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A distribution of the antiferromagnetic vector in a uniaxial two-sublattice antiferromagnet is investigated. A

new class of nonlinear solutions of the system of two well-known Landau-Lifshitz equations in the form of so-

called nonlinear sigma-model is obtained and a new type of topological magnetic configuration in the investigated

antiferromagnet is described. Examples of solutions of the found class are presented. These examples include

vortex-like structures, both moving and static. It is assumed that such vortices have an oscillating nature, so that

the angle between the antiferromagnetic vector and the magnetic symmetry axis oscillates with descending am-

plitude and tends to @/2 when the distance to the vortex axis increases.

Keywords: antiferromagnet, topological magnetic configuration, spin vortex, uniaxial magnetic anisotropy,

Dzyaloshinskii-Moriya interaction.

Introduction

Antiferromagnets are a prospective materials for spin-
wave electronics with a variety of possible technical applica-
tions (mostly in data storage, transmission and processing
devices). The generation and detection of spin waves in
antiferromagnets in recent years [1, 2] have made these tech-
nical applications possible. These facts made studying of
static magnetic configurations in antiferromagnets an actual
topic of research (for direct applications in magnetic storage
devices, as a basis for studying spin waves that can be exited
in these static configurations, etc.). Unlike the ferromagnetic
materials, antiferromagnets don’t possess strong macroscopic
intrinsic magnetic field. Applications of antiferromagnets
allow the use of semiconductor materials and, most importan-
tly, higher working frequencies, thus enabling ultrafast infor-
mation processing — in comparison with ferromagnets [3-5].

In recent years, during investigation of spin waves in
antiferromagnets, nonlinear spin waves (with unique proper-
ties that are not inherent to linear spin waves) were also
generated and investigated [6, 7]. Therefore, investigations of
new types of nonlinear spin waves, that can be excited in
antiferromagnets, and corresponding topological magnetic
excitations are an actual topic of research.

It is known that topological magnetic excitations in mag-
netically ordered materials (solitons, skyrmion, vortices, etc.)
play a key role in constructing novel spintronic devices
(see, e.g., [8-10]). In antiferromagnets, a vortex-like excita-
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tion appears as a composed pattern of two anti-aligned
sublattices and is rigid compared to vortices in ferromagnets
[11]. Such vortices were recently observed in [12, 13] and
remain poorly researched. Static and moving [11, 14] vorti-
ces in an antiferromagnet represent an interest for experi-
mental and theoretical studies. This includes analysis of vor-
tices behavior in both large systems and small confined
samples (in which they are mostly observed). However,
studies of AFM vortex-like excitations in confined geome-
tries are still scarce [10, 11], despite being the most practi-
cally actual case for such excitations [11].

It has been shown that the factor leading to magnetic
vortex generation in an antiferromagnet can be, in particular,
Dzyaloshinskii—-Moriya (DM) anisotropy in a uniaxial anti-
ferromagnet. Specifically, the Dzyaloshinskii—-Moriya inter-
action (DMI) can cause a net unbalancing between adjacent
AFM sublattices due to dipole canting [11, 15]. Considera-
tions of the DM interaction and magnetic anisotropy is a
logical step in creating a theory of a particular case of such
vortices. Note that DMI becomes more essential at low tem-
peratures [16], thus, considered effects are more pronounced
at low temperatures.

In the paper, a new type of solution of the Landau—Lifshitz
equation (in the form of so-called nonlinear sigma model)
for the antiferromagnetic vector in a two-sublattice uniaxial
antiferromagnet is studied. The above-mentioned solution
(generally speaking, nonlinear) describes both static distri-
butions of the antiferromagnetic vector and dynamic ones
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(e.g., moving vortices akin to moving domain wall). The
existence of oscillating vortices is predicted: vortices in
which the angle between the antiferromagnetic (Néel) vector
and the magnetic symmetry axis oscillates with descending
amplitude and tends to n/2 when the distance to the vortex
axis increases. The predicted vortex configuration includes,
as a particular case, an intermediate state between Néel and
Bloch vortices.

System of equations for the azimuthal and polar angles
of the antiferromagnetic vector

Consider a uniaxial two-sublattice antiferromagnet. Let
us assume that the magnetization densities of the antiferro-
magnet sublattices (M; and M,, respectively) are equal in
magnitude and opposite in direction (M; =-M,). Let us
also assume that they are constant in magnitude
(M| = [M,| = M, = const). Thus, the total magnetization
vector M = 0. [In the some sections of this paper we also
consider a nonzero magnetization vector. However, the
considered magnetization vector is small in magnitude —
M? << L? where L is the antiferromagnetic (Néel) vector —
and is neglected afterwards]. The antiferromagnetic vector
is also constant in magnitude: |L| = L, = const. Let us denote
the antiferromagnet parameters as follows: the uniaxial
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(here we still consider a nonzero magnetization: M? << L?).
Here Hj is the external magnetic field, and the integration
is performed over the entire antiferromagnet volume.
Using the Landau—Lifshitz equation for a two-sublattice
antiferromagnet in the form (see, e.g., [17-19])

2 a—m:[mxﬂg’f)}+[lxﬂfef)]

anisotropy constants of the sublattices B; and B, the
nonuniform exchange constants of the sublattices o; and a,
(here o, > 0), the uniform exchange constant 4. Consider also
the Dzyaloshinskii-Moriya interaction in the antiferromagnet
and introduce the Dzyaloshinskii-Moriya vector d.

Then we consider an antiferromagnetic (Néel) vector con-
figuration in the above-described antiferromagnet (a static
configuration or a configuration moving along the Oz axis
that coincides in direction with the magnetic symmetry
axis of the antiferromagnet). We will use the spherical co-
ordinates (7, 0, @) and denote the polar and azimuthal angles
of the vector L as 6, and ¢, respectively. Therefore,

L=1L, (ex sin6, cosp, +e,sinb, sing; +e, cosOL),
)

where e,, e,, and e. are the unit vectors of the Ox, Oy, and
Oz axes, correspondingly. The absolute value of the polar
angle 0, cannot exceed m. The azimuthal angle ¢; can be
considered unlimited after noticing that it possesses a peri-
odicity (with the period equal to 2m).

The antiferromagnetic vector of the considered antiferro-
magnet should satisfy the Landau—Lifshitz equation with the
energy functional written as follows (see, e.g., [17]):
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tional (2), one (after substituting zero magnetization) can
obtain the following system of equations for the antiferro-
magnetic vector azimuthal and polar angles (the nonlinear
sigma-model — see, e.g., [20] — because we deal, in fact,
with the normalized Néel vector):
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the antiferromagnet with the
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external magnetic field value Hy; for a time-dependent Hj
the addend w7 should be replaced with [w;dr). An analo-
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gous starting system of equations for a uniaxial anti-
ferromagnet was used, for example, by Bar’yakhtar and
Ivanov [19] (however, they consider a different solution of
this system) and by one of the authors in earlier paper [21].
The characteristic speed ¢ for Hy =0 is equal to the mini-
mum phase velocity of spin waves in the linear theory (see,

e.g., [19]).
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An equation for the polar angle
of the antiferromagnetic vector

Consider a self-similar and, generally saying, nonstatio-
nary solution of the system of equations (4), analogous to the
one presented by the authors in [17, 21, 22]. A self-similar
solution for a spin wave propagating in the above-described
antiferromagnet along the Oz axis with the velocity v can be
written as follows:

tan(%) =H(P(x,y,z—0t))

;= Q(xy,2-01)+5, (1)

; (6))

where oy =gH,, §, ()= Jm 4 ()dt (for a time-dependent

external magnetic field; in the stationary case one have to
replace [wpdt with of); H, P and 0 are admissible functions.
After substituting a self-similar solution (5) into the system
(4), one can obtain for a stationary external magnetic field
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For the sake of convenience, let us choose the “+” sign in

. . 2H
the relation sin®; =i1 (analogous procedures can
+

I78
be performed for the “— sign). Then the system of equa-
tions (7) is satisfied, in particular, under the following set

of conditions:
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with the arbitrary function F(P) [not equal to zero F(P) #0
at any point].

Consider the case when the characteristic velocity ¢ ex-
ceeds the wave velocity v: v<c. For that case, let us apply
the following Lorentz-like coordinates’ transformation
(analogous to the ones used by the authors, e.g., in [22]):
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where [y = c/wy. After applying the transformation (11) to
the system of equations (10) for the case 3; —d 2 6>0, the
latter transforms into the following system of equations:

x=2y=2 z- (11)
ZO ZO

VPVQ =0,
AQ =0,
AP =0,

(VO 1 _

(VP) () F(P)_o, (12)
N H(1-H?
e 20Y_HOH)
1+H 1+H

with the gradient and the Laplace operators taken in the
coordinates (X, Y, Z). A solution of this system of equa-
tions can be sought, in particular, in the form
PX,Y,Z)=Pylnr, QX,Y,2)=no+nZ+ag  where

X
r= ( Yj is the radius vector of a point in the XY plane, a is

its azimuthal angle [so that o = arctg(Y /X )], n is an arbi-

trary integer, and m is the characteristic dimensionless
length of the investigated magnetic structure (moving or
static) along the Z axis. Then it turns out that for such solu-

n? +(1+n2)exp(2P/Po)
3 and
B
the following equation for the polar angle of the antiferro-
magnetic vector 0, can be written:

tion the function F(P)=

20" +70, —%sin26L (n2+(1402)r2) =0 (13)

The last equation describes the considered type of static
and dynamic distributions of antiferromagnetic vector. As
it can be seen from the form of the equation, it includes
nonlinear solutions. Let’s analyze this equation.

Analysis of the equations for the polar angle
of the antiferromagnetic vector

The Eq. (13) should be complemented with the boundary
values: 0;(0) and 6, value on the boundary of the considered
nanosystem [0;(r—o0) for an infinite antiferromagnetic
film]. Let us investigate the case of vortex, either static or
moving, in a nanodisc (nanocylinder): 0,(r = R,) =n/2,
where Rol, is the radius of the considered nanodisc
(nanocylinder). Such configuration corresponds to a mag-
netic vortex and, therefore, the condition 0;(0)=0 or
0,(0) = = is fulfilled. Numerical simulations show that for
the case n=1 an additional condition [e.g., a value of
07 (0)] is required in order to define the solution of (13).
For solutions that satisfy the condition 6, (»r = Ry)=mn/2,
07 (0) should have a negative value [07(0)=0 is also
permitted]. Therefore, for n =1 a solution that satisfies the

condition 0, (r = Ry)=mn/2 can be found for an arbitrary
(admissible) n and R,. For instance, for n=1, n=1,
Ro=30 (that roughly correspond to the nanodisc radius
~10°nm for typical antiferromagnets), the condition
0,(r=Rp)=m/2 can be satisfied when 67 (0)~—0.48,
07 (0) = —4.48, etc. Numerical simulations show that the
following dependences imply from the Eq. (13) for the case
0,(0)=m,n=1 (see Fig. 1).

The dependence 6,(r,m) for n=1 before applying the
condition 0;(r = Ry) =m/2 [can be used either for a large
sample or for a considered nanodisc or nanocylinder; in the
latter case the radius of the considered nanosystem should
satisfy the condition 6,(r = Ry) = n/2] has the form shown
in Fig. 2.

Analysis shows that for all the cases n # 1 the condition
07(0)=0 [0} (0)=0 if 0,(r=Rp) =n/2, to be exact] ful-
fills, thus reducing the number of degrees of freedom for
the obtained solution. As a result, a solution that satisfies

3m/4f
O n/2f

n/4:

3n/4{]
0, n/2f
n/4F
0 510 15 20 25 30
r
T

3n/4f

0, ank

/4

Fig. 1. Dependences 0,(r) forn=1,n1=1, 6,(0)=mn, R, =30:
0, (0) ~ —0.48 (a); 0, (0) ~ —4.48 (b); 8, (0) ~ —1.76 (c).
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Fig. 2. Dependence 0,(r,n) forn =1, 6,(0) ==, 6, (0)=-1.

the condition 0,(r = Ry) = /2 exists only for a discrete set
of values n for a given R,. The corresponding graphical
representations are also obtained via computer simulations
(see Fig. 3).

Discussion

Note that the obtained results can be applied for both
the static antiferromagnetic vector distribution (in the case
v =0) and a distribution that moves with the velocity v
along the Oz axis (that coincides with the magnetic aniso-
tropy axis). In the first case, the obtained solution defines a
static spin vortex in the considered antiferromagnet [which
is determined by the boundary condition 0;(» = R,) = n/2],
in the second case, an object akin to the moving antiferro-
magnetic domain wall with a single vortex. Note that
movement of AFM vortices on a domain wall has been
observed, e.g., by Chetkin et al. [23-25].

Note also that the standard boundary conditions for the
Néel vector in the considered model are obtained by inte-
grating of the equation

| 4 a 2 oh,

Ix| a,Al- —(I-hy)- ——B,(1-e,)1

™ S(gMo)zatz +5gM06t( O) 5gM,, ot Bl( eZ)[ Xe2]+
+%(d-1)[dxl]+%[1x[hoxd]]—%[lxho](l-h0)=o (14)

3n/4

0. w2

/4

3n/4

6, /2

/4

Fig. 3. Dependences 0;(r) for n=2, 8,(0)==n (n1=0.97) (a) and
n=0,0,0)=7(n~1.01) (b).

(here hy, =2H,, / M) that implies from the system of equa-
tions (3) with respect to a thin layer near the antiferromagnet

boundary, has the form I o, [IxAl]dV =0, where Qs is a
Qs
region with a thickness 6 neighboring the antiferromagnet
boundary. The corresponding boundary condition
[lxg—l}zo (where n is the unit vector normal to the
n

boundary and directed outwards), see, e.g., [26], can be
satisfied by the means of choosing the correct value of oy
in the expression Q(X, Y, Z) = no. +nZ + oy (for n=0). The
resulting vortex is an intermediate state between the Néel
vortex (ap=0, op=m) and the Bloch vortex (og=n/2,
oy =—7/2). Moreover, for the case of a surface anisotropy
or surface DMI, the boundary conditions can be modified
(see [27, 28] for analogous considerations) thus making
possible using of the boundary conditions with {l XS—:J =0
and, therefore, expanding the area of application of the
obtained result.

As an analogous solution of the Landau-Lifshitz equa-
tion can exist for a magnetization vector in a ferromagnet,
the above-found solution can be used, in particular, for
imprinted vortices in antiferromagnets (that emerge on a
contact of a ferromagnet with a magnetization vortex with
an antiferromagnet due to a strong exchange, see, e.g.,
[12, 13]). Such imprinted vortices are an especially actual
topic of research and represent a special interest for study

(see, e.g., [13]).
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Conclusions

We have investigated a new type of antiferromagnetic
(Néel) vector distribution in a two-sublattice uniaxial
antiferromagnet. The model used in the paper considers the
magnetic dipole-dipole interaction, the magnetic anisotropy,
the exchange and the Dzyaloshinskii-Moriya interaction.
As a result, an explicit expression for the azimuthal angle
and a differential equation for the polar angle of the anti-
ferromagnetic vector of such a topological configuration
were obtained. The considered distribution describes both
a static magnetic configuration and a configuration moving
along the magnetic anisotropy axis and includes nonlinear
solutions of the starting equations.

The results are analyzed by numerical methods and it is
shown that the obtained configuration describes, in particular,
spin vortices (static or dynamic) in a nanodisc, nanocylinder
or large antiferromagnetic sample. It is shown that these
vortices possess an oscillating nature, so the angle between
the antiferromagnetic (Néel) vector and the magnetic sym-
metry axis is oscillating with descending amplitude and
tends to /2 when the distance to the vortex axis increases.
An intermediate state between Néel and Bloch vortices is a
particular case for the obtained magnetic configurations.

The effects considered in the presented paper are more
essential at the low temperatures (as the Dzyaloshinskii—
Moriya interaction, which is essential for these effects,
becomes more pronounced).
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Ocuuntorodi CNMHOBI BMXOPW Y ABONIArPaTKOBOMY
OZIHOBICHOMY aHTU(epoMarHeTuky

Yu. |. Gorobets, O. Yu. Gorobets, V. V. Kulish

JocnipkeHo po3noia BekTopa aHTU(epoMarHeTu3My B OJIHO-
BICHOMY [BOMIArpaTkoBoMy aHTH(epomar€eTuky. OTpuMaHO
HOBHI KJIaC HEJHIHHMUX PO3B’A3KiB CHCTEMH IBOX BiOMHX piB-
usaup Jlanpay-Jligmmms y ¢opmi Tak 3BaHOi HeNiHIWHOI cHrMa-
MOJIEIi Ta OMUCAHO HOBHUII THIT TOMOJIOTTYHOI MarHiTHOT KOHpIry-
pauii y po3risiHyToMy aHTH(epomMarseTuky. IIpencraBieHo npu-
KJIaau po3B’s3KiB 3HaiigeHoro kiacy. Lli mpukiamy BKIOYAIOTH
BUXPOBI CTPYKTYpH, SIK pyXoMi, Tak i craruuHi. [Iepenbadaernes,
II0 TaKi BUXOPU MAIOTh OCLIMIIIOIOUHMI XapakTep, Tak II0 KyT MK
BEKTOPOM aHTH(EepoMarHeTH3My Ta BIiCCIO MAarHiTHOI cHMeTpii
KOJIMBAETHCS 13 aMIUTITYIOI0, SIKa CMAJae Ta HpsAMYye A0 T/2 mpu
3pOCTaHHI BiJICTaHi 10 OCi BUXOPY.

Kimouosi ciioBa: aHTH(EpOMarHeTHK, TOIIOJIOTIYHA MarHiTHa KOH-
¢irypauisi, CrliHOBUI BHXOp, OJHOBICHa MarHiTHa
aHi30TpoIIis, B3aeMois J3suommHcrkoro—Mopii.
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