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Within the framework of the self-consistent effective field approximation of the time-dependent perturbation
theory, an influence of the electron tunneling on the spontaneously induced order parameters in a normal
metal-superconductor hybrid structure is considered. For a normal-metal model, which does not take into account
electron-electron scattering, as well as electron-phonon coupling, a critical barrier transparency, corresponding to
the disappearance of superconductivity in the ground state, was obtained. The presence of incoherent excitations
leads to a complex relationship between the effects of ordering, thermal fluctuations, and tunneling. Near the
critical barrier transparency, this can stabilize a superconducting state in the certain temperature intervals. As a
result, a reentrant superconductivity phenomenon was observed. The studied spectral properties of the hybrid
structure reflect the existence of both coherent and incoherent elementary excitations.
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1. Introduction

Despite a long history of the transport properties studies
of the normal metal-superconductor hybrid structures, the
problem of a rigorous quantum-mechanical analysis of the
proximity effect in such systems has not yet lost its rele-
vance. This is especially evident in recent years in connec-
tion with the search and realization of Majorana fermions
based on the proximity effect in the system of a supercon-
ductor with an s-symmetry gap and topological insulator
with conducting surface states [1]. This type of fermions is
protected from decoherence and is of promising importance
in the formation of qubit states for quantum computers.
The problem of inhomogeneous superconductivity as a
quantum effect is rather complicated from the point of view
of subsequent accounting for the correlation effects and the
influence of barriers in heterostructures. To date, a wide
range of theoretical methods for analyzing the observed
experimental electron-tunneling data have been developed.
They are based on the well-known equations of Gor’kov [2],
Bogolyubov, de Gennes [3], McMillan [4] and their semi-
classical approximations [5, 6]. It should be noted that, as a
rule, in the study of critical temperatures, spectral and
transport properties of hybrid structures consisting of a
superconductor and normal magnetic or nonmagnetic metals,
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a linear integral relationship is used for the coordinate de-
pendence of the gap function using a nonlocal kernel [7-9].
However, in the case of sufficiently transparent barriers,
when a perturbation in the form of a tunnel Hamiltonian is
significant, it is no longer possible to consider a linear ap-
proximation, since the contribution of electron correlations
and scattering may turn out to be significant. In particular,
the emergence of reentrant superconductivity, found in
Nb/Cuy_Ni, bilayers [10], can be associated not only with
the ferromagnetism of a normal metal but also with the
effect of electron tunneling through a transparent barrier.

It is worth noting that reentrant superconductivity in a
hybrid structure ferromagnet—superconductor (F/S) has a
complicated origin [8]. In particular, in series of experi-
ments [11, 12], it was observed a nonmonotonic depend-
ence of the critical temperature T¢ on the thickness dg of
the ferromagnet in Gd/Nb samples. The authors assumed
that such dependence Tc(dg) was due to the oscillatory
behavior of the condensate function in the ferromagnet.
Measurements of V/FeV bilayers [13] showed that the in-
terface transparency plays a crucial role in nonmonotonic
or monotonic dependence Tc(dg). In the work [14], the
phenomenon of periodical reentrant superconductivity in
F/S systems was explained as a combination of the BCS
pairing and the Fulde—Ferrel-Larkin—Ovchinnikov (FFLO)
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mechanism in S and F layers, respectively. The experimental
measurement methods of both reentrant and nonequilibrium
superconductivity are presented in the papers [15-19].

Earlier, we presented an effective field approximation
in the framework of a diagrammatic approach of the per-
turbation theory for solving a wide range of problems in
condensed matter physics [20]. In particular, in the zeroth
approximation over an inverse effective radius of electron
interactions, it is possible to build a quantum nonlinear
theory of the proximity effect in a hybrid structure normal
metal-superconductor with a tunnel barrier [21], in which
there are no the phenomenological parameters. Since elec-
tron-electron scattering is not taken into account in the
Hamiltonian, this model corresponds to the ballistic limit,
when a mean free path is substantially greater than the film
thickness. Such parameters of superconductivity as the
coherence length or the penetration depth of superconducting
correlations into a normal metal are derivatives of the theory
and can be expressed in terms of the introduced microscopic
parameters of the Hamiltonian and temperature. Below the
numerical calculations will be done for Sn, Pb, and Al with
electron-phonon coupling constants A = 0.245, 0.39, and
0.175, respectively. Their Debye frequencies wp are 195,
96, and 423 K, respectively [22, 23]. It is supposed that
Fermi energy u=6¢eV.

The structure of the paper is as follows. In the second
section, the tunneling Hamiltonian of the hybrid structure
normal metal-superconductor (N metal-SC) with the main
microscopic parameters of interactions is presented. The
presence of ferromagnetism in the normal metal is also
assumed. The main goal of this section is to study the in-
verse proximity effect with reentrant superconductivity for
high transparency barriers. The contributions to Green’s
functions taking into account the adiabatic switching on the
interactions caused by the tunneling Hamiltonian, as well as
the appearance of imaginary parts, responsible for electron
scattering, to a magnitude and a phase of the spontaneous
order parameter have been calculated. The results of nume-
rical calculations of phase diagrams for the inverse proximity
effect and spectral characteristics of SC are presented. In
the third section, an influence of the tunnel SC electrons on
the order parameter, an excitation spectrum, and the spectral
density of the N metal part in the hybrid structure is studied.
In the fourth section, the main conclusions of the article are
formulated.

2. Inverse proximity effect and reentrant
superconductivity in a normal metal-superconductor
hybrid structure

In a general case, the Hamiltonian for the considered
hybrid structure can be written as the sum of Hamiltonians
I:IN, I-AIS for N metal and SC, respectively, as well as the
tunnel contribution I:IT:

H=Hy+Hs+Hr, (1)

where for a N metal in the site representation for the second
quantized electron creation (annihilation) operators cZ; (C;)
with a spinc

HN = Ztlu 6i Coi ZHG i Coi - 2

ij,o

Here, ty;;is the hopping integral, which determines the elec-
tron band energy, p, =1y +0Jg, W is the chemical potential
for the N metal, J, is the parameter of electron exchange
interactions, and J, > 0 for the ferromagnet. Also, ¢ ==1
for a saturated state and ¢ = 2 <o ,> for the magnet with a
mean spin <c,>.

For the superconducting part of this structure, we write
the Hamiltonian in a mean field approximation

HS - ZtZU oi 0‘] Z(Aljcalcaj U+Alj0aj cao)

ij,o ijo

—Ha Z acl ci 1 (3)

where p,, ty; and A;;; are the SC chemical potential, an

ijo
electron band energy and the gap function, respectively.
The Fourier transform for the gap function A;;_, taking into

ijo
account that the annihilation operator
1 ikR;
A, =——=) e g,
ic \/ﬁ ; ko
where N is the number of the SC sites, has a standard BCS
self-consistent equation

I-ph
0= 2V (o) @
Here V7" and <a_q_6aq0> are the Fourier transform of
the electron-phonon coupling parameter and the order pa-
rameter as an abnormal correlator, respectively. In [20], we

presented a method based on averaging over the unper-
turbed site Hamiltonians

HON = _ZHGCGI Gi 1 (5)

Hos :_szacu oi (6)

for N metal and SC, respectlvely. In this case, the calculation
of correlators in a site representation for series of the time
perturbation theory with perturbations Vy = I-A|N - ﬁON Vg =
= I-A|S - ﬁos, and ﬁT for ferromagnetic (FM) normal metal,
SC, and the tunnel Hamiltonian I:|T, respectively, do not
present any difficulties. Also, I—A|T is written in a site repre-
sentation as
Hy :Z{T|C 8y, + T 8jC c}: ()
ilo

where T;; is an interstitial tunnel matrix element.

To find the abnormal correlator <a_q_oaq6>, which de-
termines a spontaneous order parameter in an SC, it is neces-
sary to introduce the total causal Green’s functions:
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Z4-5(0) == <Ta_q_4(1)24,(0) >,
Zgo (1) = = <Tag; ()ag, (0) >,

Y—_p_q—o (T) =—<Tc_ p-c (T)aqg (0) >,

Yoo (1) = = < Tcho (1)ags (0) > (8)

The spontaneous gap function of a SC is determined by
the formula [20]

(8q-o84s) = BERE[ 25 o (0)(F(@)-D] . (9)

where symbol Res [...] denotes the residues of the Green’s
function 2= () with a factor f(w)-1. Here, f(w)=
=1/(exp(w/T)+1) is the Fermi distribution function. The
analytic  continuation o, > o+id for Zi (io,)=
=-Z4; (-io,) allows us to find the spectrum and the spec-

tral density of electron-hole excitations of the Cooper pairs
condensate:

Ry (0,0) = —2BIMZg (0+i8), (10)

the degree of coherence of which is determined by the
imaginary part of its poles. Obviously, the scattering of
electrons depends only on the tunnel barrier.

Using the scattering matrix, one can form infinite series
of expansions for the Green’s functions. In particular, in the
zeroth approximation over the inverse effective interaction
radius, when loop diagrams are not taken into account, it is
easy to summarize diagrams of the same type graphically
within the framework of the well-known Dyson equation
(see details in Appendix). Then we obtain

ZZq-5(ioy)

Age !B
[0 ~&q = By (1005 [0 +8q = oo () ]~ |Age

i
25 o)

) [ion —&q ~P1o (i) /B
[0, &g ~ @1 (i0,) [0 + & ~ B2 (030) ]| Age

[
(11)
where €, = &5, — I, Is the band energy of electrons relatively
the Fermi level of the SC. It is easy to see from expressions
(11) for the Green’s functions that the excitation spectrum of
a superconductor in a hybrid structure is incoherent, since
¢1_ () and @, (m) contain the finite imaginary parts (see
below), determined by the tunnel matrix element.

Next, we consider the simplest case |qu|2 = |B|2, when
the tunnel matrix element does not depend on the wave
vectors. The frequency o is supposed to be complex and
|eo/my| << 1. Taking into account that the electron density of
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states py () = Cy e, where the constant Cy is proportion-
al to the volume Vy of the N metal, we get

P15 (0) =g (o0, Ty ) =-Ty {2+ In[%]}
Hq

Gy () =Ty [2+ In (2n
4y

where the value Ty :|B|2pN (u,) determines the barrier
transparency for electrons of the N metal. It is also clear
that the contribution from magnetism under the sign of the
logarithm s infinitesimal of a higher order than |e/p|.
Therefore, an influence of the magnetic ordering of the N
metal on SC can be neglected and the spin indices in
Eg. (12) may be disregarded. Obviously, it is true for an
equilibrium situation, and in a nonequilibrium case (for
example, under the injection of spin-polarized electrons into
a superconductor) the effect will be very pronounced [8].

Since the branch cut of complex functions (12) lies on
the negative frequency axis o, it is necessary to take into
account the following relation:

(12)

In(w)—-In(-w)=irsign(argw). (13)

One can write an equation for pole singularities of the
Green’s functions (11) and find the gap in SC:

02 ~ o[y (0) + §2 ()] +&q [92(0) ~ Gy ()]

451 ()5 (0) 8% ~[Ago| =0, (14)

where ¢,_, (®) = ¢;(®) and ¢, (®) = ¢, (m) in accordance
with aforesaid. Formally, this equation can be considered
as quadratic with respect to the complex frequency . It
allows to write an implicit solution in the form

1. .
gy = —EmFNSAgn (arg mgc)

2

OJi
[ & Ty [2+In{4q" D+%inFNsign(arg mgc) +|ch ?

H

(15)

Unfortunately, Eq. (15) is transcendental relative to the
unknown g, . However, it is easy to obtain the solutions
for both electron and hole excitations by the iteration pro-
cedure. As a start, it is necessary to set oq, = Eg, +19,
which corresponds to the analytic continuation of the Green’s
functions to the complex upper half-plane. The iterative
procedure for calculating the roots determines solutions with
imaginary parts of opposite signs for each root. This uncer-
tainty for the roots is due to the fact, that the replacement
®— o+id at the analytic continuation of Green’s func-
tions (11) for each iteration step in Eq. (15) because loga-
rithm gives roots on opposite edges of the branch cut. It is
clear that the first step of the iteration determines the sign
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of the imaginary part of the pole, and the next step of the
opposite sign is associated with violation of the selected
condition for interaction adiabatic switching on. It is interes-
ting to note that in [21] only the first iteration step was
applied to Eq. (15). As will be shown below, the rigorous
self-consistency over frequencies 0) . drastically changes
the order parameters, which points out on a significant con-
tribution In[o> /4u1] to the proximity effect realization in
the N metal—- SC structure.

Figure 1 shows real and imaginary parts of the poles as
functions of the electron energy &g relative to the Fermi
energy level at a gap value A = 6 K, the barrier transparency
I'y=3.49 Kand p; = 6 eV (solid lines). The BCS spectrum
(dashed line) is shown for the comparison. It follows from
Fig. 1 that the calculated solid lines are shifted to the left
relatively the BCS spectrum. It follows from Eq. (15) that
the energy for “above condensate” particles increases by
tunnel contributions proportional to the I'y parameter.

To find the solution Ay from Eq. (4) after knowing
self-consistent solutions wg, = @, and oy, ., for the
poles 2~ (w) from Eg. (9), |t |s necessary to make an
obvious replacement $1(0) = 61 (0g) and &, (0) = ¢ (wg,)
in Eq. (14). Note that Eq. (14) is invariant under the substi-
tution wg, — og, [see Eq. (A.4) in Appendix]. Thus, the
abnormal Green’s function takes the simplest form

(b)
10F 2
v
HE? Or
g
I
,10_

Il L Il L L Il L L
-90 -60 =30 0 30 60

Fig. 1. Real (a) and imaginary (b) parts of the electron and hole
spectrum of excitations O)q+c and @y, (solid curves 1 and 2, re-
spectively) for N metal-SC hybrid structure at A=6K,
I'yv=3.495K and n =6 eV, as well as the corresponding coherent
BCS spectrum (dashed curves).

Ay !
2 4-o(imy) = = .B ) (16)
(05 — g0 )iy + 00
that gives for the order parameter
A

7o

Ay 8y, )= tanh[ ] a7
g-c“%qo
< > 20, 2T

and the gap function is a complex value for I'y = 0, and for
I'y = 0 it coincides with the result of the BCS theory. Then,
according to Eq. (4), we obtain a self-consistent equation
for the complex gap Ag:

kae'-qph o S tanh[ o ] (18)

Assuming the parameter of the electron-phonon interac-
tion V,&P" =U nonzero near the Fermi level in a narrow
energy interval of the order of + wp, where op is the Debye
frequency, let us denote the electron-phonon coupling con-
stant for SC by A = pe(u,)U. Here, pe(uy) is the electron
density of states at the Fermi surface. Obviously, pg(u.)
does not depend on the sample volume. Then one can obtain
the integral complex equation for the spontaneous gap:

L= j Ao an h( 2‘*T"jd§q. (19)

In the simple case of the s-wave gap with a spatially homo-
geneous phase, i.e., at A, =A=Age', where Ag =|A|
and ¢ is determined by the rest of the integrand in Eq. (19),
which depends on T'y. In the approximation ¢ = const and
at 'y =0 this phase is equal to zero. For a gap under the
integral, one can put A, = Age'®. Taking the modulus
from both sides of Eq. (19) with account for the indicated
replacement, we obtain the equation for the gap modulus

wp 1 (qu_
1=2 j o tanh(z—_l_jdiq. (20)

-op qo

Since the modulus of the right-hand side of Eq. (20) is
equal to 1, it can be assumed that the corresponding com-
plex number determines also the gap phase o, that makes it
possible to write

_arg| 0 [ 2 tanh| %2 | 21
¢=arg IZ@ tan o7 & |- (21)

-op qo

Thus, using Egs. (20), (21), it is possible to calculate an
absolute value of the spontaneous gap As of SC, its phase
¢, and the critical temperature T¢ of the phase transition,
taking into account an influence of the effects of incoherent
electrons tunneling in a normal metal.

In Fig. 2, it is shown the dependence of the spontaneous
gap As of the Sn superconductor on the barrier transparency
I'y at the temperature T = 0 K (solid curve), which describes

1082 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 12
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Fig. 2. Dependences of the spontaneous gap As (a) and its phase
(b) of the superconductor Sn on the barrier transparency I'y at the
temperature T =0 K (solid curve). The dashed curve reflects the
same dependence, but without self-consistency over the poles
from Eq. (15) [the first iteration step in Eq. (15) [21]].

an inverse proximity effect. The dashed curve was obtained
for the poles in Eq. (15) obtained at the first step of the
iteration [12].

The critical value of transparency 'y =T’} = 3.495 K,
above which the superconductivity is destroyed, is deter-

mined from the equation for T at tanh(ml(gq) / 2T) =1

Oy (éq )

|
tanh(
5 Zml(é;q) 2T

F(T.Ty)=4 mj

Jdiq -1=0,

(22)

where the frequency Rew;(§,)>0 and (&) is the
self-consistent solution of Eq. (15) at |ch| =0. Near the
high transparency, a role of cooperative phenomena asso-
ciated with electron-hole scattering by the barrier increases
significantly, that is indicated by the phase of the order
parameter [see Fig. 2(b)]. On the other hand, the temperature
fluctuations partially stabilize the superconducting state,
since high-energy electrons from the normal metal are
more strongly dissipated. Therefore, with decreasing tem-
perature, an interval of the ordered phase narrows for a
highly transparent barrier. In general, the state of itinerant
electrons itself is rather complex, that is reflected in the
form of a nonmonotonic behavior of the phase transition
critical temperature Tc, as well as an appearance of the
reentrant superconductivity in certain temperature ranges.
Figure 3 shows that the critical temperature T at
[y ~ T for hybrid structures N metal-Sn and N metal-Pb
is the multiple-valued function of I'y. Also, T¢ strongly
fluctuates relative to small changes in T'y, when approaches
the zero temperature. With further growth of Ty, T¢ even
increases, but in this case superconductivity at low tempera-
tures disappears, and the high-temperature range of the
order parameter emergence gradually narrows to zero.
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Fig. 3. Phase diagram of the N metal-Sn and N metal-Pb
heterostructures (curves 1 and 2, respectively). For Pb, the values
K, =9.9eV and ' =6.105K are taken. The inset shows the
function F(T,T) from Eq. (22) at 'y, =T} =3.495 and low T,
the zeros of which determine T of the superconductor.

Figure 4 demonstrates the temperature dependences of
the gap As of tin in the N metal-Sn hybrid structure for dif-
ferent values of the barrier transparency I'y. It can be seen
from the figure that at 'y, ~ ['{] the order parameter exists in
certain temperature intervals, i.e., in this case an emergence
of the reentrant superconductivity is possible. With decreas-
ing temperature and with increasing I'y, the range of the
superconductivity existence narrows. Also, near one of the
critical temperatures, a two-gap state is possible, that may
indicate a first-order phase transition. Since the phase of the
gap is directly related to the incoherent scattering of tunnel
electrons by the barrier, its temperature dependences for
different transparencies I'y are of interest. Thus, the presented
dependences Tc¢ and Ag reflect a complex nature of the re-
lationship between incoherent tunneling electron scattering,
thermal fluctuations, and coherent Cooper pairing.

As K
h)l u)' $s'

1 1 1 1 1 1
20 25 30 35 40
T,K

05 1.0 15

Fig. 4. Temperature dependences of the spontaneous gap Ag of
the normal metal-tin structure at barrier transparency values I'y, =
=0, 1.8, 2.65, 3.495, and 4.25 K (curves 1-5, respectively) with
the parameter values from Fig. 3.
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3. Proximity effect in ferromagnetic metal

In this section, we will consider an influence of the SC
on a ferromagnetic N metal, i.e., the proximity effect associ-
ated with the emergence of an induced gap in the specified
metal. It has been shown that the magnetic order of an N
metal has a negligible effect on an SC. It turns out that the
SC significantly affects both transport in a metal due to the
proximity effect and its spectral properties. In a similar way

as the induced order parameter <c7p70cpc>, the spectrum of
excitations, and their damping are determined, we can obtain
expressions for corresponding electron Green’s functions of

a metal. Details are presented in the work [20]. Therefore,
we can write down expressions for Fourier transforms of the

retarded anomalous Y, () = —<Tc_p_6 (V)Cpo (O)> and con-

[e3

the N metal:

ventional Y, " (1) = —<Tcpc (VCpo (0)> Green’s functions of

Vi (o+i6) = -~ PO*D)
B Qs (w+id)
Yo (0+i0) =£m+i6+§p +Joc.—?(o)+i8)' 23)
B Qi (0+i0)
where

Qpy (0+i8) = (0+i8+&, - oo - (0 +i3))

x(0+i8-&, ~ Joo—a(0+id)) - [flo+id)| . (24)

Ep =€1p —My, ['s =ps (uz)B2 is the barrier transparency for
condensate electrons of SC. The expressions for functions
a(),B(w), and 7(w) are given in Appendix [see Egs. (A.8)].
The spectrum of excitations is found from pole singularities
of the Green’s functions, i.e., at the condition Qp (o +1i5) =0
that gives an equation for resonance frequencies o with
account for the analytic continuation ® = ®+18:

2

b(w)

2 2
0—Jyo= —iinl"s %sign (arg [b(w)]) + [F;p -T [2+ In {—D— inlgsign (arg [—b(m)])J ) ﬂ

Here b() =o” -|A

complex roots @, and ®,.,, which are determined nu-

|2. The transcendental Eq. (25) has

merically by the iteration procedure.

Figure 5 shows the results for o, and ,,, as func-
tions of energy &, for both paramagnetic and ferromagnetic
N metals. It can be seen that for a paramagnet in a certain
range of values &, and at frequencies |o| <|A|, a gap is

150

(a)

c=+1

150
— (b)

2 1 1 1 1 1 1

%00 ~100 0 100 200

g, K

Fig. 5. Real (a) and imaginary (b) parts of excitation electron
frequencies w,,, (dark circles and triangles) and w,, (open circles
and triangles) as functions of the electron energy &, with the barrier
transparency T's =5 K, the gap As=6.6 K and the ferromagnetic
exchange J, = 0 and 100 K (circles and triangles, respectively).
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S 4b2(e)’
(25)

4u,

induced in the N metal as a realization of the proximity
effect with a nonzero abnormal order parameter <cfpfscpc>,
which is suppressed by the ferromagnetic exchange. Note
that the correlator <c_p_0cpc> does not depend on the elec-
tron-phonon coupling constant in the N metal and is pro-
portional to the gap A, since the N metal is not a supercon-
ductor. On the whole, for nonzero I's the spectrum is
incoherent while electron excitations with frequencies
|oo| <|A| are coherent [see Egs. (A.9)-(A.12) in Appendix].

Figure 6 shows the spectrum of coherent electronic ex-
citations g res aNd m, res [S€€ EQ. (A.10) in Appendix] in a
paramagnetic N metal at As=6.6 K, I's=0.5 and 5K in
the frequency ran |(0i,res| < A, as well as the corresponding
homogeneous spectral densities of coherent and incoherent
excitations from Eq. (25) at |wi0p| > As. In Fig. 6(a), one
can see that at || < As in the N metal a forbidden band is
also formed, the width of which depends both on the barrier
transparency and on the gap of SC. Also, in this case, the
induced gap does not depend on the electron-phonon cou-
pling constant in the N metal. The main energy interval of
electrons scattered by the barrier is assumed to be near the
Fermi level with a width of the order of twice the Debye
frequency. The homogeneous spectral density in Fig. 6(b)
reflects the coherence of the indicated excitations with an
increase in the quasiparticle peak as one approaches
boundaries of the forbidden band of the SC and the N metal.
It is interesting to note that in the forbidden frequency in-
terval for the N metal, i.e., at |o| < @y (I's), in contrast to a
SC, there are purely complex poles of the Green’s function
Ypo (@+1i3), that point out on a strong electrons scattering.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 12
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Fig. 6. (a) Spectrum of coherent e,eTtron excitations ®; rs and
Oy res iN @ paramagnetic N metal at ' ' = A;=6.6 K and I's = 0.5
(curves 1 and 2, respectively) and 5 K (curves 3 and 4, respec-
tively) at frequencies |®;,| > As; (b) corresponding homogene-
ous spectral densities of incoherent excitations for |;;,| > As at
T's=0.5and 5 K (solid curves 1 and 2, respectively) and those of
coherent excitations from (a) at I's = 0.5 and 5 K (dark and light
points, respectively). The straight line 3 corresponds to the spectral
density value 2 in units py (ry) for an N metal with a coherent
spectrum.

It can be shown that the corresponding spectral density is
identically equal zero, as in the SC.

The problem considered above corresponds to the sim-
plest case, when there is no electron-phonon interaction in
the N metal. Here, it is necessary to take into account an

i
3_
2
M2
=
<
3
1_
4
1 1 1 1 1 1 1 1
0 4 8 12 16
I, K

Fig. 7. Gap function Ay as a function of the SC transparency I's at
the temperature T = 0 K for different values of the barrier transpa-
rency I'y of the N metal: 0.2, 1.0, 2.5, and 3.4 K (curves 1-4,
respectively).

effective field in the N metal formed by the order parameter
<c_p_ccp0> with a corresponding energy gap function

Ao = 2V (€ p-oCho ) (26)
q

despite Akc being induced by the effective field of the SC.
However, it can be assumed that the induced effective field
in the N metal weakly affects the self-consistent SC order
parameter, especially for highly transparent barriers. Indeed,
the induced homogeneous gap function Ay = |Ak6| reads as

1| [ F(owp)-1]sign(arg [b(oyp) ]) [ f(@505)~1]sign(arg [b(eep)])

1 %
—ZNinlgA | dg
AN =| 2 GJJ. P (chp _COZGD

where @, and ,., are the roots of Eq. (25). Figure 7
shows the dependences of a gap Ay on the SC transparency
I's at temperature T =0 K for various values of T'y in Al-Sn
hybrid structure. It can be seen that with increasing I's the
induced Ay increases and then decreases to a value, which
then weakly depends on the electron tunneling. Also, with
increasing I'y, there is a decrease in Ay. Note that the value
of the spontaneous gap As in the absence of tunneling is
equal to 6.6 K, i.e., significantly exceeds the Ay value.

In Fig. 8, the temperature dependences of the induced
gap function in Al with Ty=2.65K (a) and 'y =T
=3.495K (b) are shown. It can be seen from Fig. 8(a) that
with increasing I's the gap Ay increases and then decreases
in accordance with Fig. 7. In this case, only for large trans-
parencies I's, nonmonotonic temperature dependence of Ay is
observed, and for small T's, the induced gap function de-
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b(wiep)

b(®50p) ,

(27)

creases monotonically with increasing T. Figure 8(b) shows
the temperature dependences of the reentrant induced super-
conductivity at the critical value 'y, reflecting a rather com-
plex process of proximity effect realization in the hybrid
structure.

In conclusion, let us investigate the effect of the FM ex-
change on the gap in the N metal. As mentioned earlier, the
exchange interaction shifts the energy bands up and down,
depending on the sign of the spin parameter o, and decreases
the gap (see Fig. 5). Figure 9 shows the gap function Ay as
a function of the T's transparency of SC at the temperature
T =0 for various values of the exchange interaction parame-
ter Jo and spin indices o: 0 (curve 1) and 6 K (curves 2 and 3
at 6 =1, -1, respectively). It can be seen that at Jo < Ag in
the area of the gap maximum for the FM, the exchange
suppresses Ay, although for high transparencies the decrease
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(b)

Fig. 8. Temperature dependences of the induced gap function Ay
in aluminum with T'y=2.65 (a) and 3.495 (b) K for different
barrier transparency I's of tin: (a) 0.5, 1.0, 2.5, 3.5, and 10K
(curves 1-5, respectively); (b) 0.1 (dark points), 0.5 (light points),
1.5 (dark squares), 2.5 (dark triangles), 3.5 (solid line), and 10
(light triangles) K. The dotted curve corresponds to the spontaneous
reentrant superconductivity at the critical transparency I'y = 3.495 K
in Fig. 4.

in Ay is not so significant. Also, the gaps for spins ¢ =1
and -1 differ significantly, that is caused by the asymmetric
exchange shift of the electron energy bands with corre-
sponding spins. For Jy > As, the difficulties arise in calcu-
lating Ay at low transparencies I's due to oscillations of the
integrand in Eq. (27). Therefore, at J, = 10 K the curve 4 in
Fig. 9 ends abruptly at T's = 4 K.

Conclusions

In this paper, we consider an application of the time
perturbation theory to a model in which a self-consistent
uniform effective field formed by the electron-phonon

Al-Sn 1
3r 2
I 3
M2
2.
= %
| r,=02K
1
L 6 12
I, K

Fig. 9. Induced gap Ay as a function of the barrier transparency
I's in the ground state for exchange values J, equal to 0 (curve 1)
and 6 K (curves 2 and 3 at ¢ = 1, -1, respectively). Curve 4 corre-
spondsto Jo=10 Kand o = 1.
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coupling of SC induces an order parameter in the N metal
due to electron tunneling processes. The electron-electron
scattering is not taken into account that is appropriate for
tunnel barriers, the linear sizes of which do not exceed an
electron mean free path.

It was found that at the critical transparency I'y values
of the order of the SC critical temperature T¢, the tunneling
electrons of an N metal in the ground state destroy the
spontaneous superconductivity. The presence of incoherent
excitations leads to a complex relationship between the ef-
fects of ordering, thermal fluctuations, and tunneling, which
in the vicinity ', ~T'§ can stabilize the superconducting
state in certain temperature ranges. Thus, the phenomenon
of the reentrant superconductivity is realized. The study of
the direct proximity effect showed that a dimensionless
order parameter is induced in the N metal in the form of an
abnormal correlator, which determines a gap in the spectrum
of electron excitations independently of the N metal effective
field. This field automatically exists when the electron-
phonon interaction in this subsystem is taken into account.

The performed numerical calculations for Al showed
that the induced energy gap function is significantly smaller
than a gap without the electron-phonon coupling. It was
found that the induced gap first increases and then saturates
at high transparency I'g values. This means that a further
increase in the volume of the superconducting part of the
hybrid structure has a small effect on the proximity effect.
Also, in the range of the gap Ay growth as a function of I',
the FM exchange decreases the Ay value. The gaps for spin
indices ¢ = 1 and -1 differ significantly, that is connected
with an asymmetric exchange shift of the electron energy
bands with corresponding spins. The studied spectral pro-
perties of the hybrid structure are in a good agreement with
experimental data and reflect the presence of both coherent
and incoherent elementary excitations in certain frequency
ranges. New detailed experiments dealing with tunneling
junctions, where one of the electrodes is a normal metal—
superconductor hybrid structure [24], are needed to test our
theoretical predictions.

The study was carried out within the Fundamental Re-
search Programme funded by the Ministry of Education
and Science of Ukraine (Project No. 0120U102059).

Appendix
Equations for Green’s functions and order parameters
of a superconductor

In accordance with Hamiltonians (5), (6), the Fourier
transforms of the unperturbed Matsubara causal Green’s
functions for an N metal and a superconductor read as

Ginl10) =~ (03 O, = 5= G ),

Oy 10 =~ (T2 (D5, 0, = s =G i)
o nTH2

(A1)
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where the symbol <...>; denotes an averaging with Hamil-
tonians (5) or (6). The imagine frequency iw, = in(2n + 1)/p
and 1/B = T is the temperature.

In the zero approximation of a self-consistent field, the
above Green’s functions are interconnected by means of

graphical equations in the Fourier space (the details can be
found in [20]). In the analytical form, these equations are
written as follows:

Z—q—c(iwn):Bel(iwn)[SZ—qZ—q—c(imn)+ch qo (10 )+ZT—p ~q'-pq- c(lwn)]

Zag (iwn) = GZ (imn) _BGZ (imn){EZngc (imn) _A 277 (Iwn) + szqutm (I(’)n)]l

v

where g1, = €1, £2q= €2 and Tq are Fourier transforms of
the hopping integrals t;;; and t,;; for the N metal, the SC and
the tunnel matrix element, respectively. Note that the mo-
mentum p always refers to the N metal, and q to the SC.

From the system of Egs. (A.2), in the absence of tunneling,
when T; =0, the trivial solutions Y ;. (iw,)=0 and
Ypqo (ion) =0, and the first two equations coincide with the
Gor’kov equations. Taking tunneling into account, the system
becomes integral and describes nonlinear proximity effects,
since it includes infinite series of contributions to the Green’s
functions from the tunneling matrix element. Despite the
integral character of the system of Eqgs. (A.2), it can be easily
solved. To do this, from the third and fourth equations we
find the unknowns Y ;. (i®,) and Yo, (io,) functions
and substitute them into the first two equations of the
above system, that gives the system of Egs. (11).

The functions §,_;(io,) and @, (iw,), which deter-
mine an influence of an N metal on a superconductor, are

represented in the form

oo

¢y (o) = Zm s
zoll0n)= 2.5, |(T| e1p)

To determine the spontaneous gap in accordance with
Eq. (9), after the analytic continuation © = ®+I3 jt js
necessary to calculate the functions ¢,_,(®) and @, (®).
Obviously, these functions are connected by the relation

(T)l—o' (O‘)) == (T)Z—cs (_(’0) (A4)

The expression for the spectral density of states R (g, ®)
from Eq. (10) reads as

R, (,0) = 21T, (w)[

~E¢ |- (0+&y)(@-sign(@)E,)
2] + 22T} (0-sign(®)g, )
(A.5)
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(A.2)

“pa-o (i0n) =BGy (i) (81-pY Spq-o (i00) +T_p_qZ 0 Gomn)),

PqG(I(D )= BGZG(I(D )( €1p qu(I(D )—

ToaZgo (i),

where Eq(m):\/éé(m)+A21 Eq(m):§q+(p0(|0)|1rN)v

0(w) is the Heaviside step function, and @ (w,T"y) is the
function from Egs. (12). Let us define the homogeneous
spectral density as follows:

RS (@) = ZR (A0) = ps(uz)jdaqRG(qu» (A6)

-op

where pg(u,) is the bulk electron density of states of a SC
metal at the Fermi level.

In Fig. 10, the frequency dependences of a homogeneous
spectral density of superconducting Sn at a temperature
T = 0K for different I'y values and at the critical transpa-
rency I'y =T = 3.495 K in the temperature interval from
1.6 to 3.1 K, where the reentrant superconductivity emerges,
are shown. It can be seen from Fig. 10(a) that for small T’y

230 7

=. =.

2 (a) o = (b)

B L =

=) ' =]

£ 201 £

6 2

R R 6F 1

2 2

Z 10 2 4

Q Q

= = 2

g g

w 0 R 0 20
OJ,K (D,K

Fig. 10. Frequency dependences of the homogeneous spectral
density R(w) from (A.6) in units ps(p,) for the superconductor in
a hybrid normal metal-Sn structure: (a) at the temperature
T=0K and I'y=0 (As = 6.6 K, dashed line), 0.2, 1.0, 2.0, 3.0,
and 3.44 K (As=6.57, 6.32, 5.44, 3.50, 1.54 K, solid lines 1-5,
respectively); (b) at the critical transparency [ =I'§ =3.495 K
and T=1.625, 1.7, 24, 31K (As=1.7, 253, 351, 2.34K,
curves 1-4, respectively).
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the R](w) function is close to the conventional RS (w)
function for a homogeneous superconductor:

2mpg (M2)|(0|

R (@) =
° o’ —A%

(A7)
With increasing Iy, the spectral density R(w) approaches a
value 2mpg(u,) that corresponds to an N metal gnd re-
flects the inverse proximity effect. In Fig. 10(b), R(®) is
shown at the critical transparency I'§{j =3.495 K, and in the

a(w)=-Tg {2+ I, 2

B(e) = —AT 2;?@) sign (arg[b(w)]),

() = blo) 11 o
Y(w)=Tg {2+In a, 2 ”{b(w) sign

where b(m) = \/0? —|A|2 .

Let us prove the coherence of electron excitations in an
N metal with frequencies || <|A|. We need it for correct
calculations of the corresponding spectral density. Indeed,
it is easy to see that at |w| < |A| the tunnel functions (A.8)
are real. Relatively unknowns £, the equation Q. (o) =0
is quadratic for the integrand pole singularities of the homo-
geneous spectral density R) (o):

op
R (@)= 2 R, (,0) =py () | AR (p.0), (A9)
where R, (p,®) =-2BImY, " (0+i8) and &p is Debye
frequency for the N metal. That is why one can write its
solutions &; () and &, (w) in the form

io(w) =Ty [2 +In i(m)j

M2

J_r\/(oo+ Joc){aﬁ Jyo+Ts %J—%nzrg , (A.10)
()

where b(m)=+/A2 —®?. Obviously, Eq.(A.10) gives
poles on the real frequency axis if the radical expression is
non-negative. Consider the simplest case Jo = 0. Then at

_ 2lof{lef +4s)

il

we have the coherent spectrum, if |o/<Ag and
o] > g7 (') = wo(I's ), where g™(x) is the inverse function
from Eq. (A.11). The numerical analysis with analytic con-
tinuation ® — w+i8 shows that sign(lm(@l(w+ i8))) =sign(w)
and sign(lm(&z(m+i8))):—sign(w). In accordance with
the Landau bypass rule, it is easy to find the spectral density

(A.11)
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temperature range of the reentrant superconductivity emer-
gence. It can be seen from the figure that in this case, due to a
high barrier transparency, an influence of the N metal on the
spontaneous order parameter is quite significant. Also, due
to the jump at the singular point © = 0, R(w) is asymmetric
near the origin. The presented dependences are in good
agreement with the known experimental data [25].

The expressions for G (o), B(w), and 7(®) functions
from Egs. (23), (24) are

In MJrlif{%sign (arg[b(w)])+sign (arg [_b(m)])}}'

(A8)

(arg[b(e)]) -sign (arg [—b(w)])}},

of coherent electron excitations in the N metal for frequen-
cies o] < Ag:

2msign()0 (o] - 0o (T's)) 0(As —[o]) Py (1)

R (0)- 1
\/m(oo+l"5n03/ 5(@))—27521"5

x{a)+1"s7tm/5(w)}, (A.12)

that is shown in Fig. 6(b).
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lMoBOpOTHa HAQNPOBIAHICTE B riOpUAHIA
reTepoCTPYKTYpi 3 BUCOKOIO Bap’epHOI0 NPO30picTIo

E. E. Zubov

B pamkax caM0y3ropkeHOro HaOIvKeHHS e()eKTUBHOTO 1OJIs
4acoBoi Teopil 30ypeHb PpO3IIISJAEThCS BIUIMB TYHETIOBAHHS
SJICKTPOHIB Ha CIIOHTAHHI Ta iHAYKOBaHi MapaMeTpH MOPSIKY B
ribpuaHii CTPYKTYpi HOpMAalbHHH MeTal—HaaupoBimtHuK. [l
Mozieni 6e3 eNeKTPOH-EIEKTPOHHOTO PO3CIFOBaHHS, @ TAKOXK EJICKT-
POH-(POHOHHOT'0 3B’5I3Ky B HOPMAJIbHOMY METajli OTPUMAHO KPHTHY-
Hy 0ap’epHy MpO30picTh, KOIU HAANPOBIIHICTH 3HUKAE B OCHOB-
HOMY cTaHi. HasiBHICTH HEKOrepEeHTHUX 30y/KCHb IPU3BOIUTH JI0
CKJIQHOTO B33a€MO3B’A3KY e(EKTiB yHNOPSAKYBAaHHS, TEIUIOBUX
¢GuykTyaniit Ta TyHemoBaHHS. IloOmm3y kpurH4YHOI Oap’epHOi
MPO30POCTi Lie MOXKE CTabiIi3yBaTH HAANPOBIAHUN CTaH Y MEBHUX
TeMIIepaTypHUX iHTepBasiax. B pe3ysbTari cocTepiracThes sSBUIIE
MOBOPOTHOI HAINpoBigHOCTI. BHUBUEHI CrieKTpaibHi BIACTUBOCTI
i€l TiOpUAHOI CTPYKTYPH BiOOpaXKaloTh ICHYBaHHS SIK KOTEPEHT-
HHX, TaK i HEKOT€PEHTHHUX €JIEMEHTapHUX 30YIDKCHb.

KirowoBi cnoBa: HaaIpOBiAHICTH, KPUTHYHA TeMIIepaTypa, rib-
pHUOHA CTPYKTYypa, TyHenbHHH Gap’ep, edekr
OIIM3BKOCTI, KOTEPEHTHICTB.
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