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A distribution of the antiferromagnetic vector in a uniaxial two-sublattice antiferromagnet is investigated. A 
new class of nonlinear solutions of the system of two well-known Landau–Lifshitz equations in the form of so-
called nonlinear sigma-model is obtained and a new type of topological magnetic configuration in the investigated 
antiferromagnet is described. Examples of solutions of the found class are presented. These examples include 
vortex-like structures, both moving and static. It is assumed that such vortices have an oscillating nature, so that 
the angle between the antiferromagnetic vector and the magnetic symmetry axis oscillates with descending am-
plitude and tends to π/2 when the distance to the vortex axis increases. 

Keywords: antiferromagnet, topological magnetic configuration, spin vortex, uniaxial magnetic anisotropy, 
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Introduction 

Antiferromagnets are a prospective materials for spin-
wave electronics with a variety of possible technical applica-
tions (mostly in data storage, transmission and processing 
devices). The generation and detection of spin waves in 
antiferromagnets in recent years [1, 2] have made these tech-
nical applications possible. These facts made studying of 
static magnetic configurations in antiferromagnets an actual 
topic of research (for direct applications in magnetic storage 
devices, as a basis for studying spin waves that can be exited 
in these static configurations, etc.). Unlike the ferromagnetic 
materials, antiferromagnets don’t possess strong macroscopic 
intrinsic magnetic field. Applications of antiferromagnets 
allow the use of semiconductor materials and, most importan-
tly, higher working frequencies, thus enabling ultrafast infor-
mation processing — in comparison with ferromagnets [3–5].  

In recent years, during investigation of spin waves in 
antiferromagnets, nonlinear spin waves (with unique proper-
ties that are not inherent to linear spin waves) were also 
generated and investigated [6, 7]. Therefore, investigations of 
new types of nonlinear spin waves, that can be excited in 
antiferromagnets, and corresponding topological magnetic 
excitations are an actual topic of research. 

It is known that topological magnetic excitations in mag-
netically ordered materials (solitons, skyrmion, vortices, etc.) 
play a key role in constructing novel spintronic devices 
(see, e.g., [8–10]). In antiferromagnets, a vortex-like excita-

tion appears as a composed pattern of two anti-aligned 
sublattices and is rigid compared to vortices in ferromagnets 
[11]. Such vortices were recently observed in [12, 13] and 
remain poorly researched. Static and moving [11, 14] vorti-
ces in an antiferromagnet represent an interest for experi-
mental and theoretical studies. This includes analysis of vor-
tices behavior in both large systems and small confined 
samples (in which they are mostly observed). However, 
studies of AFM vortex-like excitations in confined geome-
tries are still scarce [10, 11], despite being the most practi-
cally actual case for such excitations [11]. 

It has been shown that the factor leading to magnetic 
vortex generation in an antiferromagnet can be, in particular, 
Dzyaloshinskii–Moriya (DM) anisotropy in a uniaxial anti-
ferromagnet. Specifically, the Dzyaloshinskii–Moriya inter-
action (DMI) can cause a net unbalancing between adjacent 
AFM sublattices due to dipole canting [11, 15]. Considera-
tions of the DM interaction and magnetic anisotropy is a 
logical step in creating a theory of a particular case of such 
vortices. Note that DMI becomes more essential at low tem-
peratures [16], thus, considered effects are more pronounced 
at low temperatures. 

In the paper, a new type of solution of the Landau–Lifshitz 
equation (in the form of so-called nonlinear sigma model) 
for the antiferromagnetic vector in a two-sublattice uniaxial 
antiferromagnet is studied. The above-mentioned solution 
(generally speaking, nonlinear) describes both static distri-
butions of the antiferromagnetic vector and dynamic ones 
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(e.g., moving vortices akin to moving domain wall). The 
existence of oscillating vortices is predicted: vortices in 
which the angle between the antiferromagnetic (Néel) vector 
and the magnetic symmetry axis oscillates with descending 
amplitude and tends to π/2 when the distance to the vortex 
axis increases. The predicted vortex configuration includes, 
as a particular case, an intermediate state between Néel and 
Bloch vortices.  

System of equations for the azimuthal and polar angles 
of the antiferromagnetic vector 

Consider a uniaxial two-sublattice antiferromagnet. Let 
us assume that the magnetization densities of the antiferro-
magnet sublattices (M1 and M2, respectively) are equal in 
magnitude and opposite in direction (M1 = –M2). Let us 
also assume that they are constant in magnitude 
(|M1| = |M2| = M0 = const). Thus, the total magnetization 
vector M = 0. [In the some sections of this paper we also 
consider a nonzero magnetization vector. However, the 
considered magnetization vector is small in magnitude —
M2 << L2, where L is the antiferromagnetic (Néel) vector — 
and is neglected afterwards]. The antiferromagnetic vector 
is also constant in magnitude: |L| = L0 = const. Let us denote 
the antiferromagnet parameters as follows: the uniaxial 

anisotropy constants of the sublattices β1 and β2, the 
nonuniform exchange constants of the sublattices α1 and α2 
(here α1 > 0), the uniform exchange constant A. Consider also 
the Dzyaloshinskii–Moriya interaction in the antiferromagnet 
and introduce the Dzyaloshinskii–Moriya vector d. 

Then we consider an antiferromagnetic (Néel) vector con-
figuration in the above-described antiferromagnet (a static 
configuration or a configuration moving along the Oz axis 
that coincides in direction with the magnetic symmetry 
axis of the antiferromagnet). We will use the spherical co-
ordinates (r, θ, φ) and denote the polar and azimuthal angles 
of the vector L as θL and φL, respectively. Therefore,  

 ( )0 sin cos sin sin cosx L L y L L z LL= θ ϕ + θ ϕ + θL e e e ,  

  (1) 

where ex, ey, and ez are the unit vectors of the Ox, Oy, and 
Oz axes, correspondingly. The absolute value of the polar 
angle θL cannot exceed π. The azimuthal angle φL can be 
considered unlimited after noticing that it possesses a peri-
odicity (with the period equal to 2π).  

The antiferromagnetic vector of the considered antiferro-
magnet should satisfy the Landau–Lifshitz equation with the 
energy functional written as follows (see, e.g., [17]):  

 ___________________________________________________  
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(here we still consider a nonzero magnetization: M2 << L2). 
Here H0 is the external magnetic field, and the integration 
is performed over the entire antiferromagnet volume. 

Using the Landau–Lifshitz equation for a two-sublattice 
antiferromagnet in the form (see, e.g., [17–19]) 
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tional (2), one (after substituting zero magnetization) can 
obtain the following system of equations for the antiferro-
magnetic vector azimuthal and polar angles (the nonlinear 
sigma-model — see, e.g., [20] — because we deal, in fact, 
with the normalized Néel vector): 

 ___________________________________________________  
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µ
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 is a characteristic parameter of 

the antiferromagnet with the dimension of speed, 
0 0

0 1
4 M

A
µ

ω = − β


 and ωH = γH0 (for a constant in time 

external magnetic field value H0; for a time-dependent H0 
the addend ωHt should be replaced with ∫ωHdt). An analo-

gous starting system of equations for a uniaxial anti-
ferromagnet was used, for example, by Bar’yakhtar and 
Ivanov [19] (however, they consider a different solution of 
this system) and by one of the authors in earlier paper [21]. 
The characteristic speed c for H0 = 0 is equal to the mini-
mum phase velocity of spin waves in the linear theory (see, 
e.g., [19]). 
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An equation for the polar angle 
of the antiferromagnetic vector 

Consider a self-similar and, generally saying, nonstatio-
nary solution of the system of equations (4), analogous to the 
one presented by the authors in [17, 21, 22]. A self-similar 
solution for a spin wave propagating in the above-described 
antiferromagnet along the Oz axis with the velocity v  can be 
written as follows: 

 
( )( )

( ) ( )

tan , ,
2

, ,

L

L L

H P x y z t

Q x y z t t

 θ  = −  
 

 ϕ = − + ϕ 

v

v
, (5) 

where ωH = gH0, ( ) ( )L Ht t dtϕ = ω∫  (for a time-dependent 

external magnetic field; in the stationary case one have to 
replace ∫ωHdt with ωHt); H, P and Q are admissible functions. 
After substituting a self-similar solution (5) into the system 
(4), one can obtain for a stationary external magnetic field 
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where the sign “±” origins from the expression 2
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where the operators 
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For the sake of convenience, let us choose the “+” sign in 

the relation 2
2sin

1L
H
H

θ = ±
+

 (analogous procedures can 

be performed for the “–” sign). Then the system of equa-
tions (7) is satisfied, in particular, under the following set 
of conditions: 
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with the arbitrary function F(P) [not equal to zero F(P) ≠ 0 
at any point]. 

Consider the case when the characteristic velocity c ex-
ceeds the wave velocity v :   c<v . For that case, let us apply 
the following Lorentz-like coordinates’ transformation 
(analogous to the ones used by the authors, e.g., in [22]): 
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where l0 = c/ω0. After applying the transformation (11) to 
the system of equations (10) for the case 2

1 – /   0dβ δ> , the 
latter transforms into the following system of equations: 
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with the gradient and the Laplace operators taken in the 
coordinates (X, Y, Z). A solution of this system of equa-
tions can be sought, in particular, in the form 
P(X, Y, Z) = P0 ln r, Q(X, Y, Z) = nα + ηZ + α0, where 

X
Y

 
=  
 

r  is the radius vector of a point in the XY plane, α is 

its azimuthal angle [so that ( )arctg /Y Xα = ], n is an arbi-
trary integer, and η is the characteristic dimensionless 
length of the investigated magnetic structure (moving or 
static) along the Z axis. Then it turns out that for such solu-

tion the function ( )
( ) ( )2 2

0
2

0

1 exp 2 /n P P
F P

P

+ + η
=  and 

the following equation for the polar angle of the antiferro-
magnetic vector θL can be written: 

 ( )( )2 2 2 21 sin 2 1 0
2L L Lr r n r′′ ′θ + θ − θ + + η = . (13) 

The last equation describes the considered type of static 
and dynamic distributions of antiferromagnetic vector. As 
it can be seen from the form of the equation, it includes 
nonlinear solutions. Let’s analyze this equation. 

Analysis of the equations for the polar angle 
of the antiferromagnetic vector 

The Eq. (13) should be complemented with the boundary 
values: θL(0) and θL value on the boundary of the considered 
nanosystem [θL(r→∞) for an infinite antiferromagnetic 
film]. Let us investigate the case of vortex, either static or 
moving, in a nanodisc (nanocylinder): θL(r = R0) = π/2, 
where R0l0 is the radius of the considered nanodisc 
(nanocylinder). Such configuration corresponds to a mag-
netic vortex and, therefore, the condition θL(0) = 0 or 
θL(0) = π is fulfilled. Numerical simulations show that for 
the case n = 1 an additional condition [e.g., a value of 

0( )L′θ ] is required in order to define the solution of (13). 
For solutions that satisfy the condition 0( ) ,/ 2L r Rθ = = π  

(0)L′θ  should have a negative value [ ) 0(0L′θ =  is also 
permitted]. Therefore, for n = 1 a solution that satisfies the 

condition 0 / 2( )L r Rθ = = π  can be found for an arbitrary 
(admissible) η and R0. For instance, for n = 1, η = 1, 
R0 = 30 (that roughly correspond to the nanodisc radius 
~102 nm for typical antiferromagnets), the condition 
θL(r = R0) = π/2 can be satisfied when 0(0 .4) 8L′θ ≈ − , 

4(0 .4) 8L′θ ≈ − , etc. Numerical simulations show that the 
following dependences imply from the Eq. (13) for the case 
θL(0) = π, n = 1 (see Fig. 1). 

The dependence θL(r,η) for n = 1 before applying the 
condition θL(r = R0) = π/2 [can be used either for a large 
sample or for a considered nanodisc or nanocylinder; in the 
latter case the radius of the considered nanosystem should 
satisfy the condition θL(r = R0) = π/2] has the form shown 
in Fig. 2. 

Analysis shows that for all the cases n ≠ 1 the condition 
) 0(0L′θ =  [ ) 0(0L′θ =  if θL(r = R0) = π/2, to be exact] ful-

fills, thus reducing the number of degrees of freedom for 
the obtained solution. As a result, a solution that satisfies 

Fig. 1. Dependences ( )L rθ  for n = 1, η = 1, )0(Lθ = π, 0 30R = :
0 0.( 4) 8L′θ ≈ −  (a); 0 4.( 4) 8L′θ ≈ −  (b); 0 1.( 7) 6L′θ ≈ −  (c). 
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the condition θL(r = R0) = π/2 exists only for a discrete set 
of values η for a given R0. The corresponding graphical 
representations are also obtained via computer simulations 
(see Fig. 3). 

Discussion 

Note that the obtained results can be applied for both 
the static antiferromagnetic vector distribution (in the case 

0=v ) and a distribution that moves with the velocity v 
along the Oz axis (that coincides with the magnetic aniso-
tropy axis). In the first case, the obtained solution defines a 
static spin vortex in the considered antiferromagnet [which 
is determined by the boundary condition θL(r = R0) = π/2], 
in the second case, an object akin to the moving antiferro-
magnetic domain wall with a single vortex. Note that 
movement of AFM vortices on a domain wall has been 
observed, e.g., by Chetkin et al. [23–25]. 

Note also that the standard boundary conditions for the 
Néel vector in the considered model are obtained by inte-
grating of the equation  

 ___________________________________________________  
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(here 0 0 02 / M=h H ) that implies from the system of equa-
tions (3) with respect to a thin layer near the antiferromagnet 
boundary, has the form [ ]1 0dV

δΩ

α ×∆ =∫ l l , where Ωδ is a 

region with a thickness δ neighboring the antiferromagnet 
boundary. The corresponding boundary condition 

0∂ × = ∂ 

ll
n

 (where n is the unit vector normal to the 

boundary and directed outwards), see, e.g., [26], can be 
satisfied by the means of choosing the correct value of α0 
in the expression Q(X, Y, Z) = nα + ηZ + α0 (for η = 0). The 
resulting vortex is an intermediate state between the Néel 
vortex (α0 = 0, α0 = π) and the Bloch vortex (α0 = π/2, 
α0 = –π/2). Moreover, for the case of a surface anisotropy 
or surface DMI, the boundary conditions can be modified 
(see [27, 28] for analogous considerations) thus making 

possible using of the boundary conditions with 0∂ × ≠ ∂ 

ll
n

 

and, therefore, expanding the area of application of the 
obtained result. 

As an analogous solution of the Landau–Lifshitz equa-
tion can exist for a magnetization vector in a ferromagnet, 
the above-found solution can be used, in particular, for 
imprinted vortices in antiferromagnets (that emerge on a 
contact of a ferromagnet with a magnetization vortex with 
an antiferromagnet due to a strong exchange, see, e.g., 
[12, 13]). Such imprinted vortices are an especially actual 
topic of research and represent a special interest for study 
(see, e.g., [13]). 

Fig. 2. Dependence θL(r,η) for n = 1, θL(0) = π, 0 1( )L′θ = − . 

Fig. 3. Dependences θL(r) for n = 2, θL(0) = π (η ≈ 0.97) (a) and 
n = 0, θL(0) = π (η ≈ 1.01) (b). 
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Conclusions 

We have investigated a new type of antiferromagnetic 
(Néel) vector distribution in a two-sublattice uniaxial 
antiferromagnet. The model used in the paper considers the 
magnetic dipole-dipole interaction, the magnetic anisotropy, 
the exchange and the Dzyaloshinskii–Moriya interaction. 
As a result, an explicit expression for the azimuthal angle 
and a differential equation for the polar angle of the anti-
ferromagnetic vector of such a topological configuration 
were obtained. The considered distribution describes both 
a static magnetic configuration and a configuration moving 
along the magnetic anisotropy axis and includes nonlinear 
solutions of the starting equations. 

The results are analyzed by numerical methods and it is 
shown that the obtained configuration describes, in particular, 
spin vortices (static or dynamic) in a nanodisc, nanocylinder 
or large antiferromagnetic sample. It is shown that these 
vortices possess an oscillating nature, so the angle between 
the antiferromagnetic (Néel) vector and the magnetic sym-
metry axis is oscillating with descending amplitude and 
tends to π/2 when the distance to the vortex axis increases. 
An intermediate state between Néel and Bloch vortices is a 
particular case for the obtained magnetic configurations. 

The effects considered in the presented paper are more 
essential at the low temperatures (as the Dzyaloshinskii–
Moriya interaction, which is essential for these effects, 
becomes more pronounced). 
 _______  
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Осцилюючі спинові вихори у двопідгратковому 
одновісному антиферомагнетику 

Yu. I. Gorobets, O. Yu. Gorobets, V. V. Kulish 

Досліджено розподіл вектора антиферомагнетизму в одно-
вісному двопідгратковому антиферомагнетику. Отримано 
новий клас нелінійних розв’язків системи двох відомих рів-
нянь Ландау-Ліфшиця у формі так званої нелінійної сигма-
моделі та описано новий тип топологічної магнітної конфігу-
рації у розглянутому антиферомагнетику. Представлено при-
клади розв’язків знайденого класу. Ці приклади включають 
вихрові структури, як рухомі, так і статичні. Передбачається, 
що такі вихори мають осцилюючий характер, так що кут між 
вектором антиферомагнетизму та віссю магнітної симетрії 
коливається із амплітудою, яка спадає та прямує до π/2 при 
зростанні відстані до осі вихору. 

Ключові слова: антиферомагнетик, топологічна магнітна кон-
фігурація, спіновий вихор, одновісна магнітна 
анізотропія, взаємодія Дзялошинського–Морії. 
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