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The simulation of a system of particles, located in the plane, with van der Waals interaction described by the 
Lennard-Jones potential is carried out. The possibility of the existence of a solitary chain of particles, as well as 
the formation of linear systems of two and three chains, has been established. The spectrum of vibrations of the 
systems was determined for various configurations and the characteristic frequencies of the vibrations were 
found. The dispersion law of collective modes is calculated theoretically by the method of equations of motion 
for small displacements of atoms from their equilibrium position when analyzing the compatibility condition for 
the arising system of equations. The obtained values of the characteristic frequencies are in rather good agree-
ment with the results obtained in the Fourier analysis of the time dependence of the displacements of particles 
from their equilibrium positions along and across the system. 
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1. Introduction 

Last years the methods of numerical simulation of beha-
vior and investigation of various properties of low-dimensio-
nal systems, especially charged ones, have become increas-
ingly important. The computer simulation of the systems 
consisting of a small number of atoms gives the possibility 
to study in detail their properties under various conditions 
including those that are difficult or impossible to imple-
ment in a real physical experiment. The additional interest 
in the numerical modeling is also due to serious difficulties 
in using traditional experimental methods arising from the 
low density of the studied systems and the extremely low 
level of the corresponding measuring signals, the impossi-
bility of using contact methods for measuring conductivity, 
etc. For example, in the case of widely studied quasi-two-
dimensional and quasi-one-dimensional systems of charges 
(surface electrons, SEs) over liquid helium [1] by using a 
numerical experiment it was possible to establish interesting 
features of the phase transitions of SEs into the crystalline 
state, the effect of restricted geometry and external confining 
potential on the configuration of linear SE systems [2–5]. 
It was shown that the characteristic frequencies of plasma 
oscillations in such systems are in good agreement with the 
values that follow from the laws of dispersion of collective 
modes calculated theoretically in the quasi-crystalline 

approximation by the method of equations of motion for 
small displacements of particles from their equilibrium 
position [6–8]. It was demonstrated that the dispersion law 
of collective plasma oscillations strongly depends on the 
type of configuration of the system [3, 9, 10]. This makes 
experimental studies of the collective properties of SE a 
promising tool for identifying the types of SE systems that 
arise when the parameters of the system change. 

The collective properties of low-dimensional SE systems 
are determined by the long-range Coulomb interaction, 
which intensity decreases with the distance between a pair 
of particles according to the law 1−′−r r , so one should 
take into account the pair interactions of the entire ensemble 
of particles. At the same time, the similar studies of systems 
of particles with short-range interactions are of great interest. 
Such systems, first of all, should include quasi-one-dimen-
sional structures formed by atoms of inert gases on the 
surface of bundles of carbon nanotubes [11–14]. The phonon 
spectra and densities of phonon states in such structures 
formed by inert gas atoms are studied as well as the contri-
bution of such states to the vibrational heat capacity of 
linear chains of inert gases, including taking into account 
the inhomogeneity of the bundle structure (see [15] and 
literature references therein). The interaction of a pair of 
particles at a distance ′−r r  in the studied systems is due 
to the van der Waals interaction, which can be described 
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with good accuracy by the Lennard-Jones potential (poten-
tial “6–12”) 
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where ε and σ  are empirical interaction parameters de-
pending on the nature of interacting particles. Potential 
energy (1) decreases very quickly with increasing distance 
between particles. That is why one can, describing the pro-
perties of the system, almost always to account only pair 
interactions with the nearest neighbors, neglecting the abso-
lutely negligible contribution from particles located at larger 
distances.  

The systems with van der Waals interaction (1) are fun-
damentally different from Coulomb systems. Since the 
Coulomb interaction between electrons is exclusively re-
pulsive the formation of a stable two-dimensional structure 
on the surface of liquid helium requires an external electric 
field which most essentially affects the structure and pro-
perties of electronic systems. The properties of systems with 
van der Waals interaction can be determined exclusively by 
inter-atomic interaction itself except that in two-dimensional 
systems (or quasi-one-dimensional) systems on a plane the 
presence of a substrate is implied, which, under certain 
conditions, ensures the existence of these systems. These 
circumstances provide the relevancy of simulating the particle 
systems with van der Waals interactions. The aim of the pre-
sent work is to establish the configurations that arise in sys-
tems of particles interacting according to the law (1), as well 
as to calculate the dispersion law of collective modes. We 
restrict ourselves to a plane system of particles, which greatly 
simplifies the calculations. In the future, it is planned to gen-
eralize the modeling and calculations to three-dimensional 
model systems corresponding to the arrangement of quasi-
one-dimensional structures on the surface of nanobundles. 

2. Simulation procedure 

A characteristic parameter of van der Waals systems is 
the distance corresponding to the minimum of the pair in-
teraction potential. When modeling it is advisable at least 
the initial distribution of atoms be selected in such a way 
that the average distance between atoms to be comparable 
to this characteristic distance. To implement such an ar-
rangement of particles, one should introduce appropriate 
boundary conditions (periodic, reflections from boundaries, 
etc.). In this paper for the spatial localization of a system of 
atoms it is assumed that there is a substrate of monolayer of 
atoms, the interaction of which with each other is that of 
van der Waals and is characterized by the parameters sε  и 

sσ  of potential “6–12”. The number of substrate atoms is 
proportional to its area. The interaction of the studied system 
of adatoms with substrate atoms can be described by a po-

tential (1) with parameters as sε = εε  and 1 ( ).
2as sσ = σ+ σ  

It is assumed that adatoms are at the same equilibrium dis-
tance from the substrate 1/62 asd = σ  corresponding to the 
minimum of the interaction potential of the adatom with the 
substrate atoms. This allows us to restrict ourselves to the 
interaction energy 61/ | |U ′−r r  corresponding to attrac-
tion when considering the interaction of the selected adatom 
with the substrate atoms. 

The substrate acts to the adatom by a force equal to the 
sum of the forces acting from the side of individual atoms of 
the substrate to this adatom. We are interested in the projec-
tion of this force onto the plane in which the adatoms are 
located. The magnitude of the force can be estimated in the 
continuum approximation neglecting the discreteness of 
the substrate structure which means that, at calculating the 
force, the summation can be replaced by integration. In this 
case, for a rectangular substrate with dimensions L and M 
we obtain the following expression for the components of 
the force acting on the adatom from the side of the sub-
strate in the plane of the studied system: 
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Calculating the integrals in (2) and (3) and introducing the 
function 
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one obtains the following components of the force: 
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Choosing the dimensions of the plane region and the 
parameters of the interaction potential of the substrate with 
the atoms under study, one can influence the boundary 
conditions determined by the field of van der Waals forces, 
which can be easily changed by changing the parameters of 
the potential. If 0asε =  the substrate does not affect the 
studied system. 

In this paper, the helium atoms were taken as the system 
under study. The pair potential of interaction “6–12” between 
them is characterized by the following parameters: ε = 

10.22 K=   , 82.576 10−σ = ⋅  cm. The value of parameter sσ  
characterizing the interaction of the substrate atoms is 
chosen 82 10s

−σ = ⋅  cm, in this case, the distance of the 
two-dimensional system of helium atoms from the sub-
strate is 1/6 82 ( ) / 2 2.57 10sd −= σ + σ = ⋅  cm. 

At the first step of the calculation, the number of helium 
atoms and the dimensions of the spatial region were taken 
comparable with the expected dimensions of the modeled 
configuration. The initial velocities and coordinates of the 
atoms were chosen randomly within a given spatial region. 
The condition was imposed on the velocities that the total 

kinetic energy corresponds to the selected temperature of 
the system. In the calculations this temperature was in the 
range 2 410 10− −−  K. Then the system of linearized equa-
tions of motion of atoms in the field of forces acting from 
all other atoms was solved step by step, taking into account 
the influence of the substrate. At the initial stage of calcu-
lations the energy of interaction of helium atoms with the 
substrate was chosen to be high ( 100saε   K), but after the 
formation of a stable ordered system, it decreased to low 
values ( 1saε =  K or 0.1saε =  K) at which the determination 
of the possible vibration frequencies was mainly carried out. 
In some cases, the vibrations in systems were also studied 
for 0ε = . It should be noted that the quantities 1saε =  K and 

0.1saε =  K are much less than the corresponding value of 
the pair interaction potential Не–Не ( 10.22 K)ε =  so that 
the properties of the system under study were almost com-
pletely determined by the interaction of helium atoms with 
each other, and the effect of the substrate could be treated 
as negligible. 

The helium atoms were held in a certain region of 
two-dimensional space due to their attraction to the sub-
strate. The energy that characterizes this attraction 

( , 0)x xU dx f x y = ⋅ = ∫  and ( 0, )y yU dy f x y = ⋅ = ∫ , is 

shown in Fig. 1 for substrate dimensions 61.5 10L −= ⋅  cm 
and 86 10M −= ⋅  cm, i.e., L M , depending on the dis-
tance of the atom on the substrate from the center of the 
substrate in two directions for the values 0,1saε =  and 
1 K (1 and 2, respectively). It is shown in Fig. 1 that there 
is an energy barrier that prevents the atom from leaving 
the considered region of space. 

3. The dispersion of collective modes 

The dispersion law of collective oscillations in systems 
with van der Waals interaction is determined by the short-
range nature of the particle interaction, which we describe 
by the Lennard-Jones potential (1). The results are highly 
dependent on the system configuration. 

3.1. The solitary chain 

We start our consideration with a solitary linear chain 
of particles, the stability of which can be expected at zero 
temperature. Under the simulation, the temperature was 
taken low but still nonzero in order to provide a sufficient 
amplitude of oscillations necessary to determine the natural 
frequencies. Additionally if in the theoretical calculation of 
the dispersion law of oscillations the chain was assumed to 
be so long that the edge effects can be neglected, in the 
simulation process it is assumed that from the very begin-
ning the chain has a finite length. The motion of atoms at 
the ends of the chain and in its center is different which 
affects the stability of the configuration. As a consequence 
if after the formation of the chain during the simulation we 
remove the external field from the side of the substrate the 
chain turns out to be unstable primarily at the ends and 

Fig. 1. The potential energy characterizing the localization of 
helium atoms above the substrate as a function of the distance 
from the center of the substrate along the axes x  (а) and y  (b) for 
two values 0.1saε =  K (1) and 1 K (2). 
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overtime forms a zigzag structure. Therefore the properties 
of a linear chain were determined in the presence of a sub-
strate that ensures the stability of the system. 

The presence of a substrate gives us grounds to disregard 
the condition of the fulfillment, for the chain itself, of the 
elastic moduli tensor symmetry condition, with respect to 
the permutation of pairs of indices, which is the condition 
for the correct transition of the equations of lattice dynamics 
to equations of the theory of elasticity (see, for example, 
[16]) and assume that this condition is satisfied the entire 
system as a whole, including the substrate. 

We determined the structures and vibration frequencies 
of the chains consisting of different numbers of atoms 

10, 20N = , and 50 and this fact provided the possibility of 
determining the vibration frequencies corresponding to 
different wave vectors. The finite length of the chain, even 
in the absence of a substrate, ensures the convergence of the 
rms amplitudes of atomic vibrations, that is, the dynamic 
stability of the system. In this case, the phonon spectrum of 
the chain, of course, will begin at a frequency other than 
zero. However, if we do not interested in studying the stability 
margin of the system and do not consider “compressed” 
chains with negative dispersion of transversely polarized 
modes [15], the chain can be considered infinite in calcula-
tions and its spectrum can be considered starting from zero. 

The chains were placed on a substrate characterized by 
the parameter 1saε =  K. This value, as noted above, is much 
less than the corresponding value of the “6–12” potential 
for the interaction between helium atoms. As a result, the 
average distance between particles along the chain with 
high accuracy turned out to be 1/62a = σ, corresponding to 
the minimum of potential (1) for a pair of helium atoms. 

An example of a stable linear chain consisting of 20 atoms 
is shown in Fig. 2(a). The possibility of the stable existence 
of the chain provides the possibility of the theoretical de-
termining the dispersion law of collective modes, assuming 
the chain to be unbounded in the direction x .  

In equilibrium positions [see Fig. 2(a)], the particles of a 
free solitary chain are located at points with coordinates 0ix  
with distance a between neighbors. To find the dispersion 
law for the collective oscillations we introduce small dis-
placements from the equilibrium positions: iξ  along the chain 
of particles (axis x) and across the chain, iη  and iλ  along the 
axes y  and z , respectively. Expanding the potential energy 
of interaction to quadratic terms, we obtain the following 
Lagrange function describing small oscillations of the system: 

( )2 2 2
1 12 i i i
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 , 
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where / aβ = σ  and m is particle mass. In 1L , we disregard, in 
view of saε ε , the contribution of the substrate potential. 

Writing the equations of motion for the Fourier-
transformed displacements ( )0expi q i

q
iqx i tξ = ξ − ω∑  by 

coordinates 0ix  and time t  (and similarly for iη  and iλ ) and 
taking into account the periodicity of the system along the 
x  axis, we obtain three branches of the dispersion law of 
collective modes. One of these branches corresponds to 
longitudinal vibrations along the chain is 

Fig. 2. The schematic representation of a solitary chain of parti-
cles with van der Waals interaction (a) and the functions deter-
mining the dispersion laws of the longitudinal (b) and transverse 
(c) branches of the collective oscillations of a solitary chain. 
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The other two branches, corresponding to particle oscilla-
tions across the chain (along the axes y  and z ) possesses 
the dispersion law 
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6
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  (8) 
Note that due to the absence of the requirement, for the 
chain itself, to satisfy the symmetry condition of the elastic 
moduli tensor with respect to the permutation of pairs of 
indices, the dispersion law of the transverse mode (8) in 
the long-wavelength limit is linear (sound-like), and not 
quadratic (flexural) [17]. 

From the structure of function ( )
line ( )F u⊥  it follows that in 

the long-wavelength limit | | 1u   this function is always 
positive if 1/62−β ≤  that is, the average distance between 
the equilibrium positions of particles in the chain satisfies 
the condition 1/62a ≥ σ , and if this inequality is not satis-
fied ( )

line ( )F u⊥  may become negative. This according to (8) 
leads to the negativeness of the square of the frequency of 
transverse vibrations of particles meaning the instability of 
the given configuration of the system, i.e., the solitary 
chain. Note that if 1/62−β = , 1/62a = σ, that is neighboring 
particles along the axis in equilibrium states are at the dis-
tance a from one another, corresponding to the minimum 
energy of pair interaction of neighbors according to the 
law (1). In this case 2 224 / ( )vdW maω = ε . Recall that exactly 
at this distance, according to the simulation results, the 
particles are located along the chain. 

Functions ( )
line ( )F u  and ( )

line ( )F u⊥  at 1/62−β =  are written 
in the form 

( )
line( ) 6 8

1

13 1 cos( ) 7m
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unF u
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−  = −  
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Their graphs are shown in Figs. 2(b) and 2(c) for the ar-
gument interval from zero to the boundary of the first 
Brillouin zone u = π. 

The series in (9) converge so quickly that the results of 
their summation almost coincide with their values obtained 
undertaken into account only the first nonvanishing term in 
them, that is 1n =  in ( )

line( )mF   which corresponds to the ap-
proximation of the first nearest neighbors when we restrict 
ourselves to the interaction of a particle with neighbors 
located at a distance a from the given one. At the same 
time, this approximation turns out to be insufficient for 

( )
line( )mF ⊥  since, as follows from (9), the term of the series for 
( )

line( )mF   with 1n =  equals to zero and the first non-

vanishing term corresponds to 2n =  which corresponds to 
the interaction of the particle with the particles following 
the nearest neighbors (second nearest neighbors) located at a 
distance 2a from the given one. In the limit 1u  , we have 
the following asymptotic expressions for the functions 

( )
line( )mF   and ( )

line( )mF ⊥ : 

[ ]( ) 2 2
line( )

1 13 (12) 7 (6) 2.94
2mF u uζ − ζ

  , 

 [ ]( ) 2 3 2
line( )

1 (6) (12) 8.55 10
2mF u u⊥ −ζ − ζ ⋅  , (10) 

where ( )xζ  is the Riemann zeta function. This means linear 
acoustic dispersion of modes (10) in the limit | | 1qa  , when 

( ) ( )c q⊥ ⊥ω
 

 , 1.71 vdWc aω



, 29.25 10 vdWc a−

⊥ ⋅ ω , that 
is the ratio of the velocities of the longitudinal and trans-
verse modes is / 18.5c c⊥


. Attention is drawn to the 

smallness of the velocity of the transverse mode in com-
parison with the longitudinal one. In the approximation of 
the first nearest neighbors, the frequency of the transverse 
mode vanishes and becomes finite only when the inter-
particle interaction at distances exceeding the average dis-
tance from the particle in the chain to the nearest neighbor 
is taken into account. 

An interesting feature of the function ( )
line( )mF ⊥  describing 

the dispersion of transverse modes is the nonmonotonic 
character. The function has a maximum at the point 

max 1.54,u   where maxu  is the root of the equation 

6 7
1

1 sin1 0
n

nu
n n≥

 − = 
 

∑ .  

The value maxu  slightly different from (0)
max / 2 1.57u = π   

obtained in the approximation of the second nearest neigh-
bors when in the series in (9) we leave only the first non-
vanishing term with 2n = . The presence of a maximum 
means that the group velocity of the transverse modes turns 
out to be positive at max /q u a< , is zero at the point 

max /q u a= , and becomes negative at larger values of the 
wavenumber. In general, it can be noted that the function 

( )
line( )mF ⊥  almost symmetric with respect to / 2u π . 

The positivity of the squared frequency of the longitu-
dinal and transverse modes at 1/62−β =  in the entire range 
of wavenumbers corresponding to the first Brillouin zone 
0 /q a< < π  means the stability of a solitary chain with 
respect to small vibrations both along and across it. Note 
that a chain of particles with a long-range Coulomb inter-
action, in contrast to the chain with a short-range 
van der Waals interaction considered here, is unstable with 
respect to small transverse vibrations (negative square of 
the transverse mode frequency) and is stabilized only in the 
presence of an external confining potential [10].  

The characteristic values of the frequencies of the natural 
oscillations of the chain were also estimated from the vibra-
tion spectrum established by means of a Fourier analysis of 
the time dependence of small displacements of particles 
from the equilibrium position along x  and y  axes. Examples 
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of such spectra are shown in Fig. 3 for the chains of different 
lengths consisting of N = 10, 20, and 50 atoms. The wave 
vectors / / [( 1) ]L N aπ = π −  corresponding to chains of dif-
ferent lengths (different N ) are shown by vertical lines in 
Figs. 2(b) and 2(c). The triangles in Fig. 3 show the vibration 
frequencies calculated theoretically. As one can see, the 
agreement between the result of the theoretical calculation 
of the dispersion law and the simulation results seems rather 
good. Note that the ratio of the velocities of the modes 
shown by triangles corresponds to the previously indicated 
relation / 18.5c c⊥


 (10). 

3.2. Two chains with van der Waals interaction 

In this subsection, we will consider collective oscillations 
in a system of particles interacting according to the law (1) 
and consisting of two parallel chains separated by a dis-
tance D  which are assumed to be located in the plane { }xy  
[Fig. 4(a)]. As noted in the previous subsection such zigzag 
systems naturally arise from a solitary chain during simula-
tion if there is no external potential of the substrate. In ad-
dition, a zigzag configuration is formed under specially 
specified external conditions from the initial random dis-
tribution of particles if the transverse size of the system is 
limited from the very beginning. To analyze the parameters 
of the system in Fig. 4(a) let us consider the potential energy 
of interaction of particles located in different chains (with-
out taking into account their small displacements from the 
equilibrium position): 

 
( ) ( )

12 6

21 62 2 2 32
4

ii jj ijX X
U

D D

 
σ σ = ε − 
+ +  

∑ , (11) 

where the notation is introduced (0) (0)
2 1ij i jX x x= −  (or 

(0) (0)
1 2i jx x− ), (0)

kix  are equilibrium positions of the particles 
in a chain k = 1, 2. Furthermore in each of the chains, the 
distance between neighboring particles is a. For simplicity 
in (11) we can restrict ourselves to the approximation of the 
nearest neighbors and consider the interaction of i th atom 
of the one of the chains with the nearest atoms j  and 1j +  
of the another chain. If we denote ijX X=  one obtains: 

Fig. 3. The spectrum of vibrations of a solitary chain of atoms 
interacting according to the law (1) for chains with different 
numbers of particles N = 10 (a), 20 (b), and 50 (c). The triangles 
mark the vibration frequencies calculated using Eq. (9). 

Fig. 4. Two-chain configuration of particles interacting according 
to the law (1): schematic diagram to explain the scheme for de-
termining the parameters ijX X=  and D  (in the text) (a) and the 
result of numerical simulation (b). 
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To calculate X  and D  we solve the equations 
( , , 1)
21 / 0i j jU X+ ∂ =∂  and ( , , 1)

21 / 0i j jU D+ ∂ =∂ . Their non-
trivial solutions give / 2X a=  and 3 / 2D a= , if we take 

1/62a = σ, that is to consider the particles located along the 
chain at a distance corresponding to the minimum of the 
pair interaction energy of neighboring atoms. 

The system simulation results in Fig. 4(b) are in complete 
agreement with this result. As the simulation results show 
when a zigzag configuration is formed the particles are 
arranged in such a way that one chain is displaced relative 
to the other by a distance / 2a  (the equilibrium distance 
between particles in each of the chains is still a). In this 
case, the unit cell is an equilateral triangle with 3 / 2D a= . 
As for the solitary chain, the simulation gives 1/62a = σ. 

Note once more that the zigzag configuration of two 
atomic lines [Fig. 4(b)] is very stable in the absence of an 
external field. At some simulation steps the double-chain 
system can be displaced as a whole in the plane, but the 
relative arrangement of the atoms in the zigzag stays the 
same. The formation of such a configuration at low tem-
perature from an initial random distribution of atoms often 
leads to a structure with defects. In this case, annealing 
was carried out, that is a smooth increase in temperature 
followed by its decrease, which led to the formation of a 
defect-free structure.  

The Lagrange function of the system, up to quadratic 
terms in small displacements from the equilibrium position, 
can be written as 

 (2)
2 211L L U= + δ ,  (13) 

where the function ( )
1
nL  is the result of summing the func-

tions 1L  from (6) written for each of the chains 
1, 2, ...,k n=  (in the case considered here 2n = ), and the 

term 12Uδ  corresponds to the interaction of particles lo-
cated in chains 1 and 2: 

 ___________________________________________________  
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∑  (14) 

 ______________________________________________  

where the notation are introduced (0) /ki kix aν =  and 
/D aα = . The last term in Eq. (14) describes the coupling 

of particle displacements from the equilibrium position 
along the chains and across to them. With an increase in 
the distance between particles along the axis x , increase 

2 1i jν − ν  under conditions 2 2
2 1( )i jν − ν α , this term 

decreases proportionally 15
2 1( )i j

−ν − ν  (in the first term in 
this term) and 9

2 1( )i j
−ν − ν  in the second term, that is one 

degree stronger than the corresponding terms in the first 
three terms of Eq. (14). Because of this during the summa-
tion in (14), the contribution of the last term will be less 

than the contribution from the remaining terms if the sum-
mation process is extended to a large number of terms, as it 
happens with long-wave oscillations. Similarly when con-
sidering oscillations of chains with long-range Coulomb 
interaction of particles in [10], a similar term corresponding 
to the coupling of oscillations along and across electron 
chains turned out to be negligible when considering long-
wave oscillations, affecting however the dispersion of col-
lective modes at 1qa ≥ . For systems of particles with a 
short-range van der Waals interaction considered in this 
work, the first and in some cases second nearest neighbors 
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make the overwhelming contribution to the summation of the 
series in (14). Under these conditions, the last term in (14), 
generally speaking, seems to be necessary to take into ac-
count along with the first three in the entire wavenumber 
interval within the first Brillouin zone.  

To obtain the dispersion laws for collective oscillations, 
we write down the equations of motion for small oscilla-
tions based on the Lagrange function (13) and carry out the 
Fourier transform in these equations in the same way as it 
was done for the solitary chain in the previous subsection. 

As a result, we obtain the coupled equations for the dis-
placements nqξ  and nqη  in the plane { }xy  and separately 
equations for displacements niλ  in the z  direction, that is 
normally to the plane of arrangement of particle chains. 
The dispersion law for frequencies is calculated by solving 
the compatibility equations for systems of equations with 
respect to the corresponding displacements. 

If we define 2 2/ vdwκ = ω ω  then the dispersion equation 
for collective modes in the plane { }xy  for 1/62−β =  and 

3 / 2α =  can be written in the form 
 ___________________________________________________  
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∑  

 ______________________________________________  

As in the case of the solitary chain, here u qa= . The pres-
ence of function ( )LTF u  in (15) is a consequence of the 
presence of the last term in (14). 

Equation (15) is a fourth-degree equation with respect 
to κ . We solved it by numerical methods. The results are 
shown in Fig. 5. 

As can be seen from the figure two branches of the 
spectrum of collective vibrations are Goldstone, starting 

from zero value at 0u qa= = , and two are optical, which 
at 0u =  have finite values. There is a point of maximum 
convergence of optical modes (anti-crossing) near the middle 
of the Brillouin zone at u  close to / 2π . 

To test the influence ( )LTF u  on the mode dispersion 
law in the long-wavelength limit 1u qa= ≤  we depicted 
in Fig. 6 the dispersion laws obtained by solving Eq. (15) 
(solid lines) together with the results of solving this equation 

Fig. 5. The reduced squares of the frequencies of collective oscil-
lations of two linear chains with van der Waals interaction for the 
motion of particles in the plane of the chains. 

Fig. 6. Exact (solid lines) and approximate (16) — dashed lines 
are functions that determine the dispersion laws of collective 
modes in the long-wavelength limit. 
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in the limit ( ) 0LTF u =  (dashed lines). It is easy to see from 
(15) that if ( ) 0LTF u =  four solutions of Eq. (15) degenerate 
into two, which have the form 

 1,2 1 2 ,L LF Fκ = ±    3,4 1 2T TF Fκ = ± . (16) 

Dashed lines in Fig. 6 are described by Eq. (16). As can 
be seen from Fig. 6, the influence of the LTF  on the disper-
sion of coupled vibrations turns out to be rather weak in 
the long-wavelength limit. When 1u >  exact solutions of 
Eq. (15) differ markedly from those of Eq. (16). We do not 
present a comparison of exact solutions of Eqs. (15) and 
(16) in this interval qa  due to the low cognition of the 
corresponding drawing with a large number of intersecting 
solid and dotted lines. 

It can be seen from Eq. (15) that Eq. (16) gives the 
roots of the exact Eq. (15) for 0u =  when (0) 0LTF = . This 
makes it possible to evaluate analytically the starting values 
κ  in optical modes in Fig. 5 as 1 2(0) (0)L LF F+ =  

12 (0) 2.88LF=   and 1 2 1(0) (0) 2 (0) 8.78T T TF F F+ =   in 
complete agreement with the results of the numerical solu-
tion of the dispersion Eq. (15). Another possibility of ana-
lytical analysis of solutions (15) is available for u = π that 
is at the upper boundary of the first Brillouin zone. In this 
limit the functions 2 2( ) ( ) 0L TF Fπ = π =  and Eq. (15) dege-
nerates into a square, two roots of which are 

 ( )2
1 11 1 2

( ) ( )
2 4

L TL T
LT

F FF F F±
−+

κ π = ± + . (17) 

Substituting into (17) the values of 1LF , 1TF , and LTF  
taken at u = π, we obtain ( ) 14.16+κ   and ( ) 3.77−κ   in 
excellent agreement with the results of the numerical solu-
tion (15) presented in Fig. 5. 

When considering collective oscillations in the direction 
of the axis z , that is, perpendicular to the plane in which two 
chains of particles are located, one introduces the functions 

( ) ( )
( )

3 line( ) 4 72 21
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1 1
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n

F F u
n n n n

⊥

≥

 
 = + − 

− + − +  
∑  
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line( ) ( ) 0.0124mF u⊥ + , 
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21 1
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n

F u n u
n n n n≥

 
   = − −      − + − +  

∑ . 

As a result the equations of motion for small displace-
ments niλ  ( 1, 2n = ) lead to the following dispersion equa-
tion for collective oscillations along the z  axis: 

 ( )2 2
3 4 0T TF Fκ − − =  (18) 

with two obvious independent roots 5,6 3 4( ) ( ) ( )T Tu F u F uκ = ±  
and with graphs shown in Fig. 7. 

It should be emphasized that the 5κ  and 6κ  are small in 
comparison with the corresponding functions in Fig. 5 de-
scribing coupled vibrations in the { , }x y  plane. This is due 
to the fact that the functions 3TF  and 4TF  determining 5κ  
and 6κ  in the nearest-neighbor approximation vanish if 
only the term with 1n =  is left in Eq. (18). Thus, the disper-
sion of vibrations in the direction z  manifests itself only 
when the interaction of particles with the second nearest 
and next neighbors is taken into account [small terms of 
the series with 2n ≥  in (18)]. 

One of the branches of the spectrum in Fig. 7, namely 
5κ , is optical, starting from 5 3(0) 2 (0)TFκ =  with asymp-

totic 3 2
5 0.0248 6.420 10 u−κ − ⋅  at 1u  , and second one 

6κ  is Goldstone, having asymptotic in the long-wavelength 
limit 2

6 0.0235uκ   with linear dispersion of the corre-
sponding mode. Curves 5 ( )uκ  and 6 ( )uκ  intersect at 

cr 1.02u  , where cru  is the root of equation 4 ( ) 0TF u = . 
The value cru  is very close to (0)

cr / 3u = π  which is a root if 
at summing in 4TF  we restrict ourselves to the first non-
vanishing term with 2n = . We also note the non-
monotonic character of the curves in Fig. 7 that show the 
minimum on the curve 5 ( )uκ  at the point min 2.37u  , 

(0)
min 2.38u  , summing in (18) is restricted by 2n = , and 

maximum 6 ( )uκ  at the point max 1.88u   ( (0)
max 1.91u  ). 

Both solutions of dispersion Eq. (18) coincide at the point 
u = π and are equal 5 6 3( ) ( ) ( )TFκ π = κ π = π  because 

4 ( ) 0TF π = . 
The intersection of the functions 5 ( )uκ  and 6 ( )uκ  is due 

to the fact that the solutions of Eq. (18) are independent, in 
contrast to coupled modes for oscillations in the plane { }xy  
in Fig. 5, where the repulsion of the optical modes of the 
spectrum is observed at the point of their closest approach 
— the anti-crossing of the modes. 

In conclusion of the subsection, we note that from the 
form of the Lagrange function (13) it is easy to see that in 
the limit D →∞ the function (2)

2 1L L= . This means that 
the collective modes of the zigzag system turn into modes 
of two solitary chains. In the opposite limit 0D → , we 
obtain again the mode dispersion of a solitary chain but 

Fig. 7. Same as in Fig. 5, but for the oscillations of particles in 
the direction perpendicular to the plane of the two chains. 
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with an average distance between particles / 2a . In this 
case, solutions of the dispersion equation for oscillations 
along x, y, and z transform into dispersion laws of two lon-
gitudinal and two transverse oscillation modes of a solitary 
chain with a step / 2a  and with phase shift π between the 
corresponding dispersion laws (dispersion of the modes 
along z  is the same as for vibrations along y ).  

As in the case of a solitary chain, considered in 
Subsec. 3.1, the characteristic values of the frequencies of 
the natural vibrations of the double-chain configuration 
were established in the Fourier analysis of the vibration 
spectrum. The study of vibration frequencies in the system 
was carried out at the value 0.1saε =  K. Examples of the 
obtained spectra are shown in Fig. 8 for chains of different  

Fig. 8. Spectra of vibrations of a two-chain system of atoms interacting according to law (1) in the case of a different number of parti-
cles in the system. Spectra (a) are obtained for displacements of atoms along the x  axis, whereas (b) along the y  axis. 
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lengths consisting of 10, 20, 50,N =  and 100 atoms. Wave 
numbers / Lπ , corresponding to chains of different lengths 
for different N , are shown by vertical lines in Fig. 5. The 
triangles in Fig. 8 show the vibration frequencies calculated 
theoretically and presented in Fig. 5. In Fig. 8, spectra (a) 
were obtained by analyzing x-coordinates of atoms, and 
spectra (b) — y-coordinates. The agreement between the 
results of the theoretical calculation of the dispersion law 
and the analysis of the vibration spectrum should be treated 
as quite satisfactory, and this agreement is especially mani-
fested for longer chains. In spectrum (a) for a chain with 

10N = , in addition to the frequencies following from the 
theory, a peak with a frequency of about 700 GHz, which 
is well reproduced in different series of calculations, is also 
observed. One can speculate that this is a combination fre-
quency, the excitation of which is facilitated by the small 
size of this chain. 

3.3. Collective oscillations in a system of three chains 

In this Subsec., we will consider collective oscillations 
of a system of particles with van der Waals interaction, 
which consists of three chains (Fig. 9), in which the con-
figuration is shown at different (a) and identical (b) scales 
along the coordinate axes. This configuration is formed 
from a random initial distribution of particles with a limita-
tion of the spatial region of their location under conditions 

when the transverse size is approximately one and a half 
times greater than that for which the formation of a zigzag 
is characteristic. Configurations with a larger number of 
particle lines are not considered in this work. 

As before, we assume that the system is located in the 
plane { }xy  with axis x  along the chains. The distance be-
tween the extreme chains 1 and 3 is considered equal D  
and correspondingly / 2D  between the central chain 2 and 
the outer ones. Note that x  — the coordinates of the equi-
librium positions of particles in chains 1 and 3 coincide, 
and x  — the coordinates of such positions for the particles 
of chain 2 are shifted by / 2a  relative to the corresponding 
positions in chains 1 and 3. It is also important that now, 
when considering chains 2 and 1 or 2 and 3, we have, in 
contrast to the situation considered in the previous subsec-
tion, 3D a= . 

The determination of the parameters of the system, simi-
lar to what was carried out at the beginning of Subsec. 3.2, 
the case of three chains is generalized in a trivial way if we 
take into account the interaction of only the nearest neigh-
bors. In this case, the problem of the structure of three 
chains splits into separate problems of the pairwise interac-
tions of two neighboring chains with a completely analogous 
result — the formation of a triangular structure of particles. 

The procedure for determining the dispersion laws of 
collective oscillation modes in the case of three chains is 
straightforward. Lagrange function: 

 (3)
3 21 31 321L L U U U= + δ + δ + δ  (19) 

now includes contributions ijUδ  from pairwise interactions 
of particles located in three different chains, , 1, 2, 3i j = . 
These expressions are similar to those that were written out 
in the previous subsection for the interaction of particles in 
two chains, but taking into account the geometry of the 
system, the mutual arrangement of particles, and the distance 
between the chains (see Fig. 9). From the structure of the 
Lagrange function and the equations of motion following 
from it, it results that for D →∞ the corresponding equa-
tions and the dispersion law of collective oscillations are 
obtained for an isolated chain of particles, and at 0D →  — 
a solitary chain of particles with a half mean distance / 2a  
between particles.  

The dispersion equation is obtained as the compatibility 
condition for the system of equations with respect to the 
Fourier-transformed displacements of particles from the 
equilibrium position iqξ  and iqη  along and across the 
chains in the plane { }xy  and iqλ  normal to the plane of the 
chains ( 1, 2, 3i = ). As in the case of two chains, considered 
in the previous subsection, the equations for the squared 
frequencies 2ω  of the oscillations in the plane of the chains 
are coupled, and the condition of their compatibility (dis-
persion equation) is reduced to the equality of the determi-
nant of the sixth order to zero. Equations for iqλ  are 
“splitted off” from the corresponding equations for oscilla-
tions in the plane of the chains, while the dispersion equation 

Fig. 9. Configuration of particles interacting according to the law 
(1), consisting of three lines of atoms in different (a) and the 
same (b) scales along the coordinate axes. 
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for 2ω  here is determined by the vanishing of the third-
order determinant. We solved both dispersion equations by 
numerical methods taking 1/62−β = . At Fig. 10 there are 
shown six branches of the dispersion law for vibrations in 
the { }xy  plane. 

As can be seen from the figure, two branches of oscilla-
tions are Goldstone, and the other four are optical. There 
are three anti-crossing points. 

Normalized squares of frequencies of three vibration 
modes in the direction of the axis z  are shown in Fig. 11. 
One of the spectrum branches turns out to be Goldstone, 
the other two are optical and these modes demonstrate two 
anti-crossing points. As in the case of two chains of particles 
the values of the squares of the mode frequencies in the 
direction normal to the plane of the chains are much smaller 
in magnitude than the squares of the vibration frequencies 
in the plane of the chains at Fig. 10. 

An example of a spectrum of collective vibrations ob-
tained using a Fourier analysis of the time dependence of 
particle displacements from the equilibrium positions in 
the plane {xy} is shown at Fig. 12 for wave number / Lπ  
marked with a vertical line in Fig. 10 for the number of 
atoms in the system 100N = . The spectra were obtained by 

analyzing the displacements of atoms in the directions х (a) 
and у (b). A good agreement is observed between the fre-
quencies (triangles) theoretically calculated when deter-
mining the mode dispersion law with the frequencies ob-
tained in the simulation. However, it should be noted that 
not all of the possible frequencies are sufficiently clearly 
manifested in the simulation in the case of a system of 
three chains. 

Conclusion 

In this paper by means of computer simulation, we inves-
tigated the conditions for the appearance of linear systems of 
particles, located in a plane, with van der Waals interaction 
for the description of which the Lennard-Jones potential 
was used. It is shown that with a change in the temperature 
and the external holding potential of the substrate single-
chain structures can form, and two- and three-chain con-
figurations appear even in the absence of an external po-
tential. For one-, two- and three-chain planar systems of 
atoms interacting according to the “6–12” law, the parameters 
of the arising particle configurations have been established. 
Using the Fourier analysis of the time dependence of the 
displacements of particles along and across the system, the 
values of the characteristic frequencies of collective oscilla-
tions are found. The obtained results are in good agreement 

Fig. 10. Reduced squares of oscillation frequencies in the plane 
of a three-chain system of particles interacting according to the 
law (1). 

Fig. 11. Same as in Fig. 10, but for the oscillations along the 
z axis. 

Fig. 12. Spectra of vibrations of a three-chain system of atoms 
interacting according to the law (1) for 100 particles. Spectra (a) 
and (b) are obtained for displacements of atoms along the x  axis 
and y  axis, respectively. 
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with the theoretical calculation of the dispersion laws of 
collective modes due to the van der Waals interaction. The 
dispersion law is obtained as a result of equating to zero 
the determinant of the system of equations of motion for 
small displacements of particles from the equilibrium posi-
tion both in the plane of the particle chains and in the di-
rection normal to this plane. The results were obtained in 
the quasi-crystalline approximation for the wave number 
interval q inside the first Brillouin zone. It was found that 
among the collective modes there are both Goldstone 
modes starting from zero frequency at 0q =  and optical, 
starting from a finite value at zero wave number. The disper-
sion laws of collective oscillations turn out to be significantly 
different in systems with different numbers of particle chains. 

The authors are grateful to S. B. Feodosyev for useful 
remarks made both during the discussion of the results of 
the work and during the preparation of the manuscript of 
the paper. 
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 ___________________________ 

Структура й колективні коливання лінійних систем 
частинок з ван-дер-ваальсовою взаємодією 

V. E. Syvokon, E. S. Sokolova, S. S. Sokolov 

Проведено моделювання розташованої в площині системи 
частинок з ван-дер-ваальсовою взаємодією, яка описана потен-
ціалом Леннарда-Джонса. Установлено можливість існування 
одного ланцюжка частинок, а також формування лінійних 
систем із двох та трьох ланцюжків. Визначено спектр коли-
вань системи при різних конфігураціях та встановлено харак-
терні частоти коливань. Закон дисперсії колективних мод 
розраховано теоретично методом рівнянь руху для малих 
зсувів атомів з положення рівноваги при аналізі умови спіль-
ності системи рівнянь, яка виникає. Знайдені значення харак-
терних частот перебувають у гарній згоді з результатами, які 
отримані при фур’є-аналізі часової залежності зсувів частинок 
з положень рівноваги уздовж та поперек системи. 

Ключові слова: моделювання низьковимірних систем, диспер-
сія колективних коливань, системи частинок з 
ван-дер-ваальсовою взаємодією, потенціал 
Леннарда-Джонса, фур’є-аналіз спектрів. 
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