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The influence of Rashba spin-orbit interaction on the transport properties of the two-dimensional quantum

ring with finite width has been investigated in the presence of the uniform perpendicular magnetic field. The de-

pendence of magnetoresistance on the magnetic field and Rashba spin-orbit coupling parameter in quantum ring

with finite width are investigated. It was shown that in the presence Rashba spin-orbit interaction that the

beating pattern is destroyed.
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1. Introduction

The semiconductor quantum ring is a mesoscopic sys-
tem for studying topological effects in semiconductors [1].
The interference effect in a quantum ring under external
magnetic field leads to the Aharanov—Bohm (AB) oscilla-
tions in physical quantities, such as conductance, orbital
magnetism, and persist currents.

The conductance of a quantum ring was been calculated
in the work [2] on the basis of the tunneling Hamiltonian in
the quasiballistic regime of the motion of electrons with
allowance for the spin-orbit interaction.

The linear and nonlinear optical absorption in a disk-
shaped quantum dot with parabolic potentials plus an in-
verse squared potential in the presence of a static magnetic
field was theoretically investigated in the paper [3].

In the paper [4] was found that the amplitudes of the
AB oscillation in conductance were usually dominated by
random fluctuations of the order of e*/h. This led to the
discovery of universal conductance fluctuations. Liu [5]
showed that when four spin-degenerate subbands in the
ring are populated, random signs dominate the AB inter-
ference patterns.

The influence of Rashba spin-orbit interaction on the
optical properties of two-dimensional mesoscopic ring was
been investigated in work [6] in the presence of uniform
perpendicular magnetic field.

In the paper [7] in the quantum system of pseudodots
was studying the direct interband transitions under the influ-
ence of an external magnetic field. In Ref. 8 was investigated
the influence of a screw dislocation on the energy levels and
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the wave functions of an electron in a two-dimensional
pseudoharmonic quantum dot under the influence of an
external magnetic field inside a dot and Aharonov—Bohm
field inside a pseudo dot.

In the paper [9] exact energy spectra and wave func-
tions analytically for a ring in the presence of both a uni-
form perpendicular magnetic field and a thin magnetic flux
through the ring center was obtained. It was used as a
model to study the Aharonov—Bohm effect in an ideal an-
nular ring that is weakly coupled to both the emitter and
the collector. The spinless electrons were considered. The
influence of exchange interaction on the transport properties
of two-dimensional diluted magnetic semiconductor quantum
ring with finite width was been investigated in the presence
of uniform perpendicular magnetic field in the paper [10].

In the work [11] explicit analytical expressions for the
magnetic moment and persistent current of the Volcano
ring was derived. The magnetic moment was investigated
as a function of the magnetic field strength and the tempera-
ture. In the paper [12] was investigated the energy spectrum
and corresponding wave functions of an electron confined
by a pseudoharmonic potential both including harmonic dot
and antidot potentials in the presence of a strong magnetic
field together with an Aharonov—Bohm flux field. The ener-
gies of the electron and hole weak-coupling polarons was
determined in quantum rings of finite width in a uniform
magnetic field. It was shown that polaron correction exhibit
oscillatory behavior as a function in a magnetic field [13].

In the paper [14] was studied the effects of magnetic
field and size on internal energy and entropy of a quantum
pseudodot.
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2. Theory

The purpose of this work is to generalize the results of
paper [9] to quantum ring with Rashba spin-orbit interac-
tions. We study the effect of Rashba spin-orbit interactions
on the magnetoresistance of quantum ring prepared from a
semiconductor with radial potential:

V(r):j—;+a2r2—21/ala2. €]

The expansion of (1) near the minimum yields

2
V(r)= m";)o (r—n )2 +const. )

Where one can obtain a relation between g, and a, and
experimentally determined parameters 7, and ®,:
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It is worth noting that the confinement model is very
powerful. This potential represents a quantum ring of radius
and width determined by the choice of the parameters a,

and a,. The (1) potential admits an analytic solution of the

Schrodinger equation in a magnetic field. The effective
width of the Volcano ring at a given Fermi energy E then

is Ar=,/8E, /m,0}. The (1) potential model has been
successfully used to explain the beats in the Aharonov—Bohm
oscillations, which have been experimentally observed in a
two-dimensional semiconductor ring [5]. Figure 1 shown
the profile U(7) in terms of the Cartesian coordinates.

The electron in one lead can reach the other one only by
tunneling through the quasi-bound circular states in the
ring. The quantum ring is subjected to a uniform magnetic
field along the z direction. The total Hamiltonian of the
system is given by:
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The solution of Eq. (6) have the form [15]:
P(r,0)=4,D,; 11 +B,P, 01 Lo (7

where @, ; corresponds solution Schrodinger equation of
the case when o =0,
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Fig. 1. The profile V(7) in terms of the Cartesian coordinates.
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where [ is a 2x2 unit matrix, m, is the effective mass elec-
trons, Wp =eh/2my is the Bohr magneton, m is the free
electron mass, A is the vector potential, and G, is the z
component of Pauli spin matrices and g is the Lande factor
of electrons.
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where ®=mwiH and ®,=ch/e are magnetic flux
through the ring and a flux quantum. For uniform magnetic
field, the vector potentials in cylindrical coordinates have
the components 4, = Hr /2, A, =0 and Schrddinger equa-
tion in polar coordinates is:

r2+V( )—EJI+HR+—gczu3H}‘I’(r,d))=0 6)
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. 2 2 2 4 2

(€)]
here the following designations are used:
Mi= [P+ 2%y 1) 4 24
K2 72
A= h =0’ +0] (10)
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2
where Y {%(%) 1 is the a associated Laguerre polyno-

mials, ®, = eH / m, is the cyclotron frequency, I'(x) is the

Gamma function, quantum number n =0, 1, 2, ... shows

the order of the radial mode and m =0, £1, £2, ... gives

the angular momentum, and ¢ =1 for =T,»L, and y is

. . 1
the electron spin written as the column vector 1y, =(0],

)

Substituting Eq. (7) into Eq. (6) we find for the coeffi-
cients 4 and B following equations:

1
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We multiply Eq. (12) with @, , Eq. (13) with @, ,,, and
integrating the resulting equations by term over » und using
the below identies of associated Laguerre polynomials [16]:

(I+y), (1-a+1) F(a)X

J-x“_le_chXn (bx) r (ex)dx =
0

><3F2(—m,oc,oc—k,1+y,a—7u—n; %) (14)

and also carrying out the normalization,we find that the
coefficients 4; and B, satisfy eigenvalue equation:

En,0+lguBB—E T1+T2+T3
2 (A"jzo
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where Pochhammer symbol,

) is a

) (—m, o, —A1+y,00—A—n; %J the generalized hyper-
geometric function.

To determine of the solutions of eigenvalue Eq. (15),
we set the determinant of Eq. (15) to zero. We obtain ener-

gy spectrum of electrons:
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where
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X
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For obtaining the magnetoresistance of the electrons in
semiconductor rings it is necessary to find the ballistic con-
ductance of the electron gas in the quantum ring. The bal-
listic conductance of the electron gas can be determined of
the Landauer formula [9]:

(1) =30, (1. ).

n,c

(26)

where T,°°(H,Ep) is the magnetic-field-dependent
transmission coefficient of the nth channel in the leads at the
Fermi energy Er. If we assume that the two leads are weakly
coupled to the ring, the electron in one lead can reach the
other one only by tunneling through the quasibound circular
states in the ring. In such a case, the conductance can be
approximately expressed in the form of [9]:
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Fig. 3. The dependence of the dimensionless resistance Ri2 asa
function of magnetic field for value of Rashba cgupling
o =3 meV-nm. Fermi energy is kept fixed at £-=2 meV.

G([-[) = i FZ,m,GF;,m,G Fft,m,c + F;,m,c + r;,m,c (27)
4 n,m,G [EF - En,m,G (H):|2 + %(Fft,m,c + F;,m,c + Fiz,m,c )2 Fft’m’c * rz’m’ﬁ

E, ..c(H) is the energy of the (n, m, ) the quasibound
ring states. Furthermore, we can approximate the energies of
these quasibound states with those of the isolated ring given
in Eq. (16). T, ,, 5,17, . and F;,m’c are the broadening of
the (n, m, o)th ring state caused by leaking into the emitter
(collector) and inelastic scattering, respectively. In order to

determine the qualitative dependence of the conductance

on the magnetic field, we assume that 'y, . andl’ ’nmc are
constant, I3, =Ty -=0°=0.005meV, I, =

=T" =0.004 meV [9].

3. Results

For our calculation we consider the parameter corre-
sponding to GaAs materials: m, =0.067 m,, where m, is

the free electron mass, and g,=-0.5, ring radius
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Fig. 2. The dependence dimensionless energy levels

2

(8=E/2hiz) as a function magnetic field at fixed Rashba
m,ry

spin-orbit parameter oo =3 meV-nm for quantum number 7 =0,
|m| <5, 0=x1.

ro =800 nm and a ring width Ar =300 nm at £, =2 meV
are taken from the literature [9].

In Fig. 2 we plot the dimensionless electron energy
spectrum vs magnetic field at fixed Rashba spin-orbit pa-
rameter o = 3 meV-nm for quantum number n =0, |m| <5,
c==l.

The dimensionless resistance R(h/e®) vs magnetic
field with Rashba spin-orbit interaction at fixed Fermi en-
ergy Er=2meV in quantum ring is shown in Fig. 3. In
Fig. 3 calculated with n=0, |m|£500, c==1. As seen
from Fig. 3 the influence Rashba spin-orbit interaction de-
stroys beating in the magnetic field dependence of magneto-
resistance. It follows from the general considerations that
the destructive interference of the contributions made by
different electron trajectories to the wave function phase
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Fig. 4. The dependence of the dimensionless resistance Ri2 asa
e

function of Rashba spin-orbit interaction parameter for magnetic
field value H=0.05T in quantum ring. Fermi energy is kept
fixed at Er =2 meV.
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Fig. 5. The dependence of the dimensionless resistance Ri2 asa
e

function of Rashba spin-orbit interaction parameter for magnetic
field value H = 0.5 T in quantum ring. Fermi energy is kept fixed
at Er=2 meV.

should distort the strict periodicity of the Aharonov—Bohm
oscillations. The computed resistance versus Rashba spin-
orbit parameter o shows in Fig.4 at magnetic field
H=0.05T and in Fig. 5 at magnetic field H=0.5 T. The
Fermi energy fixed at £ =2 meV. As see from Fig. 4 and
Fig. 5 the magnetoresistance undergoes oscillation as func-
tion of Rashba spin-orbit interaction parameter o.

4. Conclusions

To summarize, in the paper we consider 2D electron
gas magnetoresistance in semiconductor quantum ring with
pseudoharmonic potential profile. The energy spectrum
and wave functions of electrons are calculated for a semi-
conductor quantum ring of finite width under the uniform
perpendicular magnetic field and the Rashba spin-orbit
interactions. We show that 2D electron gas magneto-
resistance depending on Rashba spin-orbit interaction con-
stant oscillates with random amplitudes.
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MarHiToonip eneKkTpoHiB y KBAQHTOBOMY KirlbLii
3i cniH-opGiTanbHo B3aemopieto Pawobn

A. M. Babanli, Osman Ugar

JlocmipkeHO BIUTHB CHiH-OpOiTaNbHOI B3aemonii Pamibu Ha
TPAHCIOPTHI BIACTUBOCTI JBOBHMIPHOTO KBAaHTOBOTO KiJbLs 3
KIHLIEBOIO LIMPHHOIO 33 HAssBHOCTI PIBHOMIPHOTO MEPIEHINKYIISP-
HOTO MAarHiTHOTO Nois. JOoCHiKEeHO 3aleKHICTh MarHiTOOIOpY
BiJI Mar”iTHOro IIOJIs1 Ta rapamerpa ciiHoBoi opOitu Pambwu y
KBaHTOBOMY KiJbIIi 3 KiHIIEBOIO IIMPHHOI. Byrno mokasaHo, mo
3a HasIBHOCTI CIiH-0pOiTanbHOI B3aemonil Pambu xapTrHa OUTTS

pyHHY€ETBCS.

Kitro4oBi ciioBa: Maruitoorip, 6agicTHYHA MPOBIHICTS.
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