose the spin 
quantization axis to be perpendicular to the external field, 
we notice that the probabilities of definite spin orientations 
oscillate with time and that spin flips occur [3]. These intu-
itive conjectures about the behavior of the spin singlet in 
the presence of external fields will be verified, refined on 
and developed by means of rigorous mathematical methods 
in the sections of the paper that follow. 

In particular, we begin Sec. 2 with an analysis of certain 
drawbacks of the traditional (textbook) [1–6] representa-
tion of the spin singlet. After that, based on the theory of 

spinor invariants [7, 8], we derive a generalized representa-
tion of the spin singlet which is free from the drawbacks of 
the traditional one: the generalized representation is explic-
itly invariant under rotations of the coordinate system. The 
main feature of the generalized representation is that the 
spins are in mutually time-reversed states. Relationship to 
the representation of the spin singlet as a normalized met-
ric spinor is established. 

In Sec. 3, we use the results of section Sec. 2 to study 
the evolution of the spin singlet. An exact time dependent 
spin wave function is derived. This wave function exhibits 
periodic conversions from the spin singlet to the zero com-
ponent of the spin triplet along the external field. Periodic 
permutations of the spins of the singlet, caused by spin 
flips, are also envisaged. 

In Sec. 4, we consider the application of the results of 
the previous section to the theory of ferromagnetic super-
conductors and spin chemistry. Some mathematical details 
related to the results of Secs. 2–4 are relegated to Appen-
dices A and B. In Sec. 5, key results of the paper are dis-
cussed and several conclusions are drawn. 

2. The generalized representation of the spin singlet

The correlation between the spins of the singlet clearly
manifests itself in the property of invariance under rota-
tions of the coordinate system. To explain the situation, we 
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begin by drawing the reader’s attention to some little-
known mathematical aspects of the singlet wave function, 
not mentioned in standard textbooks (see, e. g., [1–6]). 

Traditionally, the singlet wave function is written down as 
an antisymmetric linear combination of the eigenfunctions of 
one of the Cartesian components of the total spin 1 2=S s s+ , 
corresponding to a zero eigenvalue of the operator 2S : 

 ( ) ( )11,2 = .
2S α+ α− α− α+Ψ Ψ ⊗Ψ −Ψ ⊗Ψ  (1) 

Here, = , ,x y zα ; the sign ⊗ denotes a direct product of 
two-dimensional Hilbert spaces of spin 1 (on the left) and 
spin 2 (on the right); α+Ψ  and α−Ψ  are the eigenfunctions 
of the corresponding Pauli matrices. 

Using the properties of the time-reversal operator K [9], 
we may obtain the following generalized representation of 
the singlet state:  

 ( ) ( )11,2 = ,
2S K Kα− α− α+ α+Ψ Ψ ⊗Ψ + Ψ ⊗Ψ  (2) 

where =K α− α+Ψ Ψ  and =K α+ α−Ψ −Ψ . 
We want to say that Eq. (2) are not merely a new repre-

sentation of the singlet state, different from the traditional 
one. It emphasizes only that the singlet state is formed by 
two spin states that are mutually reversed in time. 

3. Time evolution of the spin singlet 

Now we are fully prepared to return to our main prob-
lem: the evolution of the singlet state. If the spins were 
independent, the dynamics of both of them would be gen-
erated by the same single-particle Hamiltonian  

 = .z J−σ  (3) 

Note that in the case of an exchange field, which is parallel 
to z  direction, J  is just its value; in the case of a magnetic 
field H , = b zJ g H− µ  with bµ  is the Bohr magneton. The 
evolution operator for an initial state Ψ  is  

 ( ) = exp ,U t i t − 
 

  (4) 

The evolution operator for the time-reversed state KΨ is [9]  

 ( ) ( )rev = = exp .K KU t KU t K i t
+

+  
− − 

 

  (5) 

Thus, the evolution operator for the spin singlet (2) has the 
following form:  

 ( )1,2 = exp exp .K KU t i t i t
+   − ⊗ −   

   

   (6) 

For the perpendicular magnetic field the corresponding 
time-dependent two-spin state has the form  

 (1, 2; ) = ( ) (1,2) ( ) (1,2)S Tt a t b tΨ Ψ + Ψ , (7) 

where (1,2)TΨ  is the triplet two-spin function with z  pro-
jection of total spin = 0ZS   

 1(1,2) = ( )
2T α+ α− α− α+Ψ Ψ ⊗Ψ +Ψ ⊗Ψ . (8) 

Among other things, relation (6) implies that the actual 
interaction Hamiltonian for the spin singlet is not  

 ,I I⊗ + ⊗   (9) 

as would be the case for two independent spins, but rather  

 I I K K +⊗ + ⊗   (10) 
or  
 ,K K I I+ ⊗ + ⊗   (11) 

where I  is a unit operator. Relations (10) and (11) take 
explicitly into account the correlation between the spins of 
the singlet. 

Consider first the representation (2) and the evolution 
operator (6). Although the explicit form of the time-depen-
dent state  

 ( ) ( ) ( )1,21, 2; = 1,2St U tΨ Ψ ≡  

 ( ) ( )ˆ ˆrev
1
2

U t U t K+ +≡ Ψ ⊗ Ψ + n n   

 ( ) ( )ˆ ˆrevU t U t K− −+ Ψ ⊗ Ψ n n  (12) 

can be evaluated for an arbitrary direction of the vector n̂ 
in Eq. (12), from the point of view of physical interpreta-
tion, it is reasonable to take n̂ perpendicular to the direc-
tion of the field: say, ˆ ˆn = x. In this way, we immediately 
arrive at the following set of expressions:  

( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, =0

, =0

1,2 1,2 , > 0;
1,2; =

2,1 2,1 , < 0;
S T Sz

S T Sz

a t b t a t
t

a t b t a t

Ψ + ΨΨ 
Ψ + Ψ

 (13) 

 ( ) ( )
1 1 1 111,2 2,1
1 1 1 12S S

        
Ψ = −Ψ = − ⊗ − ⊗ =        − −        

  

 
1 0 0 11= ,
0 1 1 02

        
⊗ − ⊗        

        
 (14) 

 ( ) ( ), =0 , =01,2 = 2,1T S T Sz z
Ψ Ψ =   

 
1 0 0 11= ;
0 1 1 02

        
⊗ + ⊗        

        
 (15) 

 ( ) 22 1 = cos 2 ,sin
2

Jt Jta t     ≡ −         

 (16) 

 ( ) 2 = sin 2sin cos .Jt Jt Jtb t i i     ≡     
       

 (17) 

Here, ( ), =0 1, 2T Sz
Ψ  is the component of the triplet state 

corresponding to = 0zS ; ( )a t  and ( )b t  are the probability 
amplitudes of the states SΨ  and ,0TΨ , respectively; 
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2sin
Jt 

 
 

 is the probability of a spin flip in a perpendicular 

field J  [3]; sin Jt 
 
 

 and cos Jt 
 
 

 are the probability am-

plitudes of a spin flip and of the absence of a spin flip, re-

spectively. Furthermore, 21
sin

2
Jt −  

 
 is the probability 

of a definite spin orientation. 
In addition, we want to emphasize that time dependence 

of the probability amplitude ( )=a a t  reflects the dynamics 
of the time-reversal operator ( )=K K t , which is clear 
from the representations derived in Appendix A:  

 ( ) ( ) ( ) ( ) ( )1 1= 0 = 0 ;Sp Sp
2 2

a t K t K K t K+ +   −     (18) 

 ( ) ( )= exp 0 exp .K t i t K i t   
   
    

   (19) 

Here, the time-reversal operators are, of course, written 
down in the Heisenberg representation. Equal sign in the 
arguments of both the exponents in Eq. (19) is due to the 
antilinearity of K : =Ki iK− . 

As can be seen from Eqs. (13)–(17), when an external 
non-time-reversible field is “switched on” at = 0t , the 
initial singlet state SΨ  starts to decay gradually, whereas 
the zero component of the triplet state along the external 
field, , =0T Sz

Ψ , is emerging owing to spin flips induced by 

the field. At =
4

t
J
π  a permutation of the spins 1 and 2 oc-

curs, which is reflected in the second line of Eq. (13). At 
3=
4

t
J
π  a new permutation of the spins occurs. Formally, 

the process is periodic with the period =T
J
π . 

Certainly, in view of idealized character of our model (see 
the Introduction) the possibility of the observation of the 
above-described quantum-mechanical effects in real electron 
systems strongly depends on concrete physical situations. 
For example, periodic conversions , =0S T Sz

Ψ →Ψ , envi-
saged by Eqs. (13)–(17), are prohibited in homogeneous 
ferromagnetic superconductors (Sec. 4.1). By contrast, such 
conversions are experimentally observed in some situations 
encountered in spin chemistry (Sec. 4.2). 

If we now take the representation of (2) and the evolu-
tion operator (6), the result for the corresponding time-
dependent state will be straightforward:  

 ( ) ( ) ( ) ( ) ( )*
1,2 0 1,21, 2; 1,2 = 1,2S St U t K U t∗Ψ ≡ Ψ Ψ = 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

*
, =0

*
, =0

1,2 1,2 , > 0;
=

2,1 2,1 , < 0.
S T Sz

S T Sz

a t b t a t

a t b t a t

 Ψ + Ψ


Ψ + Ψ
 (20) 

Given that the function ( )* 1,2;tΨ  is the complex con-

jugate of the function ( )1,2;tΨ  and differs from the latter 
only by complex conjugation of the probability amplitude 

( )b t  ( )* 2= sin Jtb t i  −     

, both ( )1,2;tΨ  and ( )* 1,2;tΨ  

describe the same physical situation, as could be expected. 

4. Applications 

The quantum-mechanical results of the two previous 
sections have immediate applications in related sciences, 
namely the theory of superconductivity and spin chemistry. 
We begin with the theory of superconductivity. 

4.1. Coexistence of superconductivity and ferromagnetism 

As was first observed by Anderson a long time ago [10] 
(see also Ref. 11), in the BCS theory of superconductivity 
[12], superconducting correlations (or Cooper pairs) are 
formed by electron states that are mutually reversed in 
time, e.g., ↑p  and − ↓p  if the electron momentum p is 
a good quantum number. Unfortunately, it seems that im-
plications of this observation for ferromagnetic supercon-
ductors have not been understood in the literature. As an 
explanation, we consider the linearized equation for the 
superconducting order parameter ( )=∆ ∆ r , valid near the 
transition curve between the superconducting and normal 
phases ( )=c cT T J  (provided the transition is of second 
order):  

 ( ) ( ) ( )3= ,d ′ ′ ′∆ ∆∫r r r,r r   

 ( )
( )

( ) ( )
3

3= exp .
2
d i p ′ ′−  π∫
p pr,r r r





   (21) 

As regards some details, see e.g., the old reviews [13, 14] 
and references therein. 

A Fourier transform of Eq. (21) to the momentum space 
was employed in the literature [13, 14] to evaluate peculiar 
behavior of the second-order transition curve that had a 
branching point designating the origin of a first-order 
phase transition, but we will not discuss this issue here. 
Neither will we ponder on the problem of existence or non-
existence of the so-called FFLO phase (see the original 
papers [15, 16] and the review [17]): this problem is also 
beyond the scope of our paper. Instead, we will focus on 
those mathematical properties of the integral kernel ( )′r,r  
that are intimately connected with our quantum-mechanical 
results and not reflected in the existing literature. 

The quantity ( )p  is given in Ref. 13 in the quasi-

classical approximation (when max , 1c

F F

T J
E E

 
 
 

 , with 

FE  being the Fermi energy) for the two extreme cases, 
namely: the “clean” limit (no impurities) and the “dirty” 
limit (a chaotic distribution of non-magnetic impurities). 
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However, to elucidate the effect of the exchange field, we 
have to resort to the coordinate representation of the inte-
gral kernel that describes the propagation of superconduct-
ing correlations between the points ′r  and r. Thus, in the 
“clean” limit we have:  

 ( ) ( )
>0

2 0 2
= arctan

2
c F

F nn

N g T p Jp
p ω

π  −
+  ω  

∑
v

v
  

 2
arctan ,

2
F

n

p J  +
+  ω  

v  (22) 

 ( ) ( ) 2
2

>0

0
, = 1 2sinc

FF n

N g T J

ω

 ′ − 
′ − ×  

′  −   
∑

r r
r r

r r 




vv

  

 
2

exp ,n

F

′ ω − 
× − 

 

r r
v

 (23) 

where ( ) 2 30 =
2

FmpN
π 

 is the density of states at the Fermi 

level in the normal phase, Fv  is the Fermi velocity, g  is 
the value of the constant of effective electron-electron in-
teraction, and ( )= 2 1n cn Tω + π  ( = 0, 1, 2, ...n ± ± ). As can 
be easily seen, the preexponential factor in the square brack-
ets in Eq. (23) is nothing but an image (in a rigorous mathe-
matical sense) of the probability amplitude ( )a t  [Eq. (18)]. 
Indeed, physically, the quasi-classical approximation implies 
that each electron of the Cooper pair is represented by a 
wave packet [2, 4] formed by the states with the momenta 

 max , , max ,c c
F F

F F F F

T TJ Jp p p
    

∈ − +         v v v v
.  

The centres of these packets move at the velocity Fv  
along the classical trajectories linking the points ′r  and r 
[18–20]. (As a matter of fact, there are four trajectories of 
equal contribution: two direct in time trajectories for op-
posite orientation of electron spin plus the two time-
reversed trajectories. The probability of each trajectory is 
equal to the probability of a definite spin orientation: see 
Appendix B for mathematical details.) As the dynamics 
of the spins is purely quantum-mechanical, the ratio 

F

′−r r
v

 in the preexponential factor of Eq. (23) should be 

identified with time t  in Eq. (16): see Eq. (B.4). 
In the opposite, “dirty” limit the kernel has the follow-

ing coordinate representation:  

 ( ) ( )
2

2
>0 2 2

2
= 2 0  ,

2 4

n

c
n

n

D p
p N g T

D p Jω

ω +

 ω + + 
 

∑ 



  (24) 

 ( ) ( )0
, = cN g T

D
′ ×

′−
r r

r r

   

 2 2 2

>0
1 2sin

2 n n
n

J
Dω

 ′ −  × − ω + −ω ×  
   

∑
r r


  

 2 2exp .n nJ
D

′ − 
× − ω + +ω 

 

r r


 (25) 

Here, =
3
F lD v  is the diffusion coefficient. As in the “clean” 

limit, the preexponential factor (in the figure brackets) re-
flects spin-flip processes. The complexity of the argument 
of the spin-flip probability ( [ ]2sin ... ) in Eq. (25) is due to 
the fact that in the “dirty” limit the relevant classical trajec-
tories of electron motion are those of a random walk pro-
cess [19, 20]: see Eq. (B.5). 

The above equations (23) and (25) do not exhibit any 
trace of the , =0S T Sz

Ψ →Ψ  conversions described in the 
previous section, because the BCS Hamiltonian precludes 
the formation of superconducting correlations between two 
electrons in a triplet state [12, 11]. By contrast, the accom-
panying effects of the vanishing of the probability ampli-
tude ( )a t  and spin permutations within the singlet pair do 
take place. These effects can be interpreted as a manifesta-
tion of a new mechanism of the destruction of supercon-
ducting correlations, completely overlooked in the litera-
ture. Finally, we want to say a few words about an applica-
tion of our results to spin chemistry. 

4.2. Spin chemistry 

Spin chemistry [21–23] is a new and rapidly developing 
interdisciplinary science relating chemistry, physics and 
biology. It is concerned with the effect of external magne-
tic fields (including static ones) on chemical reactions. A 
significant group of chemical reactions, sensitive to exter-
nal static magnetic fields, involve as intermediates so-
called radical pairs in the singlet state. Singlet radical pairs 
themselves emerge, in particular, when certain organic 
molecules experience photochemical reactions that are 
accompanied by electron transfer from one molecular 
complex to the other [22, 23]. Although singlet radical 
pairs are usually short-living and tend to recombine, it has 
been noticed that external static magnetic fields can induce 
a conversion of the singlet state of radical pairs to the tri-
plet one. Our exact solution represented by Eqs. (13)–(17) 
sheds new light on the nature of this latter effect. 

Indeed, it is universally believed in spin chemistry [22] 
that the , =0S T Sz

Ψ →Ψ  conversion in not too small static 
magnetic fields should be ascribed to presumed inequality 
of spin Landé factors of the members of a radical pair (i.e., 

1 2 0s s sg g g∆ ≡ − ≠ ). However, Eqs. (13)–(17) suggest that 
, =0S T Sz

Ψ →Ψ  conversions may occur under the condition 
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of equal sg -factors for both the members of the radical pair 
(i.e., no assumption of the inequality 0sg∆ ≠  is required). 

Certainly, the value of the sg -factor was calculated by 
methods of quantum electrodynamics for free electrons 
only [24, 25]. The unpaired electrons of free radicals are 
by no means free: different small interactions within each 
radical may cause the sg -factors to deviate. Nevertheless, 
our results must necessarily be taken into account in any 
considerations of the effect of singlet-triplet conversions. 

5. Discussion and conclusions 

Summarizing, within the framework of a theoretical 
model described in the Introduction, we have studied time 
evolution of the spin part of the singlet wave function of 
two electrons in the presence of external static homogene-
ous magnetic and exchange fields. In order to obtain the 
exact solution to this quantum-mechanical problem, we 
have had to revise in Sec. 2 the traditional approach [2] to 
the spin singlet, because it does not take adequately into 
account the property of invariance under rotations of the 
coordinate system. Basing our own approach in Sec. 2 
solely on this invariance property and using the theory of 
spinor invariants [7, 8], we have derived the generalized 
representation of the spin singlet [Eq. (2)] whose funda-
mental feature is that the spins are in mutually time-
reversed states. 

We think that exactly the misunderstanding of the 
above-mentioned fundamental feature of the spin singlet is 
the main reason why the problem of time evolution has not 
been solved in the available literature. In this regard, it 
would be in order to point out that, although the alterna-
tive form of the generalized representation is well-known 
(at least, in the theory of superconductivity [26]), any de-
tailed analysis of the representation, analogous to ours in 
Appendix A, has not been undertaken. In particular, the 
correct form of the interaction Hamiltonian [our Eqs. (10) 
and (11)], which is crucial to the solution of the problem of 
time evolution, has not been established. 

Our exact solution to the problem of time evolution 
[Eqs. (13)–(17)], derived by different mathematical meth-
ods in Sec. 3 and Appendix A, implies the existence of two 
non-trivial quantum-mechanical effects, namely: periodic 
singlet-triplet conversions and periodic permutations of the 
spins within the singlet. These effects are described in 
more detail in Sec. 3 itself and Sec. 4 concerned with some 
applications to the theory of ferromagnetic superconduc-
tors and spin chemistry. 

By the way, the theory of ferromagnetic superconduc-
tors provides a very good illustration of the validity of the 
exact solution (13)–(17) and its consequences: the quasi-
classical expressions (23) and (25), derived by quantum-
mechanical methods in Appendix B, have as Fourier trans-
forms the well-known [13] expressions (22) and (24), re-
spectively. However, applications to the theory of ferro-
magnetic superconductors by no means reduce to mere 

restatement of already known results: one of the implica-
tions of the exact solution (13)–(17) is a new mechanism 
of the destruction of superconducting correlations by the 
exchange field, not reported in previous publications. 

As regards applications to spin chemistry [21–23], our 
exact solution (13)–(17) yields a natural explanation of the 
experimentally observed effect of singlet-triplet conversion 
in radical pairs in the presence of external static magnetic 
fields. This explanation does not require any assumptions 
of inequality between the relevant spin Landé factors, 
which should be contrasted with typical publications on 
this subject [22]: see Sec. 4 for more detail. To draw the 
line, we think that our results may stimulate further theo-
retical studies of the problem of time evolution of the sin-
glet state of two electrons on the basis of more realistic 
models than the one employed in our paper. 
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Appendix A. Spin singlet as the normalized metric 
spinor 

We begin by reminding the well-known [4] property of 
the metric spinor:  

 = .ij
ijg g  (A.1) 

This property means that the matrix g  can be regarded 
both as a covariant and a contravariant spinor of rank two, 
which is verified directly. Moreover, the metric spinor sa-
tisfies a set of elementary relations:  

 1= = = ,g g g g+ − −  (A.2) 

where the tilde ( 
~

 ) denotes a transposition. 
If we now write down explicit expressions for the direct 

products of the spinors on the right-hand side of (2) we 
immediately get:  

 1= ,
2S gΨ     ( ) 1 1; = = .

2 2
ij

S iji j g gΨ  (A.3) 

(This result is just a manifestation of the fact that any 
antisymmetric spinor of rank two is equal to the metric 
spinor multiplied by a scalar [4].) 

It is instructive to check the main properties of the spin 
singlet for expression (A.3) independently. The fulfillment 
of the normalization condition is evident:  

 ( ) ( )21Sp = Sp = 1.
2S S g+Ψ Ψ −  (A.4) 

As is well known from the classical mechanics [27], any 
rotation of the Cartesian coordinate system about the origin 
can be parameterized by the Euler angles and is represented 
by a product of three consecutive rotations about certain 
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axes. Therefore, to verify the invariance of (A.3) under rota-
tions, it is sufficient to consider rotations by an angle φ about 
an arbitrary axis specified by a unit vector m  ( = 1)m . The 
transformation of spinor components under such rotations are 
realized by the unitary transformation matrix [4]  

 ( ); = exp .
2
iD  φ  

 
m mσ  (A.5) 

To avoid misunderstandings, we note that the matrix D  is 
not a spinor; therefore, the position of the matrix indices 
(upper, lower or mixed) is nonessential for this matrix. 
Thus, we write:  

 ( ) ( ) 1; = ;
2

j ji i kl
S k S kl li j D D k l D D g′ ′′ ′′ ′Ψ Ψ ≡ =   

 11 1= =
2 2

kji kl i lj
k kl l

D g D D D g′′ ′ ′−  = 
   

 ( )1= = ; .
2

i j
Sg i j′ ′ Ψ  (A.6) 

In the above transformations we have used convention 
concerning the repeated indices and employed commuta-
tion relations between the Pauli matrices. 

A proof of the fact that the spins of a singlet pair are in 
mutually time-reversed states is slightly more involved. 
Consider a somewhat idealized situation when these spins 
are separated far apart in the coordinate space, so that only 
one of the spins (say, the spin whose state is specified by 
the row index of the matrix g ) is under the influence of the 
perturbation, whereas the second one (whose state is speci-
fied by the column index) is not. In this situation, the state 
of the pair is described by the time-dependent function  

 ( )row
1=
2

i kj
k

U t gΨ =     

  ( ) ( )rev
1 1= =
2 2

j jik ik
kk

g U t U t g − =      

 ( )rev
1= ,
2

j ki
k

U t g−     (A.7) 

where the evolution operators ( )U t  and ( )revU t  are given 
by Eq. (4) and Eq. (5), respectively. In the last line of (A.7) 
the antisymmetric property of the spin singlet has been used. 

Similarly, in the opposite situation, when the role of the 
spins is interchanged, we have:  

 ( )column
1=
2

j ik
k

U t gΨ =     

  ( ) ( )rev
1 1=
2 2

i ikj kj
kk

U t g U t g = − =      

 ( )rev
1 .
2

i jk
k

U t g= −     (A.8) 

A comparison between the first and the last lines of rela-
tions (A.7) and (A.8) proves our time-reversal-symmetry 
statement. 

The above considerations allow us to conclude that in 
the situation, when both the spins are under the influence 
of the perturbation, their state is represented by either the 
time-dependent function  

 ( ) ( ) ( )rev
1=
2

i j kl
k l

t U t U t gΨ =         

 ( )  ( )rev
1=
2

ji kl
k l

U t g U t  ≡       

 ( ) ( )rev
1 ,
2

U t gU t≡   (A.9) 

or by its complex conjugate  

 ( ) ( ) ( )*
rev

1=
2

i j kl
k l

t U t U t gΨ =         

 ( )  ( )rev
1=
2

ji kl
k l

U t g U t  ≡       

 ( ) ( )rev
1 .
2

U t gU t≡   (A.10) 

Explicitly, these two relations, of course, reproduce rela-
tions (13) and (20) of the main text with SΨ  and , =0T Sz

Ψ  
in the matrix form:  

 , =0
1 1, .
2 2S T S zz

gΨ ≡ Ψ ≡ σ  (A.11) 

The symbolic forms of the last lines of relations (A.9) 
and (A.10) are convenient for the determination of the 
probability amplitude ( )a t :  

 ( ) ( ) ( ) ( )rev
1= Sp = Sp
2Sa t t gU t gU t+   Ψ Ψ − =  

   

 ( ) ( ) ( ) ( )1 1= Sp = Sp
2 2

gU t gK U t K U t K U t K+ +   − − =   
  

 ( ) ( ) ( ) ( )1 1= Sp 0 = Sp 0
2 2

K t K K t K+ +   − =      

 21 2= Sp exp = cos ;
2

z J Ji t t σ    −         

 (A.12) 

 ( ) ( ) ( ) ( )rev
1= Sp = Sp
2Sa t t gU t gU t+ ∗   Ψ Ψ − =  

   

 ( ) ( ) ( ) ( )1 1= Sp = Sp
2 2

gKU t K gU t KU t K U t+ +   − − − − =   
  

 ( ) ( ) ( ) ( )1 1= Sp 0 = Sp 0
2 2

K K t K t K+ +   − =      

 21 2= Sp exp = cos .
2

z J Ji t t σ    
        

 (A.13) 
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Appendix B. The superconducting integral kernel 
as a time laplace transform of a classical correlation 

function 

The kernel of the integral equation (21) in the quasi-
classical approximation can be represented in the following 
form:  

 ( ) ( ) ( )
>0 0

2 0 2
, = exp , ; .c n

n

N g T
dt t f t

+∞

ω

π ω ′ ′− 
 

∑ ∫r r r r
 

   

  (B.1) 

Here, ( ), ;f t′r r  is a sum of four classical correlation func-
tions times relevant probability factors and appropriate sign:  

____________________________________________________ 

 ( ) ( )( ) ( )( ) ( )
( )

( )
= ; = sign1 1 2

, ; = 0 sign
2p p s a tF z

a t
f t t a t′ ′δ − δ − +r r r r r r



  

 ( )( ) ( )( ) ( )
( )

( )
= ; = sign2 2 2

0 sign
2p p s a tF z

a t
t a t

−

−
′+ δ − − δ − − +r r r r



  

 ( )( ) ( )( ) ( )
( )

( )
= ; = sign1 1 2

0 sign
2p p s a tF z

a t
t a t

−
′+ δ − δ − +r r r r



  

 ( )( ) ( )( ) ( )
( )

( )
= ; = sign2 2 2

0 sign .
2p p s a tF z

a t
t a t

−
′+ δ − − δ − −r r r r



 (B.2) 

_______________________________________________
The four terms on the right-hand side of Eq. (B.2) rep-

resent kinematics of the two electrons of a Cooper pair. 

Thus, for the time interval 0 <
4

t
J
π

≤
 , the first and the 

third terms correspond to classical motion of electron 1 

from the point r to the point ′r , with 
( )
2

a t
 being the prob-

ability of a definite spin orientation: see the definition of 
( )a t  in Eqs. (16) and (18), and the text below Eq. (19). At 

=
4

t
J
π , the right-hand of Eq. (B.2) goes to zero because of 

a permutation of spin 1 and spin 2: see the main text. This 
effect should be interpreted as the destruction of supercon-
ducting correlations (or Cooper pairs) by the exchange 
field; hence the reduction of the transition temperature cT  
analyzed, e.g., in Refs. 13 and 14. As a result of the spin 
permutation, the function ( ), ;f t′r r  acquires minus sign in 

the time interval 3< <
4 4

t
J J
π π  . This process is periodic 

with the period =T
J
π . 

Given time-reversal symmetry of classical mechanics 
[9] and the equality ( ) ( )=a t a t− , it is clear that all the 
four terms on the right-hand side of Eq. (B.2) yield equal 
contributions. Therefore, Eq. (B.2) can be rewritten in a 
more economical form:  

( ) ( )( ) ( )( ) ( ) ( )
=

, ; =2 0 0 ,
p pF

f t t K t K +′ ′δ − δ −r r r r r r   

  (B.3) 

where  

 ( ) ( ) ( ) ( ) ( )10 Sp 0 = .
2

K t K K t K a t+ + ≡     

[By rewriting the probability amplitude a  in the form of a 
correlator KK +  we just want to remind that correlators 
of this kind were first introduced in de Gennes’ formula-
tion of the theory of superconductivity [19] to describe the 
effect of non-time-reversal perturbations of different types. 
In our case, this correlator is responsible for the preexpo-
nential factors in Eqs. (23) and (25)]. 

The classical correlator δδ  is well-known [19, 20] for 
the two limiting cases discussed in our paper. Thus, in the 
“clean” limit, it reads:  

 ( )( ) ( )( )
=

0
p pF

t ′δ − δ − =r r r r   

 ( )21= .
4 F t−′ ′− δ − −
π

r r r r v  (B.4) 

In the “dirty” limit,  

 ( )( ) ( )( )
=

0
p pF

t ′δ − δ − =r r r r   

 ( )
23

2= 4 exp .
4

Dt
Dt

−
 ′−
 π −
  

r r
 (B.5) 

Upon the substitution of relations (B.4) and (B.5) into 
(B.3) and carrying out integration over time, we arrive at 
relations (23) and (25) of the main text. 
 ________  
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Еволюція спінового синглету у часі в статичному 
гомогенному обмінному та магнітному полях 

S. V. Kuplevakhsky, S. V. Bengus 

У межах ідеалізованої теоретичної моделі вивчено вплив 
зовнішнього статичного однорідного обмінного та магнітно-
го полів на спінову частину синглетної хвильової функції 
двох електронів. Спираючись на нові погляди, які базуються 
на інваріантності при обертанні системи координат і викори-
станні теорії спінорних інваріантів, отримано узагальнене 
представлення спінового синглета, головна особливість яко-
го полягає в тому, що спіни перебувають у взаємно оберне-
них у часі станах. Показано, що саме ця особливість формує 
гамільтоніан взаємодії зі зовнішнім полем та обумовлює ево-
люцію синглета у часі. Наведено застосування цих результатів 
до теорії надпровідності та спінової хімії. Проілюстровано, що 
запропонований підхід є обгрунтованим у випадку квантово-
механічного опису феромагнітних надпровідників. 

Ключові слова: спін-синглет, обертання часу, еволюція, обмінне 
та магнітне поля.
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