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The effect of the external electric field and/or the external strain on the low-temperature behavior of the quan-
tum spin chain model is studied. The external electric field or the strain can cause the quantum magnetic struc-
tural phase transition between two magnetically ordered phases with different order parameters. Such a quantum 
critical point can be observed in the special behavior of the low-temperature specific heat: At the critical value 
the low-temperature specific heat manifests linear in temperature behavior instead of the exponentially small one 
for other values of the field. The magnetic susceptibility also manifests the special behavior, in which quantum 
phase transitions are revealed. 
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The coupling between the electric, magnetic and elastic 

subsystems can be seen in magneto-electric, piezoelectric 
and magneto-elastic effects. The attention of researchers is 
attracted by application of those effects in microelectronics, 
e.g., spintronics [1, 2], for instance as switching devices, or 
as writing and reading devices for memory storages, which 
can be governed by external fields and strains. Also, such 
an attention is determined by the interesting physics behind 
them. The most known systems in which such effects take 
place are the so-called multiferroics, i.e., systems, where 
both magnetic and ferroelectric properties are manifested, 
see, e.g., [3–9]. Therefore, most of studies were performed 
on magnetically ordered systems, like ferro- and antiferro-
magnets (like ferroborates, for the recent studies see [10–13]). 
However, from general grounds it is clear that similar ef-
fects can exist in spin systems without magnetic ordering. 

Recently magneto-electric, piezoelectric, electro-magne-
tic and magneto-acoustic effects in the quantum paramag-
net (a single spin) have been studied [14, 15], where the 
quadrupole spin moment has the single-ion nature. It is in-
teresting to investigate the quantum many-body spin insu-
lating system, in which similar effects can take place. The 
ligands surrounding magnetic ions determine the anisotro-
py of the orbitals, and, together with the spin-orbit interac-
tion and the exchange one, it defines the magnetic aniso-
tropy of the effective (indirect superexchange in nature) 

interaction between spins in the considered spin model. 
Then the interaction between the spin, charge and elastic 
subsystems of the crystal can yield interesting behavior in 
the external electric field, or under the action of the exter-
nal strain. 

Quantum spin chain systems can be used as the testing 
ground for investigation of many-body effects together 
with the coupling between electric, magnetic and elastic 
subsystems. On the one hand, the reduced dimensionality 
preserves the system against magnetic ordering at nonzero 
temperatures [16]. On the other hand, those systems mani-
fest quantum many-body effects. Also important, spin-1/2 
chains permit to obtain many exact theoretical results [17], 
which give the opportunity to use those results for compar-
ison with the data of experiments in spin chain systems, 
and with the results of approximate theoretical calculations 
for more realistic systems. 

In the present study, we consider the behavior of static 
thermodynamic characteristics of the quantum spin chain 
model, which interacts with external electric field or strain. 
Using the exact analytic result, we have shown that the 
external electric field and/or strain can cause additional 
quantum phase transition in the spin chain system between 
two ordered magnetic phases with different order parameters. 

Consider the Hamiltonian of the model, which can be 
written as [11, 18] 
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b u u S S S S+ ++ − −∑  (1) 

where , ,x y z
nS  are the operators of spin projections of the 

spins 1/2 situated at the site n, with the magnetic field H  
directed along the z  axis (we use units in which = 1Bgµ , 
where Bµ  is the Bohr magneton, and g  is the effective 
g-factor), = ( ) / 2x yI J J+ , = ( ) / 2x yJ J J− , ,x yJ  are the 
parameters of the magnetically anisotropic exchange interac-
tion, 0xE E≡ ≥  is the electric field directed along the x axis, 
u is the strain ( xx yyu u u≡ − , and 0u  is the static strain), 
a and b are the coefficients of the magneto-electric and mag-
neto-elastic couplings, respectively (all issues are connected 
with the x  coordinate). In what follows, the energy of the 
electric field and the energy of the elastic subsystem (clas-
sical values) do not play roles, and we do not write them. 

The form of the electro-magnetic, strain-spin and pie-
zoelectric coupling is the special case of the general inter-
actions between spin, electric and elastic degrees of free-
dom 

,
p q

ipq i n mm n ipq
a E S S∑ ∑ , and 

,
p q

ijpq ij m nm n ijpq
b u S S∑ ∑ , 

where n, m numerate lattice sites, and , , , = , ,i j p q x y z  [18] 
with a, and b, being the components of the tensors ipqa , and 

ijpqb . We use the form of magneto-electric and magneto-

elastic couplings similar to [11], where the studied effects 
were observed in the magnetically ordered multiferroic. 
The effect is related to the orientation of the magnetic an-
isotropy axes of the spin-spin interaction in the chain. The 
latter is determined mostly (if not take into account rather 
weak magnetic dipole-dipole interaction) by the distribution 
of nonmagnetic ligands, surrounding magnetic ions, through 
which the indirect exchange between spins of magnetic 
ions is realized. The spin-orbit interaction together with the 
orientation of orbitals of ligands and magnetic ions affects 
the anisotropy of the inter-spin interactions in the chain. 

Using the well-known Jordan–Wigner transformation [19], 
the Hamiltonian of the spin chain can be exactly mapped 
onto the one of the quadratic form of spinless Fermi opera-
tors. Then, using the Fourier transformation and the Bogo-
lyubov transformation that fermionic Hamiltonian can be 
diagonalized [17], and the free energy of the system can be 
written as 

 [ ]1= ln 2cosh( / ) ,k
k

F TN T−− ε∑  (2) 

where T  is the temperature (we use the units in which the 
Boltzmann constant is equal to unity, = 1Bk ), and 

1/22 2 2
0= ( cos ) [ ( )] sin .k H I k J aE b u u k ε − + − + −   (3) 

All features of thermodynamic behavior of the spin 
chain are determined by the dispersion law kε . It is known 
that for = = 0a b  the dispersion law is gapped, with the 

gap value | |H I±  at = 0,k π and 2 2H J+  at = / 2k π . 
The spectrum becomes gapless at = 0J , i.e., in the uniaxial 
case, and for <H I . In the uniaxial case = 0J , the spin 
chain is disordered at any temperature, including the ground 
state [17]. At = =cH H I , the ground state magnetic sus-
ceptibility has the square root singularity. On the other hand, 
for 0J ≠ , the system can be in the magnetically ordered 
state at = 0T . Suppose , > 0I J , then, according to [20], 
one can see that in the ground state = 0T  the static pair 
spin-spin correlation functions behave in a different way. 
Namely, the correlation function x x

n n rS S +〈 〉  does not decay 
with the distance r , manifesting for <H I  nonzero behav-
ior at the infinite distance, while it is zero for >H I . On 
the other hand, y – y  and z –z  pair correlation functions 
decay with distance r  (except of the trivial case = 0J  and 

>H I , where the spin chain is in the magnetic field-induced 
phase with all = 1/ 2z

nS〈 〉 , hence z–z correlation function 
is 1/4), so that in the limit r →∞  they are zero. It means 
that for <H I , the spin chain is in the magnetically ordered 
state in the ground state = 0T . The order parameter is anti-
ferromagnetic; it is the (staggered) x  projection of the mag-
netic moment. The point = =cH H I  is known as the quan-
tum critical point, at which the quantum phase transition 
takes place. Here the gap of the dispersion law kε  is closed 
at one value of the quasimomentum, = 0k . For that reason, 
the ground state magnetic susceptibility has the logarithmic 
feature. It is the transition between the spontaneously or-
dered and disordered phases. 

That quantum phase transition can manifest itself, e.g., 
in the behavior of the spin specific heat c, which can be 
calculated, as usual, as 2 2= /c T F T− ∂ ∂ . In general, the tem-
perature dependence of the specific heat of the spin chain 
manifests the growth with temperature at low temperatures, 
then the maximum (the Schottky-type anomaly for the many-
body quantum system) and finally, decays with T  at high 
temperatures [17]. Figure 1 shows the behavior of the low-
temperature part of the specific heat of the spin chain with 

= = 0a b  and = 1I , = 0.3J  for several values of the ex-
ternal magnetic field. 

We see that the low-temperature part of the specific heat 
behaves differently at the quantum critical point = cH H : 
It grows linearly with T , while for H I≠  the specific heat 
is exponentially small. 

Let us consider the effect of the external electric field 
with 0a ≠  (while = 0b ). One can see that the electric 
field renormalizes the value of the exchange integral 
J J aE→ − . It means that at the critical field = /cE J a  
the spin chain becomes effectively uniaxial. In that case, as 
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we know [17], in the ground state all spin-spin correlation 
functions decay; they decay algebraically for <H I  at 

= 0T  (the dispersion law is gapped for any value of k ), 
and exponentially for >H I  at = 0T , and for any H  at 
nonzero temperatures. On the other hand, for < cE E , 
the eigenstates of the spin chain are gapped for <H I , and 
the correlation function ( 1)r x x

n n rS S +− 〈 〉  is nonzero in the 
limit r →∞ , cf. [20], 

 
1/42 2( ) [1 ( / ) ]( 1) = .lim 2 ( )

r x x
n n r

r

J aE H IS S
I I J aE+

→∞

 − −
− 〈 〉  + − 

 (4) 

Other pair spin-spin correlation functions decay with the 
growth of distance r . The spin chain is in the magnetically 
ordered state with the antiferomagnetic order parameter 
being the x  projection of the staggered magnetic moment. 
Then, for > cE E , the system is again in the magnetically 
ordered state. However, now the correlation function 
( 1)r y y

n n rS S +− 〈 〉  is nonzero at r →∞, 

 
1/42 2( ) [1 ( / ) ]( 1) = ,lim 2 ( )

r y y
n n r

r

J aE H IS S
I I J aE+

→∞

 − −
− 〈 〉  − + 

 (5) 

while other pair spin-spin correlation functions decay with 
the growth of distance r . It means that the quantum critical 
point = cE E  divides two magnetically ordered (in the 
ground state) phases, one with the nonzero x-component of 
the site staggered magnetization, and the second one with 
the y-component. The ground state phase transition at = cE E  
is the magnetic structural phase transition between two 
ordered phases with different order parameters. 

The quantum critical point = cE E  can be also mani-
fested in the low-temperature part of the specific heat of 
the spin chain. Figure 2 shows the low-temperature specific 
heat of the spin chain with = 1I  and = 0.3J  in zero mag-
netic field for = 0b  and = 1a  for several values of the ex-
ternal electric field. 

Notice that the external electric field almost does not 
change the position of the maximum of the specific heat 
(its height depends on E ), while the electric field drastical-
ly changes its low-temperature behavior. For = cE E , the 
low-temperature specific heat manifests the linear in T  
behavior, while for other values of E  the behavior is expo-
nential. 

Consider the common effect of the external electric and 
magnetic fields. The quantum critical line in the H–E plane 
at = 0T  is determined by the formula 

 2 2 2( ) = .H J aE I+ −  (6) 

Figure 3 shows the behavior of the low-temperature 
specific heat of the spin chain with = 1I , = 0.3J  at = 1a  
and = 0b  for several values of the external electric and 
magnetic fields. 

While in the absence of the fields the low-temperature 
part of the specific heat is exponentially small, for = 0H  at 
the critical field = cE E  it becomes linear in T  with the 
position of the maximum situated approximately at the 
same value as for = 0E . On the other hand, for = cH H , 
the maximum of the specific heat is shifted for higher val-
ues of the temperature. At the point = cH H  and = cE E , 
the Sommerfeld coefficient (before the linear in T  part of 
the specific heat) is maximum. At this point, the dispersion 

Fig. 1. (Color online) The low-temperature part of the specific 
heat of the spin-1/2 chain for = 1I  and = 0.3J  with = = 0a b  for 

= 0H  (red solid line), = 0.3H  (blue dashed line), = 1H  (black 
dashed-dotted line), and = 1.2H  (green dotted line). 

Fig. 2. (Color online) The low-temperature part of the specific 
heat of the spin-1/2 chain for = 1I  and = 0.3J  with = 1a  and 

= 0b  at = 0H  and for = 0E  (blue dashed line), = 0.1E  (green 
dashed-dotted line), = 0.3E  (black solid line), and = 0.8E  (red 
dotted line). 
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law is = sin( / 2)k I kε , and the magnetic susceptibility ma-
nifests the square root singularity in the ground state. 

Also the quantum phase transition at = cE E  reveals it-
self in the zero magnetic susceptibility for > =cH H I  in 
the ground state. It is interesting to see how the low-tempe-
rature magnetic susceptibility of the spin chain depends on 

the applied external electric field. Figure 4 manifests the 
low-temperature ( = 0.01T ) the electric field behavior of 
the magnetic susceptibility of the spin chain with = 1I  and 

= 0.3J  for = 1a , = 0b , and for several values of the ap-
plied magnetic field. We can see that for small fields, ap-
proximately < cH H , the magnetic susceptibility grows 
with E  at low values of E , then it has the maximum at 

= cE E , and then it decays with the growth of E . On the 
other hand, at cH H≈ , a minimum is developed at = cE E  
instead of the maximum, and it becomes deeper with the 
growth of H . Finally, for > cH H , the magnetic suscepti-
bility is small and first decays with E , and then the maxi-
mum appears with the small hight, and the position shifted 
to large values of E . 

Let us turn to the external strain behavior of characteristics 
of the spin chain for 0b ≠ . Looking at the Hamiltonian (1), 
we see that the external strain 0u  plays similar to the exter-
nal electric field E  role: It renormalizes the effective pa-
rameter of the in-plane anisotropy of spin-spin interaction J. 
Then the effect of the external strain is similar to the effect 
of the external electric field. 

As for the internal strain, the following relation holds 

 
2

2 = ,
4

u be u b EC e
a x a xt

∂ ∂ ε ∂   − − +   ∂ π ∂∂    
 (7) 

where C  is the elastic modulus, connected with the consid-
ered strain, e is the piezoelectric modulus, and ε is the 
electric permittivity, i.e., the dynamics of the internal strain 
in the system depends on the spatial changes of the exter-
nal electric field. Notice, however, that the realistic values 
of the external electric field can be much larger than the 
one for the external strain, caused by the external pressure. 
This is why, it is possible that for realistic values of the 
external pressure one cannot reach the values of 0u  at 
which the crossover to the uniaxial (magnetically disor-
dered in the ground state) behavior can take place. 

In summary, we have studied the effect of the external 
electric field and the external strain on the low-temperature 
behavior of the quantum spin chain. We have shown that 
the external electric field or the strain can cause the quan-
tum magnetic structural phase transition between two mag-
netically ordered phases with different order parameters. 
We have also shown that such a quantum critical point can 
be observed in the special behavior of the low-temperature 
specific heat: At the critical value of the field (or the 
strain), the gap of low-energy eigenstates is closed, and the 
low-temperature specific heat manifests linear in T  behavior 
instead of the exponentially small one. Also, at the critical 
value of the external electric field or strain, the ground 
state magnetic susceptibility is zero for the values of the 
magnetic field, larger than the critical one. The electric 
field dependence of the magnetic susceptibility at low tem-
peratures manifests the nonmonotonic behavior, with extrema 
related to the critical values of the electric and magnetic 
fields. 

Fig. 3. (Color online) The low-temperature part of the specific heat 
of the spin-1/2 chain for = 1I  and = 0.3J  at = 1a  and = 0b  for 

= = 0H E  (red dotted line), = 0H , = 0.3E  (blue dashed-dotted 
line), = 1H , = 0E  (green dashed line), and = 1H , = 0.3E  (black 
solid line). 

Fig. 4. (Color online) The low-temperature magnetic susceptibility 
of the spin-1/2 chain as a function of the applied electric field E for 

= 1I  and = 0.3J  at = 1a  and = 0b  for = 0H  (green solid line), 
= 0.5H  (cyan dashed-dotted line), = 0.99H  (red dashed line), 
= 1.01H  (black dotted line), = 1.05H  (blue long-dashed line), 

and = 1.5H  (grey solid line). 
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Індуковані електричним полем та деформацією 
квантові фазові переходи в спіновому ланцюжку 

A. A. Zvyagin 

Вивчається вплив зовнішнього електричного поля та/або 
зовнішньої деформації на низькотемпературну поведінку мо-
делі квантового спінового ланцюжка. Зовнішнє електричне 
поле або деформація можуть спричинити магнітний структур-
ний квантовий фазовий перехід між двома магнітно-впоряд-
кованими фазами з різними параметрами порядку. Таку кван-
тову критичну точку можна побачити в спеціальній поведінці 
низькотемпературної теплоємності: при критичному значенні 
низькотемпературна теплоємність виявляє лінійну темпера-
турну залежність замість експоненціально малої для інших 
значень поля. Магнітна сприйнятливість також виявляє особ-
ливу поведінку, в якій проявляються квантові фазові переходи. 

Ключові слова: квантовий спіновий ланцюжок, електричне 
поле, зовнішня деформація.
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