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Transverse Anderson localization of evanescent waves
propagating in randomly layered media
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We study theoretically the transverse Anderson localization of light in the simplest geometry, where
the p-polarized wave propagates along the layers in the randomly stratified dielectric and evanesces exponential-
ly in the direction across the layers. In this case, there exist two reasons for the localization of the wave in the di-
rection transverse to its propagation: the usual evanescent wave confinement and the Anderson mechanism relat-
ed to the randomness of the spatial distribution of permittivity. We solve the problem using the retarded-Green-
function formalism in the Born approximation and show that, for fixed values of the wave frequency » and
wavenumber g, the random inhomogeneity results in the weakening of the wave localization. In the case of the
surface plasmon-polaritons (SPPs) propagation, the Anderson mechanism changes the dispersion law for SPPs,
moving the dispersion curves away from the light line. Therefore, the localization depth varies in different ways
when increasing the disorder, depending on which of the values, wave vector g or frequency o, is fixed. Namely,
the localization depth increases for given g, but it decreases for given o.

Keywords: inhomogeneous wave, depth of localization, Green's function, surface plasmon-polariton, disper-

sion law.

1. Introduction

In recent decades, since Anderson’s seminal paper [1],
the problem of transport of electromagnetic waves in one-di-
mensional (1D) systems with the long-range correlated dis-
order has attracted much attention (see, e.g., Refs. 2-9 and
references therein). In this context, heterogeneous materials
are of tremendous importance and interest [10]. Examples
include composite materials, biological systems and others.
Due to their significance, heterogeneous materials have
been studied using experimental, theoretical, and different
computer simulation methods. A stratified structure, the
index of refraction of which depends on only one coordi-
nate, is often used as the model medium in solving prob-
lems of wave propagation in the atmosphere, ionosphere,
and ocean.

Thus, the Anderson localization is one of the fundamen-
tal phenomena in physics of disordered systems. The bibli-
ography in this area numbers many reviews [9, 11-14],
monographs [8, 15-19] and hundreds of original articles
(see, e.g., Ref. 20-33). Most of these researches are related
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to special geometry, where a wave propagates in a direc-
tion perpendicular (or under some finite angle) to homoge-
neous planes with different dielectric properties that change
randomly. It should be noted, however, that the transverse
Anderson localization was considered in a humber of pa-
pers (see, e.g., Ref. 34). Such phenomena are achievable in
systems invariant along the direction of propagation and
disordered in the transverse plane, e.g., in a set of randomly
arranged but strictly parallel tubes. In the seminal paper [35],
Schwartz and co-workers exploited a photorefractive crys-
tal to generate complex longitudinally invariant and recon-
figurable scattering patterns composed of tubes aligned along
the direction of propagation.

In this paper, we study the transverse Anderson locali-
zation of light in the simplest geometry, where the wave
propagates along the layers in the randomly stratified di-
electric and evanesces in the direction across the layers,
say, along the z axis. Thus, we investigate the situation
when there are simultaneously two reasons for the localiza-
tion of the wave in the direction transverse to its propaga-
tion. The first reason is the usual evanescent wave con-
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finement due to the large value of the wave vector,
q> one /¢, where o is the wave frequency, g4 is the av-
erage value of the dielectric permittivity, c is the speed of
light in the vacuum. The second reason is the Anderson
mechanism related to the randomness of the spatial distri-
bution of &(z).

We solve the problem of p-polarized evanescent wave
propagation in the randomly layered dielectric using the
retarded-Green-function formalism in the Born approxima-
tion. Then we apply the obtained result to two physical
realizations of the evanescent waves. The first problem is
related to the so-called disturbed total internal reflection
for the wave incident from an optically dense dielectric
onto its boundary with the randomly inhomogeneous rare
dielectric under conditions when the angle of incidence
exceeds the limiting angle for the total internal reflection.
It is known that, in this case, the wave penetrates into an
optically rare medium in the form of the evanescent wave
which can tunnel into another optically dense dielectric
located nearby. We show that, contrary to expectations, the
fluctuations of ¢(z) in the optically rare medium lead not
to a weakening, but an increase in the coefficient of wave
transmission through the optical tunneling barrier, in com-
parison with the case of a rare dielectric with constant die-
lectric permittivity 4. In other words, the Anderson mech-
anism does not enhance the localization of the evanescent
wave with given g and o, but weakens it.

The second solved problem is related to the propagation
of surface plasmon-polaritons (SPPs). In this case, the An-
derson mechanism changes the dispersion law for SPPs,
moving the dispersion curves away from the light line deep
into the (q,®)-plane. It is of interest that the localization
depth for SPPs varies in different ways, depending on
which of the quantities, g or w, is fixed. If one keeps the
wave frequency constant, then the fluctuations of &(z) re-
sult in decrease of the localization length, whereas the dis-
order provides a weakening effect on the localization of
SPPs with a fixed value of g.

2. Statement of the problem and main equations

Consider a monochromatic evanescent p-polarized
electromagnetic wave with a single nonzero component
H,(x,z2) =H(z) exp (igx —iwt) of the magnetic field prop-
agating along the x axis in a dielectric with coordinate-de-
pendent permittivity €(z), occupying the half-space z > 0.
From the Maxwell equations,

ig(z)o
c

rotE = "2H, rotH = — E, 1)
C

we obtain the following relation for H(z),

df 1 dH)_ [, s@)e’
a(z)dz(a(z) dzj [q ¢ j

T

O]

If the dielectric half-space is homogeneous, ¢(z) = const = g,
the evanescent field decays exponentially with the spatial
decrement «, away from the interface,

€ (02

H(2) = Hoexp (—x02), Ko =4/a* ——5—, 2>0. (3)
c

Below we study the change of this decrement,

Kq = Ko + Ak, due to a small random addition Ag(z) to the
dielectric permittivity.

2.1. Green function for the evanescent wave

We study the role of fluctuations Ae(z) in the evanes-
cent wave spectral properties in terms of the retarded
Green function G(z,z’,x,) using the average procedure,
similar to the one performed in Ref. 9 for the propagating
waves. This Green function is governed by the equation,

{;—Z—KS —V(z)}G(z, 7',x0) = 8(z - 2'),

G(z > o, 7', xy) <o 4

The weak disorder of the permittivity &(z) is incorpo-
rated into the perturbation function V (z),

Ae(2)w? Kk, d[Ae(2)]
pa— 2 +_ ,

V(z) =
() Sd dZ

Ae(2) = 6()) ~(e(2) = 6(D) 54 <&g.  (5)

Without disorder, V (z) =0, the unperturbed Green func-
tion Gy (z,2',x,) has the form,

exp (g |2—2'))
2K, '

Go(z—17"xg) =—

(6)
The Fourier transform for the unperturbed Green function is

Go(k; 10) = [ dzexp (~ik,2)Gy (2, o)
exp (_KO I z |) - _ 1 : (7)
Kg k? +x3

= —j dzexp (—ik,z)

—00

In order to define the perturbation procedure over the scat-
tering potential V (z), we relate the perturbed Green func-
tion G(z,2',x,) to the unperturbed one using the Green
formula,

G(z,7',xg) = Gy(z—17',xy)

+ [ d2Gy(2-2" 1V (216 (2" 2 ko). (8)

—00

It is easy to verify that solution (8) is satisfied to Eq. (4).
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The result of the averaging procedure for the Green
function is the Dyson equation,

(G(z—-17',x9)) =Gy (z—17', )

+ j dz"'dz""Gy(z - 2", k)M (2", 2")(G (2" - 7', 0)). (9)

—00

The integral operator M that describes the wave interac-
tion with the random potential, is called the self-energy or
mass operator. The exact Dyson equation can be solved for
a weak scattering, when the self-energy is written in the
first non-vanishing (i.e., quadratic) order in the scattering
potential V(z). Within this approximation, known as
the Born approximation, we can write,

M(z,2)=Mg(z2-2") =V (2)Gy(z-Z", gV (2'))
=VZK(z-2")Gy(z -7, k). (10)

Here the function K(z—-2z') is the binary/pair normalized,
K (0) =1, correlation function of the random variable V (2)
with zero average value, (V(z)) =0,

V(2V (@) =VPK(z-2), V2@)=VE (1)

It is characterized by the correlation length R, that is the
scale on which the correlator effectively decreases.

Since the integral Dyson equation (9) contains the dif-
ference kernel Eq. (10), it can be readily solved by the
Fourier transformation. As a result, we get a simple equa-
tion for the average Green function,

(G(k;,1c0)) = Gy (K, 1¢0) + Gy (K, 0) Mg (K, XG (K, Kp))-
(12)
Thus we have,

1
2 2 )
ki +x5+Mzg(k,)

(G(k;,10)) == (13)

Taking into account the explicit expression Eq. (10) for the
self-energy together with the Fourier transform for the un-
perturbed Green function Eq. (7), one can get

o dk’ K(K' —k,)
i 2n k'? +K§ ’

Mg (k,) = —V02 (14)

where K(k) is the Fourier transform for the binary
correlator K(z).

It should be noted that one of the necessary conditions
for the validity of presented here averaging procedure is
the smallness of the correlation length with respect to the
localization depth 1/ «,

KkoR, < 1. (15)

This condition follows from the obvious physical require-
ment that the wave, in the region of its existence, should

feel a large ensemble of realizations of the random potential.
For such extremely short correlations, the function K(z) can
be changed by the Dirac delta-function, K(z) - 8(z/R,),
and C(k) is constant. So, the integration in Eq. (14) gives
the value of Mg independent of k,,

Mg =~V B ' (16)
Ko

where the correlation length is, by definition,
&=IKUNL (17)
0

Now, performing the inverse Fourier transformation for
Eq. (13) and using Eq. (16), we obtain the perturbed Green
function (G(z-12',xg)),

(G(z—z’,K0)>=—eXp (—;ilz—z I)’ (18)

with
VZR,
Ky = Kg———=. 19
d 0 2](% ( )

Note that Eq. (18) differs from expression (6) for the un-
perturbed Green function G,(z-12',x,) by the change
Ko — kg only. Thus, we have come to an important unex-
pected conclusion: the disorder results in the weakening of
localization for the evanescent wave with given values of
the frequency ® and wavenumber g. However, the change
of the localization depth should be considered as a small
positive correction to «,*, otherwise the used here Born
approximation becomes inapplicable. In other words, the
parameter «, should not be small,

Ko > (VR )Y (20)

[see Eq. (19)].

It is known that the damping decrement of the averaged
Green function does not define the decrement of the aver-
aged amplitude of the propagating waves (see, e.g., Ref. 9).
However, as was shown in Ref. 36, these damping coeffi-
cients coincide exactly for the evanescent waves.

2.2. Enhancement of wave transmission
through an optical potential barrier

In this subsection, we apply the obtained result to the
problem of disturbed total internal reflection. Consider the
wave incident from an optically dense dielectric prism with
permittivity ¢, > &4 onto its boundary with the randomly
stratified rare dielectric under conditions when the angle 6
of incidence exceeds the limiting angle 0, for the total
internal reflection [see Fig. 1(a)]. It is known that, in this
case, the electromagnetic field penetrates into an optically
rare medium in the form of evanescent wave which can
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Fig. 1. Geometry of the problems: (a) For the wave transmission
through an optical potential barrier. Here k;, k,, and k, are the
wave vectors of the incident, reflected, and transmitted waves. In
this setup, the frequency and wavenumber of evanescent wave
can be set independently of each other and they are independent
of the distribution ¢(z). (b) For the surface plasmon-polariton
propagation. In this case, the frequency and wavenumber of eva-
nescent wave are related to each other via the dispersion law
which, in turn, is sensitive to the distribution (z).

tunnel into another optically dense dielectric prism located
nearby. The transmission coefficient T through such an
optical tunneling barrier is proportional to exp (—2x4d)
where d is the distance between the prisms, and, according
to Eq. (19), the fluctuations of &(z) result in its increasing,

2
T =Tyexp (VO R.d ] (21)

&

Here T, is the transmission coefficient through the rare
dielectric gap without fluctuations. Note that, despite the
smallness of the exponent in Eq. (21) with respect to k,d,
it can be greater than unity, and the value of T can signifi-
cantly exceed T,.

Thus, surprisingly, the Anderson mechanism does not
reduce the transparency of the optical tunnel barrier but, on
the contrary, can significantly increase it. It should be not-
ed that a similar effect of enhancement of electron tunnel-
ing through a potential barrier with fluctuating amplitude
was discussed in Refs. 35-37.

3. SPP propagation in disordered medium

Here we study the effect of disorder in the distribution
of £(z) on the properties of the surface plasmon-polaritons.
The SPP is a p-polarized electromagnetic wave propagat-
ing with the wavenumber ¢ along the interface z =0 be-
tween media with permittivities of different signs, e, <0
for a medium occupying the half-space z <0 and ¢ > 0 for
a medium in half-space z > 0. We suppose that the dielec-
tric medium is randomly layered and its permittivity ¢ is a
random function of the coordinate z [see Fig. 1(b)].

The SPP is the wave exponentially evanescent in both
half-spaces. The electric and magnetic fields are propor-
tional to exp (—«4z) with k4 given by Eq. (19) in the die-
lectric half-space z >0 and are proportional to exp (i,z)
at z<0. Here

2
lem |
2

K =4]0° + (22)
The dispersion law for the SPPs follows directly from the
boundary conditions of continuity for the tangential com-
ponents of the electric and magnetic fields at the interface
z = 0. It can be written in the form,

(23)

Kg :Km|8 ]
m

Within the nondissipative Drude model, the metal per-
mittivity €, is
, (24)
where o, is the plasma frequency and ¢, is the dielectric

constant of the ionic core. Then, using the dimensionless
wave frequency ©Q and wavenumber Q,

Q=(o/wp, Q=q (25)

c
©p+/Eq
we can present the unperturbed dispersion law Q, () for
the surface plasmon-polaritons as

1-Q%,,

Q=0 — =
1-Q?%(e,, +g4)

(26)

The account of the disorder provides an additional term in
the dispersion relation,

Q*(Q) = QF () +F(Q.Q), (27)

where the function F(Q,Q) and dimensionless constant y are,

CFTON

-1
- _ 02 _ 02
F(Q,Q) _{|:l (l_ng2)2:| Q Q } ’ (28)

C3

3.3/2"
g

7 =V¢R, (29)
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Fig. 2. Dispersion curves for SPPs plotted for y, =0, y, =0.002,
and y, = 0.004. The dielectric constants are g4 =1.5, ¢, =10.

Figure 2 shows the dispersion curves Eq. (27) for the
region in the (Q,Q)-plane where the conditions Egs. (15)
and (20) are satisfied. One can see that the disorder results
in the shift of the dispersion curve down from the unper-
turbed line Q = Q, () for y =0.

Now, let us discuss the effect of disorder in the distribu-
tion of €(z) on the localization depth of the SPP. In con-
trast to the problem of the wave transmission through a
fluctuating optical potential barrier, considered in the pre-
vious section, here the values Q and Q are not independent
parameters. They are related to each other via the disper-
sion law Eq. (27). Therefore, the effect of disorder turns
out to be fundamentally different, depending on what value,
Q or Q, remains fixed when increasing the disorder para-
meter y. To verify this, we consider Eq. (23). According to
this relation and Eq. (24), the dimensionless localization
depth L can be presented in the form,

3.70

3.65

3.60

L

3.55

3.50

Q=0.278

3.45 !
0.002

L 1
0 0.001 0.003
Fig. 3. Dependenses of the dimensionless localization depth
szp\/almcd of the SPPs on the disorder parameter y for
fixed values of the wavenumber, Q = 0.4, or the wave frequency,

0 =0.728.
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®p~/Eq 1 Q%2 € e
L=—PY"=— 4+ 2} . (30)
CKy Q7 (1-¢,09%)° 1-¢,Q

For the case of fixed frequency Q, the value of Q increases
when increasing the parameter y (see Fig. 2), and the local-
ization depth Eq. (30) decreases. This means that the dis-
order promotes localization in this case. On the other hand,
for a fixed wavenumber Q, the value of Q2 decreases when
increasing the parameter v, and the localization depth Eq. (30)
increases. This means that the disorder promotes delocali-
zation of the wave with fixed Q. This fundamentally dif-
ferent behavior of the localization depth with an increase
of disorder is demonstrated in Fig. 3, where curves L(y)
are drown using Egs. (27) and (30).

Note that these conclusions are valid not only within the
Drude model but for any other models with decreasing
dependence | g, (®) |-

4, Conclusion

In this paper, we have studied the effect of disorder on
the properties of p-polarized electromagnetic waves propa-
gating along the layers in the randomly stratified dielectric
and damps in the direction across the layers. We have
shown that, for fixed values of the wave frequency o and
wavenumber g, the random inhomogeneity results in the
weakening of the wave localization. In the case of the sur-
face plasmon-polaritons propagation, the Anderson mech-
anism changes the dispersion law for SPPs moving the
dispersion curves away from the light line. Therefore, the
localization depth varies in different ways when increasing
the disorder, depending on what the value, wave vector ¢
or frequency o, is fixed. Namely, the localization depth in-
creases for given g, but it decreases for given .
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MonepeyHa aHAepCOHIBCLKA fnokanisadis
HEeOOHOPIAHMX XBUIb, LLIO MOLUMPIOTLCS
y BMNaAKOBO LUapyBaTUX cepeaoBumLLax

O. V. Usatenko, S. S. Melnyk,
V. A. Yampol'skii

BuBueHO momepedHy aHIEPCOHIBCHKY JIOKAi3allil0 CBITJIA B
HaWIPOCTILIH TeoMeTpii, KOJIU P-IIOIIPU30BaHa XBUIIS HOIIUPIO-
€THCSI B3ZIOBIK ILIAPiB Y BUIIAIKOBO CTPATH()IKOBAHOMY Ji€IEKTPHKY
Ta 3raca€ eKCIIOHEHIIaJIbHO B HAIPSIMKY IIONepeK MapiB. Y [bOMY
BUIAJKY iCHY€ IIBi MPUYMHM UIS JIOKATi3alii XBIIl B HAIPAMKY,
nonepeyHoMy ii MOUIMPEHHIO: 3BHYAifHE HPOCTOPOBE 3racaHHs
HEOIHOPIAHOT XBIJII Ta MEXaHi3M AHIEPCOHA, SKUH OB’ I3aHUH 3
BUIAJIKOBICTIO IPOCTOPOBOTO PO3IMOALTY [ieIEKTPHYHOI IPOHHK-
HocTi. Bukopucrano ¢opmaiiszm 3amizHroBaeHOI QyHKLUIl ['piHa y
OOpHIBCHKOMY HAOJIM)KEHHI Ta MOKAa3aHO, M0 Uil (iIKCOBAaHHX
3HAa4YeHb YACTOTU XBMJIi (® Ta XBUJILOBOT'O YKCIIA (| BUMIAJKOBA He-
OJTHOPI/IHICTh TPU3BOIUTH J0 MOCTAOICHHS JIOKami3alii XBuii. Y
BUIAJKY TOLIMPEHHS OBEpXHEBUX IUTa3MoH-TiossiputoHiB (ITI11T),
MexaHi3M AHzepcoHa 3MiHIO€e 3akoH auctepcii as [II1, Bimma-
JSI0YM JUCHEpCiiiHi KpuBi Bix cBiTioBoi miHil. ToMmy rnmOumHa
nokadizarii [T 3MiHIOETBCS IO Pi3HOMY TPH MOCKJICHHI Oe3ay,
3aJISKHO BiJl TOTO, SIKE 31 3HAUEHb, XBIJIHOBOT'O BEKTOPa ( UM Yac-
TOTH ®, (pikcoBaHe. A came, INTMOMHA JOKATi3aIlil 301IbIIYEThCS
IUTS 331aHOTO (], aje 3MEHIIYEThCs U (DiKCOBaHOI (.

Ki1r040Bi ci0Ba: HEOHOPIHA XBHIIS, TJIMOWHA JIOKasi3awii, GyHK-
mis ['piHa, TOBepXHEBUI IUIa3MOH-TIOJISIPUTOH,
3aKOH JTUCTIEPCIi.
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