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A one-dimensional nonlinear dynamical system of coupled intra-site excitations and lattice vibrations is stu-
died. The system as a whole is shown to be integrable in the Lax sense and it admits the exact four-component
analytical solution demonstrating the pronounced mutual influence between the interacting subsystems
in the form of essentially nonlinear superposition of two principally distinct types of traveling waves. The inter-
play between the coupling strength and the parameter of localization causes the criticality of system’s dynamics
manifested as the dipole-monopole transition in the spatial distribution of intra-site excitations.
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1. Introduction

Since the pioneering works on the formation of polarons
in ionic crystals [1-3] the consistent approaches to describe
the effects of electron-phonon (or exciton-phonon) interac-
tion in various condensed matter systems became the crucial
idea of fundamental physical science. Such a type of inter-
action causes the Frohlich—Peierls instability [4, 5] originating
super-conducting states [4, 6] or charge-density waves [7-9]
in quasi-one-dimensional metals [8, 9]. The similar sort of in-
teraction is responsible for the formation of solitons in quasi-
one-dimensional molecular structures [10-15] and charge-
density packets in armchair silicene nanoribbons [16].

In general, the nontrivial physics of multi-component
systems are usually manifested as essentially nonlinear ef-
fects supported by the strong coupling between the involved
subsystems irrespective of their physical origins [17, 18].
This fact inspires the development of integrable multi-com-
ponent models being able to grasp the most featured non-
linear effects in diverse physical systems.

However up to now, the exactly integrable nonlinear
models dealing with the coupled exciton-phonon systems
on a quasi-one-dimensional lattice have not jet been known.
Recently we have tried to fill in this gap and suggested the
semi-discrete integrable nonlinear model encompassing the
subsystem of P7 -symmetric Dirac excitons and the sub-
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system of Toda lattice vibrations via their mutual inter-
action [19, 20].

In the present research we perform the linear analysis of
this semi-discrete nonlinear integrable model elucidating
the physical meaning of its field variables, and we describe
the exact multi-component solution featuring the main non-
linear dynamical properties of the model.

2. Coupled system of Toda vibrations and Dirac
excitons. Equations of motion, symmetry
and linear analysis

Using the proper notations, the semi-discrete nonlinear
integrable system of our interest [19, 20] is written as follows:

p(n) =[1+wg, (n+1)g_(n)]exp[+a(n+1) - q(n)]
—[1+wg, (Mg_(n-D]exp[+a(n) -q(n-1)], (1)
G(n) = p(n), O]
9. () =wg. (n) - wg, (n+1)exp[+q(n+1)-q(n)], (3)
g_(n)=wg_(n-1)exp[+q(n)-q(n-1)] - wg_(n). (4)
Here the two sets p(n)=p(n|t), q(n)=q(n|t) and

g,(n)=g,(n|7), g_(n)=g_(n|t) of field functions are
related to the Toda vibrational subsystem and to the sub-
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system of Dirac excitons, respectively. The over-dot stands
for the differentiation over the dimensionless time t. The
spatial position of a lattice site is marked by the integer n
running from minus infinity to plus infinity. The constant
free parameter w determines the coupling strength between
the subsystems.

The system under study (1)-(4) clearly demonstrates
the symmetry under the space and time reversal (P7 -sym-
metry) implying that the transformed field functions
"p(n) ="p"(n] ), "q"(n) ="9"(n| 1) and "g"  (n) ="g", (n] ),
"g"_(n)="g"_(n]|t) defined as

"p"(n]7) =+p(-n|-1), ®)
q"(n|t) =-q(-n|-1) (6)

and
g".(n[7) = g_(-n|-7)exp (+a), )
g"_(n|t)=9g,(-n|-1)exp (-a) 8

are governed by the same set of equations as that (1)—(4)
for the original field functions p(n), q(n) and g, (n),
g_(n). Here a is an arbitrary constant parameter.

The linear analysis of the system (1)—(4) based upon
the low-amplitude harmonic traveling waves

q(n) = er exp (ikn—iwt), 9)
g, (n) = ¢h, exp (ikn—iort), (10)
g_(n) = eh_exp (ikn—iwt) (11)

yields two sorts of dispersion relations,
o(k)=2]sin (k/2)] (12)

and

o, (k) = wsin (k) +2i|w|sin?(k / 2), (13)
o_(k) = wsin (k) —2i | w]|sin(k / 2). (14)

The first relation (12) is nothing but the dispersion rela-
tion for the acoustic vibrations in one-dimensional elastic
chain [21, 22]. Another two relations (13) and (14) de-
scribe two submodes of exciton subsystem. The real parts
Re o, (k) = wsin (k) and Re «_(k) = wsin (k) of these sub-
modes coincide and demonstrate the dependence wsin (k)
on quasi-momentum k typical of Dirac metamaterials [23-25].
Though the imaginary parts Im w, (k) = +2|w|sin?(k / 2)
and Im o_(k) = -2|w|sin? (k /2) of submodes (13) and (14)
give rise to the gain and loss in mutually-reciprocal com-
ponents g, (n) and g_(n) of the exciton subsystem, how-
ever the product g, (n)g_(n) remains being balanced play-
ing the part of some physically meaningful density, as it is
usually required for physically motivated P7 -symmetric
systems [26, 27].

3. Lax integrability and its outcomes

The nonlinear system of coupled Toda vibrations and
Dirac excitons (1)—(4) is proved to be integrable in the Lax
sense inasmuch as it admits zero-curvature representation
[28-31]

L(n|z) = A(n+1| z)L(n|z)-L(n|z)A(n|z) (15)
serving as the compatibility condition for the auxiliary linear
problem

X(n+1|z)=L(n|z)X(n]|z), (16)

X(n|z) = A(n|z)X(n]2). (17)

In the case of our system (1)—(4) the gquantities L(n| z),
A(n|z), X(n|z) are taken as 3x3 square matrix-func-
tions, where z is the free spectral parameter independent
of time and coordinate. Having modified the notations of
our previous articles [19, 20] we come to the expanded
versions of spectral L(n|z) and evolutionary A(n]|z)
matrices given by formulas

{MZPr p(n)+g,(n)g_(n) g_(n)/~w +exp [+q(n)]
L(n|2) = 9. () /w 1/w 0 , (18)
—exp [-q(n)] 0 0
0 0 —exp[+q(n)]
A(n|z) = 0 w +wg, ()exp [+q(n)] | (19)
+exp[-q(n-1)] —Jwg_(n-1)exp [-a(n-1)] M2)

In view of its integrability the system under study (1)—(4)
possesses an infinite hierarchy of conservation laws [20]
obtainable in the framework of generalized direct recursive
approach [32]. From the physical standpoint the most im-
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portant conserved quantities are the Hamiltonian function H,
the total momentum of Toda vibrations P and the total
charge of Dirac excitons C defined, respectively, by the
expressions:
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H= > p*m)/2
m=—ow

+ > [1+wg, (m)g_(m-1)]exp[+a(m)—q(m-1)]

m

-y [1+wg, (mg_(m)], (20)
P= i p(m), (21)
C= ) g.(mg_(m). (22)

Taking into account the expression (20) for the Hamil-
tonian function H the nonlinear integrable system (1)-(4)
must be treated as the dynamical system rewritable in
the concise Hamiltonian form:

p(n) = ~cH / dq(n), (23)
4(n) = +eH / ap(n), (24)
g, (n)=—0H /ag_(n), (25)
g_(n) =+oH /og, (n). (26)

Thus, the two sets p(n), q(n) and g, (n), g_(n) of field
functions acquire the sense of canonical field variables
related to the Toda vibrational subsystem and to the sub-
system of Dirac excitons, respectively.

The very existence of Lax representability (15)-(19)
opens the door for searching the exact solutions to the sug-
gested system (1)—(4) in the framework of one or another
integration scheme. In the next Section we consider the
simplest but rather instructive multi-component solution
obtained by means of Darboux—Bé&cklund dressing integra-
tion technique.

Fundamentals of the Darboux-Bécklund dressing me-
thod as applied to multi-component semi-discrete integr-
able nonlinear systems are outlined in several recent papers
[33-35].

4. Analytical four-component solution. Dipole
and monopole scenarios of charge density distribution

Here, omitting all calculating details, we present the
final analytical result for the four-component solution to
our system (1)—(4) obtained in the framework of Darboux-
Béacklund dressing integration approach.

For this purpose it is convenient to parameterize the
coupling strength w by formula

w=oexp (-v) 27)

with v being an arbitrary real parameter and o defined by
the equality

o’ =1 (28)

In addition, we introduce the notations
px(t) = otsinh(w) + pux(0), (29)
vy(1) = ot[cosh(u) —exp(-v) ]+ vy(0) (30)

for the running position coordinates x(t) and y(t), and
assign the condition

g+g— = _G| g+g— | (31)

for the parameters g, and g_ to be valid. Here all involved
parameters are assumed to be the real valued ones. Hence-
forth, each of two real parameters p and v can vary from
minus to plus infinity.

Then, the nontrivial four-component solution to the
coupled semi-discrete nonlinear dynamical system (1)—(4)
are given by the following analytical expressions:

cosh[u(n—x(t)-1/2)]+|9,9_|exp[v(n—y(r) -1/ 2)] i cosh[u(n—x(t)-3/2)]+|9,9_|exp[v(n—y(r)-3/2)]

p(n)=o )
cosh[u(n—x(x)+1/2)]+|9,9_ [exp[v(n—y(z) +1/2)] cosh[u(n—x(x)-1/2)]+|9,9_|exp[v(n-y(r)-1/2)]
(32)
am) =g+ n cosh[u(n—x(t)+1/2)]+1 9, 9_ |exp[v(n—y(r) +1/2)] | 33)
cosh[pu(n—x(t)-1/2)]+|9,9_ |exp[v(n - y(t) -1/ 2)]
0.(n) = 29, [cosh(v) —cosh(u)]exp[v(n-y(1) +1/2)] ' (34)
cosh[u(n—x(t)+1/2)]+| g, 9_ |exp[v(n—y(1) +1/ 2)]
_ o cosh[u(n—x(t)+1/2)]+] 9, 9_|exp[v(n—y(x) +1/2)]
9-(M=9 {1 exp( V)cosh[u(n—x(r)—1/2)]+|g+g7 lexp[v(n-y(r)-1/2)]| (35)
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At v =0 the obtained four-component solution (32)—(35)
clearly demonstrates the nonlinear superposition of two
distinct types of traveling waves characterized by the two
distinct velocities X(t) = (c/u)sinh (u) and y(t) = (c/Vv)
x [cosh (u) —exp (—v)]. As a consequence, the spatial confi-
guration of each component becomes essentially dependent
on time. The details of such an evolution are determined by
the interplay between the parameter v responsible for the
strength of inter-subsystem coupling and the parameter p
regulating the spatial size of nonlinear wave packet. Only
at g, =0 and g_ =0 the subsystem of Dirac excitons be-
comes completely unexcited and the whole dynamics are re-
duced to the dynamics typical of the Toda lattice [36, 37].

It is worth noticing, that the product of two Dirac
amplitudes g, (n)g_(n) is not obliged being positively de-
fined function of its arguments n and t. That is the reason
why the quantity g, (n)g_(n) should be treated as a sort of
charge density rather than the density of excitons.

Let us illustrate this statement by analyzing the expres-
sion for g, (n)g_(n) in the specific case of above-written
four-component solution (32)—(35). Namely, we have

9.(n)g_(n)=2c]g,g_|[cosh (u)—cosh (v)]
y exp[v(n—y(z) +1/2)]
cosh[p(n—x(t)+1/2)]+] 9, 9_|exp[v(n—y(1) +1/2)]

~ exp[v(n—y(x)-1/2)]
cosh[u(n—x(x)-1/2)]+] 9, 9_ |exp[v(n—y(r) -1/ 2)] |’
(36)

At |u|>]|v| each of two terms in curly brackets is finite
and quickly tends to zero at both spatial infinities. More-
over, the functional forms of these two terms differ only by
the primitive translation along a spatial coordinate. Inasmuch
as the signs before these terms are distinct, the total charge C
of Dirac excitons (22) calculated at | u| > | v | on the examin-
ed charge density (36) is equal to zero. On the other hand,
the same requirement | | >| v | ensures that the expression
(36) for the charge density g, (n)g_(n) changes its sign
only in a single spatial coordinate position

o 1 tanh(v/2)
n(t) = x(t) + " artanh {—tanh(u/ 2)}. (37)

This coordinate position separates two oppositely charged
parts of Dirac exciton wave packet, and it moves along the
chain with the velocity (o /) sinh (u). Thus, at |p|>|v]|
the charge density of Dirac excitons strictly manifests itself
as a sort of traveling dipole. In contrast, at | | <| v | the sign
of charge density (36) is preserved on the whole infinite
spatial interval. As a consequence, at the critical relation-
ship |u|=]|v| between parameters p and v the solution
(32)—(35) undergoes the transition between the dipole and
monopole scenarios of charge density distribution.
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To substantiate the basic inferences concerning the phy-
sical features of the solution (36) obtained for the charge
density g, (n)g_(n) the alternative expression

9, (n)g_(n)=4c|g,g_|[cosh(u)—cosh(v)]
x cosh (u/2)cosh (v/2)
y exp[v(n—y(t))]cosh[n(n—x(1))]
cosh[u(n—x(1)+1/2)]+|9,9_ |exp[v(n—y(1) +1/ 2)]
tanh(v / 2) —tanh(u/ 2) tanh [p(n— x(1))]
*Cosh [(n=x(x)-1/2)]+|9,9_ [exp[v(n—y(t) -1/ 2)]
(38)

algebraically equivalent to the original one (36) is proved
to be very useful.

5. Conclusion

In this article we have studied the main properties of
a specific nonlinear exciton-phonon system on a regular one-
dimensional lattice. Relying upon the system’s integrability,
we have managed to find rather representative four-com-
ponent solution critical against the interplay between the
coupling strength and the parameter of localization. The
critical point (defined as | u| =] v |) separates two principally
distinct dynamical regimes specified individually by the
dipole and monopole distributions of charge density in the
exciton subsystem. This unexpected result revealed on the
simplest nontrivial solution would appear to prompt some
new ideas for the future investigations of nonlinear physical
systems characterized by the exciton-phonon interaction.

It is worth noticing, that despite the incontestable P7 -
symmetry of considered nonlinear exciton-phonon system
(1)-(4) the PT -symmetry of suggested solution (32)—(35)
is seen to be broken. Such a metamorphosis turns out to be
rather typical phenomenon in other intrinsically P7 -sym-
metrical systems [27, 38—40]. According to recent experi-
mental observations in 7 -symmetrical lasing devices the
non-P7 -symmetric nonlinear modes are proved to be pro-
spective for physical applications [38, 39].
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3B’S13aHNX BHYTPIIIHHOBY3JIOBUX 30y/PKCHBb Ta KOJIMBAaHb IPATKU.
IToka3aHo, 110 cucTeMa sIK Lijle € iHTerpoBHOIO B ceHci Jlakca Ta
JOIMYCKAa€ TOYHMH YOTHPUKOMIIOHEHTHHH aHATITHYHHI PO3B’s-
30K, SIKMH BKa3y€ Ha 3HAUYHMH B3a€EMOBIUIUB MK CKJIQ[OBUMHU
MiJICHCTEMaMH y BUIISII CYTTEBO HETIHIHHOI CyNepro3uIii JBOX
NPUHIHUIIOBO BiAMIHMX MaHAPIBHUX XBHJIb. 3MiHa B3a€MOBIJHO-
IOIeHHS MDK IapaMeTpoM 3B’S3Ky Ta IapaMeTpoM JIoKasri3amii
CNIPMYMHIOE KPUTHYHICTh JUHAMIKM CUCTEMH i BeAe 1O Hepexony
JIATIONIb-MOHOIIONb Y TIPOCTOPOBOMY PO3IOJII BHYTPIITHBOBY3-
JIOBUX 30YIKEHb.

KirouoBi cioBa: ekcHTOH-()OHOHHUH 3B’SI30K, HENiHIMHA iHTET-
pOBHa cucTeMa, OJHOBHMIpHA IpaTKa, HeNliHil-
HUM XBUIILOBUHU MAKET, JUIOIbHO-MOHOIIOIBHUM
nepexif.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 12


https://doi.org/10.1103/PhysRevB.50.5160
https://doi.org/10.1103/PhysRevB.46.3721
https://doi.org/10.1107/S0108767304025437
https://doi.org/10.1016/j.crhy.2015.11.008
https://doi.org/10.1002/pssb.2220590212
https://doi.org/10.3367/UFNr.0138.198212c.0603
https://doi.org/10.1070/PU1982v025n12ABEH005012
https://doi.org/10.1016/0370-1573(92)90093-F
https://doi.org/10.1140/epjb/e2017-80209-2
https://doi.org/10.1016/j.physe.2020.114332
https://doi.org/10.1016/j.physleta.2019.125954
https://doi.org/10.1063/10.0001369
https://doi.org/10.1063/10.0002151
https://doi.org/10.15407/ujpe58.11.1092
https://doi.org/10.1016/j.physleta.2019.126081
https://doi.org/10.1142/S0217979214410069
https://doi.org/10.1063/1.5085782
https://doi.org/10.1063/1.5085782
https://doi.org/10.21926/rpm.2003016
https://doi.org/10.1038/nature11298
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1137/1.9781611970227
https://doi.org/10.1007/978-3-540-69969-9
https://doi.org/10.1007/978-3-540-69969-9
https://doi.org/10.1088/0305-4470/22/13/031
https://doi.org/10.1142/S1402925111001672
https://doi.org/10.7566/JPSJ.84.014003
https://doi.org/10.1140/epjp/i2018-12106-y
https://doi.org/10.1016/j.wavemoti.2021.102745
https://doi.org/10.1088/1751-8121/aaa256
https://doi.org/10.1126/science.1258480
https://doi.org/10.1038/nphys4323
https://doi.org/10.1007/s11071-019-05185-1

	1. Introduction
	2. Coupled system of Toda vibrations and Dirac excitons. Equations of motion, symmetry and linear analysis
	3. Lax integrability and its outcomes
	4. Analytical four-component solution. Dipole and monopole scenarios of charge density distribution
	5. Conclusion
	Acknowledgement

