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Within the framework of the self-consistent effective field approximation of the time-dependent perturbation 
theory, an influence of the electron tunneling on the spontaneously induced order parameters in a normal 
metal–superconductor hybrid structure is considered. For a normal-metal model, which does not take into account 
electron-electron scattering, as well as electron-phonon coupling, a critical barrier transparency, corresponding to 
the disappearance of superconductivity in the ground state, was obtained. The presence of incoherent excitations 
leads to a complex relationship between the effects of ordering, thermal fluctuations, and tunneling. Near the 
critical barrier transparency, this can stabilize a superconducting state in the certain temperature intervals. As a 
result, a reentrant superconductivity phenomenon was observed. The studied spectral properties of the hybrid 
structure reflect the existence of both coherent and incoherent elementary excitations. 
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1. Introduction 

Despite a long history of the transport properties studies 
of the normal metal–superconductor hybrid structures, the 
problem of a rigorous quantum-mechanical analysis of the 
proximity effect in such systems has not yet lost its rele-
vance. This is especially evident in recent years in connec-
tion with the search and realization of Majorana fermions 
based on the proximity effect in the system of a supercon-
ductor with an s-symmetry gap and topological insulator 
with conducting surface states [1]. This type of fermions is 
protected from decoherence and is of promising importance 
in the formation of qubit states for quantum computers. 
The problem of inhomogeneous superconductivity as a 
quantum effect is rather complicated from the point of view 
of subsequent accounting for the correlation effects and the 
influence of barriers in heterostructures. To date, a wide 
range of theoretical methods for analyzing the observed 
experimental electron-tunneling data have been developed. 
They are based on the well-known equations of Gor’kov [2], 
Bogolyubov, de Gennes [3], McMillan [4] and their semi-
classical approximations [5, 6]. It should be noted that, as a 
rule, in the study of critical temperatures, spectral and 
transport properties of hybrid structures consisting of a 
superconductor and normal magnetic or nonmagnetic metals, 

a linear integral relationship is used for the coordinate de-
pendence of the gap function using a nonlocal kernel [7–9]. 
However, in the case of sufficiently transparent barriers, 
when a perturbation in the form of a tunnel Hamiltonian is 
significant, it is no longer possible to consider a linear ap-
proximation, since the contribution of electron correlations 
and scattering may turn out to be significant. In particular, 
the emergence of reentrant superconductivity, found in 
Nb/Cu1–xNix bilayers [10], can be associated not only with 
the ferromagnetism of a normal metal but also with the 
effect of electron tunneling through a transparent barrier.  

It is worth noting that reentrant superconductivity in a 
hybrid structure ferromagnet–superconductor (F/S) has a 
complicated origin [8]. In particular, in series of experi-
ments [11, 12], it was observed a nonmonotonic depend-
ence of the critical temperature TC on the thickness dF of 
the ferromagnet in Gd/Nb samples. The authors assumed 
that such dependence TC(dF) was due to the oscillatory 
behavior of the condensate function in the ferromagnet. 
Measurements of V/FeV bilayers [13] showed that the in-
terface transparency plays a crucial role in nonmonotonic 
or monotonic dependence TC(dF). In the work [14], the 
phenomenon of periodical reentrant superconductivity in 
F/S systems was explained as a combination of the BCS 
pairing and the Fulde–Ferrel–Larkin–Ovchinnikov (FFLO) 
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mechanism in S and F layers, respectively. The experimental 
measurement methods of both reentrant and nonequilibrium 
superconductivity are presented in the papers [15–19]. 

Earlier, we presented an effective field approximation 
in the framework of a diagrammatic approach of the per-
turbation theory for solving a wide range of problems in 
condensed matter physics [20]. In particular, in the zeroth 
approximation over an inverse effective radius of electron 
interactions, it is possible to build a quantum nonlinear 
theory of the proximity effect in a hybrid structure normal 
metal–superconductor with a tunnel barrier [21], in which 
there are no the phenomenological parameters. Since elec-
tron-electron scattering is not taken into account in the 
Hamiltonian, this model corresponds to the ballistic limit, 
when a mean free path is substantially greater than the film 
thickness. Such parameters of superconductivity as the 
coherence length or the penetration depth of superconducting 
correlations into a normal metal are derivatives of the theory 
and can be expressed in terms of the introduced microscopic 
parameters of the Hamiltonian and temperature. Below the 
numerical calculations will be done for Sn, Pb, and Al with 
electron-phonon coupling constants λ = 0.245, 0.39, and 
0.175, respectively. Their Debye frequencies ωD are 195, 
96, and 423 K, respectively [22, 23]. It is supposed that 
Fermi energy µ = 6 eV. 

The structure of the paper is as follows. In the second 
section, the tunneling Hamiltonian of the hybrid structure 
normal metal–superconductor (N metal–SC) with the main 
microscopic parameters of interactions is presented. The 
presence of ferromagnetism in the normal metal is also 
assumed. The main goal of this section is to study the in-
verse proximity effect with reentrant superconductivity for 
high transparency barriers. The contributions to Green’s 
functions taking into account the adiabatic switching on the 
interactions caused by the tunneling Hamiltonian, as well as 
the appearance of imaginary parts, responsible for electron 
scattering, to a magnitude and a phase of the spontaneous 
order parameter have been calculated. The results of nume-
rical calculations of phase diagrams for the inverse proximity 
effect and spectral characteristics of SC are presented. In 
the third section, an influence of the tunnel SC electrons on 
the order parameter, an excitation spectrum, and the spectral 
density of the N metal part in the hybrid structure is studied. 
In the fourth section, the main conclusions of the article are 
formulated. 

2. Inverse proximity effect and reentrant 
superconductivity in a normal metal–superconductor 

hybrid structure 

In a general case, the Hamiltonian for the considered 
hybrid structure can be written as the sum of Hamiltonians 
ˆ

NH , ˆ
SH  for N metal and SC, respectively, as well as the 

tunnel contribution ˆ
TH : 

 ˆ ˆ ˆ ˆ
N S TH H H H= + + , (1)  

where for a N metal in the site representation for the second 
quantized electron creation (annihilation) operators ic+σ ( )icσ  
with a spin σ 

  1
, ,

ˆ
N ij i j i i

i j i
H t c c c c+ +

σ σ σ σ σ
σ σ

= − µ∑ ∑ . (2)  

Here, t1ij is the hopping integral, which determines the elec-
tron band energy, 1 0Jσµ = µ + σ , µ1 is the chemical potential 
for the N metal, 0J  is the parameter of electron exchange 
interactions, and 0J  > 0 for the ferromagnet. Also, 1σ = ±  
for a saturated state and 2 zσ = ± <σ > for the magnet with a 
mean spin z<σ > .  

For the superconducting part of this structure, we write 
the Hamiltonian in a mean field approximation  

( )*
2

, ,

ˆ
S ij i j ij i j ij j i

i j ij
H t a a a a a a+ + +

σ σ σ σ −σ σ −σ σ
σ σ

= − ∆ + ∆∑ ∑  

 2 i i
i

a a+
σ σ

σ

−µ ∑ , (3) 

where µ2, t2ij and ijσ∆  are the SC chemical potential, an 
electron band energy and the gap function, respectively. 
The Fourier transform for the gap function ijσ∆ , taking into 
account that the annihilation operator 

1 e ii R
ia a

Nσ σ= ∑ k
k

k
,  

where N is the number of the SC sites, has a standard BCS 
self-consistent equation  

 el–ph
–– .V a aσ σ σ∆ =∑k q qk q

q
–  (4) 

Here el–phVk  and –a aσ σq q–  are the Fourier transform of 
the electron-phonon coupling parameter and the order pa-
rameter as an abnormal correlator, respectively. In [20], we 
presented a method based on averaging over the unper-
turbed site Hamiltonians 

 0
ˆ

N i i
i

H c c+
σ σ σ

σ

= − µ∑ , (5) 

 0 2
ˆ

S i i
i

H a a+
σ σ

σ

= −µ ∑  (6)  

for N metal and SC, respectively. In this case, the calculation 
of correlators in a site representation for series of the time 
perturbation theory with perturbations 0

ˆ ˆ
N N NV H H= − , SV = 

0
ˆ ˆ

S SH H= − , and ˆ
TH  for ferromagnetic (FM) normal metal, 

SC, and the tunnel Hamiltonian ˆ
TH , respectively, do not 

present any difficulties. Also, ˆ
TH  is written in a site repre-

sentation as 
 { }*ˆ ,T il i l il l i

il
H T c a T a c+ +

σ σ σ σ
σ

= +∑   (7) 

where ilT  is an interstitial tunnel matrix element.  
To find the abnormal correlator –a aσ σq q– , which de-

termines a spontaneous order parameter in an SC, it is neces-
sary to introduce the total causal Green’s functions: 
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 – – – –( ) ( ) (0) ,q q qZ Ta a−−
σ σ στ = − < τ >   

 ( ) ( ) (0) ,q q qZ Ta a+− +
σ σ στ = − < τ >    

 – – – –( ) ( ) (0) ,pq p qY Tc a−−
σ σ στ = − < τ >   

 ( ) ( ) (0) .pq p qY Tc a+− +
σ σ στ = − < τ >  (8) 

The spontaneous gap function of a SC is determined by 
the formula [20]  

 – –Res ( )( ( ) 1) ,
i i

a a Z f−−
σ σ σ = −β ω ω − ∑q q q– –  (9) 

where symbol Res […] denotes the residues of the Green’s 
function ( )Z −−

− −σ ωq  with a factor ( ) 1f ω − . Here, ( )f ω =  
1 / (exp( / ) 1)T= ω +  is the Fermi distribution function. The 

analytic continuation ni iω →ω+ δ  for ( )nZ i+−
σ ω =q  

( )nZ i−+
σ= − − ωq  allows us to find the spectrum and the spec-

tral density of electron-hole excitations of the Cooper pairs 
condensate: 

 ( , ) 2 Im ( )R Z i−+
σ σω = − β ω+ δqq , (10)  

the degree of coherence of which is determined by the 
imaginary part of its poles. Obviously, the scattering of 
electrons depends only on the tunnel barrier. 

Using the scattering matrix, one can form infinite series 
of expansions for the Green’s functions. In particular, in the 
zeroth approximation over the inverse effective interaction 
radius, when loop diagrams are not taken into account, it is 
easy to summarize diagrams of the same type graphically 
within the framework of the well-known Dyson equation 
(see details in Appendix). Then we obtain  

 

– ( )nZ i−−
σ ωq–  

2
1 2

/
,

( ) ( )n n n ni i i i

σ

−σ σ σ

∆ β
=
   ω − ξ −ϕ ω ω + ξ −ϕ ω − ∆   

q

q q q 

 

( )nZ i+−
σ ωq  

1
2

1 2

( ) /

( ) ( )

n n

n n n n

i i

i i i i

−σ

−σ σ σ

 ω − ξ −ϕ ω β =
   ω − ξ −ϕ ω ω + ξ −ϕ ω − ∆   

q

q q q



 

, 

  (11)  
where 2 2ξ = ε −µq q  is the band energy of electrons relatively 
the Fermi level of the SC. It is easy to see from expressions 
(11) for the Green’s functions that the excitation spectrum of 
a superconductor in a hybrid structure is incoherent, since 

1 ( )−σϕ ω  and 2 ( )σϕ ω  contain the finite imaginary parts (see 
below), determined by the tunnel matrix element. 

Next, we consider the simplest case 
2 2T B=pq , when 

the tunnel matrix element does not depend on the wave 
vectors. The frequency ω is supposed to be complex and 

1 1ω µ << . Taking into account that the electron density of 

states ( )N NСρ ε = ε , where the constant СN is proportion-
al to the volume VN of the N metal, we get 

 
1 0

1

2
1

( ) ( , ) 2 ln ,
4

( ) 2 ln ,
4

N N

N

−σ

σ

  ω
ϕ ω = ϕ ω Γ = −Γ +   µ  

  −ω
ϕ ω = Γ +   µ  





 (12) 

where the value 2
1( )N NBΓ = ρ µ  determines the barrier 

transparency for electrons of the N metal. It is also clear 
that the contribution from magnetism under the sign of the 
logarithm is infinitesimal of a higher order than 1ω µ . 
Therefore, an influence of the magnetic ordering of the N 
metal on SC can be neglected and the spin indices in 
Eq. (12) may be disregarded. Obviously, it is true for an 
equilibrium situation, and in a nonequilibrium case (for 
example, under the injection of spin-polarized electrons into 
a superconductor) the effect will be very pronounced [8].  

Since the branch cut of complex functions (12) lies on 
the negative frequency axis ω, it is necessary to take into 
account the following relation: 

 ( ) ( ) ( )ln ln sign argiω − −ω = π ω . (13)  

One can write an equation for pole singularities of the 
Green’s functions (11) and find the gap in SC: 

[ ] [ ]2
1 2 2 1( ) ( ) ( ) ( )ω −ω ϕ ω +ϕ ω + ξ ϕ ω −ϕ ωq     

 
22

1 2( ) ( ) 0σ+ϕ ω ϕ ω −ξ − ∆ =q q  ,  (14) 

where 1 1( ) ( )−σϕ ω = ϕ ω   and 2 2( ) ( )σϕ ω = ϕ ω   in accordance 
with aforesaid. Formally, this equation can be considered 
as quadratic with respect to the complex frequency ω. It 
allows to write an implicit solution in the form  

( )1 sign arg
2 Ni± ±

σ σω = − πΓ ωq q  

( )
2

2

1

12 ln sign arg
4 2N Ni
±
σ ±

σ σ

   ω
  ± ξ −Γ + + πΓ ω + ∆ 

  µ    

q
q q q . 

  (15)  
Unfortunately, Eq. (15) is transcendental relative to the 
unknown ±

σωq . However, it is easy to obtain the solutions 
for both electron and hole excitations by the iteration pro-
cedure. As a start, it is necessary to set E iσ σω = + δq q , 
which corresponds to the analytic continuation of the Green’s 
functions to the complex upper half-plane. The iterative 
procedure for calculating the roots determines solutions with 
imaginary parts of opposite signs for each root. This uncer-
tainty for the roots is due to the fact, that the replacement 

iω→ω+ δ  at the analytic continuation of Green’s func-
tions (11) for each iteration step in Eq. (15) because loga-
rithm gives roots on opposite edges of the branch cut. It is 
clear that the first step of the iteration determines the sign 
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of the imaginary part of the pole, and the next step of the 
opposite sign is associated with violation of the selected 
condition for interaction adiabatic switching on. It is interes-
ting to note that in [21] only the first iteration step was 
applied to Eq. (15). As will be shown below, the rigorous 
self-consistency over frequencies ±

σωq  drastically changes 
the order parameters, which points out on a significant con-
tribution 1ln[ 4 ]±

σω µq  to the proximity effect realization in 
the N metal–SC structure. 

Figure 1 shows real and imaginary parts of the poles as 
functions of the electron energy ξq relative to the Fermi 
energy level at a gap value ∆ = 6 K, the barrier transparency 
ΓN = 3.49 K and µ1 = 6 eV (solid lines). The BCS spectrum 
(dashed line) is shown for the comparison. It follows from 
Fig. 1 that the calculated solid lines are shifted to the left 
relatively the BCS spectrum. It follows from Eq. (15) that 
the energy for “above condensate” particles increases by 
tunnel contributions proportional to the ΓN parameter.  

To find the solution ∆qσ from Eq. (4) after knowing 
self-consistent solutions +

σ σω = ωq q  and −
σ σω = −ωq q  for the 

poles ( )Z −−
− −σ ωq  from Eq. (9), it is necessary to make an 

obvious replacement 1 1( ) ( )+
σϕ ω = ϕ ωq   and 2 2( ) ( )+

σϕ ω = ϕ ωq   
in Eq. (14). Note that Eq. (14) is invariant under the substi-
tution + −

σ σω → ωq q  [see Eq. (A.4) in Appendix]. Thus, the 
abnormal Green’s function takes the simplest form  

 
( )( )

/
( )n

n n

Z i
i i

σ−−
− −σ

σ σ

∆ β
ω =

ω −ω ω +ω
q

q
q q

, (16)  

that gives for the order parameter  

 tanh
2 2

a a
T

σ σ
− −σ σ

σ

∆ ω 
=  

ω  

q q
q q

q
, (17) 

and the gap function is a complex value for ΓN ≠ 0, and for 
ΓN = 0 it coincides with the result of the BCS theory. Then, 
according to Eq. (4), we obtain a self-consistent equation 
for the complex gap ∆qσ: 

 el–ph tanh
2 2

V
T

σ σ
σ −

σ

∆ ω 
∆ =  

ω  
∑ q q

k k q
qq

. (18) 

Assuming the parameter of the electron-phonon interac-
tion el–phV U− =k q  nonzero near the Fermi level in a narrow 
energy interval of the order of ± ωD, where ωD is the Debye 
frequency, let us denote the electron-phonon coupling con-
stant for SC by λ = ρF(µ2)U. Here, ρF(µ2) is the electron 
density of states at the Fermi surface. Obviously, ρF(µ2) 
does not depend on the sample volume. Then one can obtain 
the integral complex equation for the spontaneous gap: 

 tanh
2 2

D

D

d
T

ω
σ σ

σ
σ−ω

∆ ω 
∆ = λ ξ 

ω  
∫ q q

k q
q

. (19) 

In the simple case of the s-wave gap with a spatially homo-
geneous phase, i.e., at ei

S
ϕ

σ∆ = ∆ = ∆k , where S σ∆ = ∆k  
and φ is determined by the rest of the integrand in Eq. (19), 
which depends on ΓN. In the approximation φ = const and 
at ΓN = 0 this phase is equal to zero. For a gap under the 
integral, one can put 0ei

Sσ∆ = ∆q . Taking the modulus 
from both sides of Eq. (19) with account for the indicated 
replacement, we obtain the equation for the gap modulus 

 11 tanh
2 2

D

D

d
T

ω
σ

σ−ω

ω 
= λ ξ 

ω  
∫ q

q
q

. (20) 

Since the modulus of the right-hand side of Eq. (20) is 
equal to 1, it can be assumed that the corresponding com-
plex number determines also the gap phase ϕ, that makes it 
possible to write 

 1arg tanh
2 2

D

D

d
T

ω
σ

σ−ω

 ω  ϕ = λ ξ  ω   
∫ q

q
q

. (21)  

Thus, using Eqs. (20), (21), it is possible to calculate an 
absolute value of the spontaneous gap ∆S of SC, its phase 
ϕ, and the critical temperature TC of the phase transition, 
taking into account an influence of the effects of incoherent 
electrons tunneling in a normal metal.  

In Fig. 2, it is shown the dependence of the spontaneous 
gap ∆S of the Sn superconductor on the barrier transparency 
ΓN at the temperature T = 0 K (solid curve), which describes 

Fig. 1. Real (a) and imaginary (b) parts of the electron and hole 
spectrum of excitations σ

+ωq  and σ
−ωq  (solid curves 1 and 2, re-

spectively) for N metal–SC hybrid structure at ∆ = 6 K, 
ΓN = 3.495 K and µ = 6 eV, as well as the corresponding coherent 
BCS spectrum (dashed curves). 
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an inverse proximity effect. The dashed curve was obtained 
for the poles in Eq. (15) obtained at the first step of the 
iteration [12]. 

The critical value of transparency cr
N NΓ = Γ  = 3.495 K, 

above which the superconductivity is destroyed, is deter-
mined from the equation for TC at ( )1tanh ( ) / 2 1Tω ξ =q :  

1

1

( )1( , ) tanh 1 0
2 ( ) 2

D

D

NF T d
T

ω

−ω

ω ξ 
Γ = λ ξ − = 

ω ξ  
∫ q

q
q

, 

  (22) 

where the frequency 1Re ( ) 0ω ξ >q  and 1( )ω ξq  is the 
self-consistent solution of Eq. (15) at 0σ∆ =q . Near the 
high transparency, a role of cooperative phenomena asso-
ciated with electron-hole scattering by the barrier increases 
significantly, that is indicated by the phase of the order 
parameter [see Fig. 2(b)]. On the other hand, the temperature 
fluctuations partially stabilize the superconducting state, 
since high-energy electrons from the normal metal are 
more strongly dissipated. Therefore, with decreasing tem-
perature, an interval of the ordered phase narrows for a 
highly transparent barrier. In general, the state of itinerant 
electrons itself is rather complex, that is reflected in the 
form of a nonmonotonic behavior of the phase transition 
critical temperature TC, as well as an appearance of the 
reentrant superconductivity in certain temperature ranges. 

Figure 3 shows that the critical temperature TC at
cr

N NΓ Γ  for hybrid structures N metal–Sn and N metal–Pb 
is the multiple-valued function of ΓN. Also, TC strongly 
fluctuates relative to small changes in ΓN, when approaches 
the zero temperature. With further growth of ΓN, TC even 
increases, but in this case superconductivity at low tempera-
tures disappears, and the high-temperature range of the 
order parameter emergence gradually narrows to zero.  

Figure 4 demonstrates the temperature dependences of 
the gap ΔS of tin in the N metal–Sn hybrid structure for dif-
ferent values of the barrier transparency ΓN. It can be seen 
from the figure that at cr

N NΓ Γ  the order parameter exists in 
certain temperature intervals, i.e., in this case an emergence 
of the reentrant superconductivity is possible. With decreas-
ing temperature and with increasing ΓN, the range of the 
superconductivity existence narrows. Also, near one of the 
critical temperatures, a two-gap state is possible, that may 
indicate a first-order phase transition. Since the phase of the 
gap is directly related to the incoherent scattering of tunnel 
electrons by the barrier, its temperature dependences for 
different transparencies ΓN are of interest. Thus, the presented 
dependences TC and ΔS reflect a complex nature of the re-
lationship between incoherent tunneling electron scattering, 
thermal fluctuations, and coherent Cooper pairing. 

Fig. 2. Dependences of the spontaneous gap ∆S (а) and its phase 
(b) of the superconductor Sn on the barrier transparency ΓN at the 
temperature T = 0 K (solid curve). The dashed curve reflects the 
same dependence, but without self-consistency over the poles 
from Eq. (15) [the first iteration step in Eq. (15) [21]]. 

Fig. 3. Phase diagram of the N metal–Sn and N metal–Pb 
heterostructures (curves 1 and 2, respectively). For Pb, the values 
µ2 = 9.9 eV and cr

NΓ  = 6.105 K are taken. The inset shows the 
function ( , )NF T Γ  from Eq. (22) at cr

N NΓ = Γ  = 3.495 and low T, 
the zeros of which determine TC of the superconductor. 

Fig. 4. Temperature dependences of the spontaneous gap ΔS of 
the normal metal-tin structure at barrier transparency values NΓ  = 
= 0, 1.8, 2.65, 3.495, and 4.25 K (curves 1–5, respectively) with 
the parameter values from Fig. 3. 
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3. Proximity effect in ferromagnetic metal 

In this section, we will consider an influence of the SC 
on a ferromagnetic N metal, i.e., the proximity effect associ-
ated with the emergence of an induced gap in the specified 
metal. It has been shown that the magnetic order of an N 
metal has a negligible effect on an SC. It turns out that the 
SC significantly affects both transport in a metal due to the 
proximity effect and its spectral properties. In a similar way 
as the induced order parameter c c− −σ σp p , the spectrum of 
excitations, and their damping are determined, we can obtain 
expressions for corresponding electron Green’s functions of 
a metal. Details are presented in the work [20]. Therefore, 
we can write down expressions for Fourier transforms of the 
retarded anomalous ( ) ( ) (0)Y Tc c−−

σ − −σ στ = − τp p p  and con-

ventional ( ) ( ) (0)Y Tc c−+
σ σ στ = − τp p p

+  Green’s functions of 

the N metal: 

 1 ( )( )
( )

iY i
i

−−
σ

σ

β ω+ δ
ω+ δ = −

β Ω ω+ δp
p



,  

 0 ( )1( )
( )

i J i
Y i

i
−+
σ

σ

ω+ δ + ξ + σ − γ ω+ δ
ω+ δ =

β Ω ω+ δ
p

p
p



, (23) 

where 

( )0( ) ( )i i J iσΩ ω+ δ = ω+ δ + ξ − σ − γ ω+ δp p   

 ( ) 2
0 ( ) ( )i J i i× ω+ δ − ξ − σ −α ω+ δ − β ω+ δp



 ,  (24) 

1 1ξ = ε −µp p , 2
2( )S S BΓ = ρ µ  is the barrier transparency for 

condensate electrons of SC. The expressions for functions 
( )α ω , ( )β ω , and ( )γ ω  are given in Appendix [see Eqs. (A.8)]. 

The spectrum of excitations is found from pole singularities 
of the Green’s functions, i.e., at the condition ( ) 0iσΩ ω+ δ =p  
that gives an equation for resonance frequencies ω with 
account for the analytic continuation :iω→ω+ δ  

 ___________________________________________________  
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  (25)  
 ______________________________________________  

Here 22( )b ω = ω − ∆ . The transcendental Eq. (25) has 

complex roots 1σω p and 2σω p , which are determined nu-
merically by the iteration procedure.  

Figure 5 shows the results for 1σω p and 2σω p  as func-
tions of energy ξp  for both paramagnetic and ferromagnetic 
N metals. It can be seen that for a paramagnet in a certain 
range of values ξp  and at frequencies ω < ∆ , a gap is 

induced in the N metal as a realization of the proximity 
effect with a nonzero abnormal order parameter c c− −σ σp p , 
which is suppressed by the ferromagnetic exchange. Note 
that the correlator c c− −σ σp p  does not depend on the elec-
tron-phonon coupling constant in the N metal and is pro-
portional to the gap Δ, since the N metal is not a supercon-
ductor. On the whole, for nonzero ΓS the spectrum is 
incoherent while electron excitations with frequencies 
ω < ∆  are coherent [see Eqs. (A.9)–(A.12) in Appendix].  

Figure 6 shows the spectrum of coherent electronic ex-
citations ω1,res and ω2,res [see Eq. (A.10) in Appendix] in a 
paramagnetic N metal at ΔS = 6.6 K, ΓS = 0.5 and 5 K in 
the frequency ran ,resiω  < ΔS, as well as the corresponding 
homogeneous spectral densities of coherent and incoherent 
excitations from Eq. (25) at iσω p  > ΔS. In Fig. 6(a), one 
can see that at ω  < ΔS in the N metal a forbidden band is 
also formed, the width of which depends both on the barrier 
transparency and on the gap of SC. Also, in this case, the 
induced gap does not depend on the electron-phonon cou-
pling constant in the N metal. The main energy interval of 
electrons scattered by the barrier is assumed to be near the 
Fermi level with a width of the order of twice the Debye 
frequency. The homogeneous spectral density in Fig. 6(b) 
reflects the coherence of the indicated excitations with an 
increase in the quasiparticle peak as one approaches 
boundaries of the forbidden band of the SC and the N metal. 
It is interesting to note that in the forbidden frequency in-
terval for the N metal, i.e., at 0 ( )Sω < ω Γ , in contrast to a 
SC, there are purely complex poles of the Green’s function 

( )Y i−+
σ ω+ δp , that point out on a strong electrons scattering. 

Fig. 5. Real (a) and imaginary (b) parts of excitation electron 
frequencies 1σω p  (dark circles and triangles) and 2σω p (open circles 
and triangles) as functions of the electron energy ξp  with the barrier 
transparency ΓS = 5 K, the gap ΔS = 6.6 K and the ferromagnetic 
exchange J0 = 0 and 100 K (circles and triangles, respectively). 
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It can be shown that the corresponding spectral density is 
identically equal zero, as in the SC. 

The problem considered above corresponds to the sim-
plest case, when there is no electron-phonon interaction in 
the N metal. Here, it is necessary to take into account an 

effective field in the N metal formed by the order parameter 
c c− −σ σp p  with a corresponding energy gap function 

  el phV c c−
σ − −σ σ−∆ =∑k p pk p

q

  , (26)  

despite σ∆k
  being induced by the effective field of the SC. 

However, it can be assumed that the induced effective field 
in the N metal weakly affects the self-consistent SC order 
parameter, especially for highly transparent barriers. Indeed, 
the induced homogeneous gap function N σ∆ = ∆k

  reads as 
 ___________________________________________________  
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  (27) 
 ______________________________________________  

where 1σω p and 2σω p  are the roots of Eq. (25). Figure 7 
shows the dependences of a gap ΔN on the SC transparency 
ΓS at temperature T = 0 K for various values of ΓN in Al–Sn 
hybrid structure. It can be seen that with increasing ΓS the 
induced ΔN increases and then decreases to a value, which 
then weakly depends on the electron tunneling. Also, with 
increasing ΓN, there is a decrease in ΔN. Note that the value 
of the spontaneous gap ΔS in the absence of tunneling is 
equal to 6.6 K, i.e., significantly exceeds the ΔN value. 

In Fig. 8, the temperature dependences of the induced 
gap function in Al with ΓN = 2.65 K (a) and cr

N NΓ = Γ
 = 3.495 K (b) are shown. It can be seen from Fig. 8(a) that 
with increasing ΓS the gap ΔN increases and then decreases 
in accordance with Fig. 7. In this case, only for large trans-
parencies ΓS, nonmonotonic temperature dependence of ΔN is 
observed, and for small ΓS, the induced gap function de-

creases monotonically with increasing T. Figure 8(b) shows 
the temperature dependences of the reentrant induced super-
conductivity at the critical value ΓN, reflecting a rather com-
plex process of proximity effect realization in the hybrid 
structure.  

In conclusion, let us investigate the effect of the FM ex-
change on the gap in the N metal. As mentioned earlier, the 
exchange interaction shifts the energy bands up and down, 
depending on the sign of the spin parameter σ, and decreases 
the gap (see Fig. 5). Figure 9 shows the gap function ΔN as 
a function of the ΓS transparency of SC at the temperature 
T = 0 for various values of the exchange interaction parame-
ter J0 and spin indices σ: 0 (curve 1) and 6 K (curves 2 and 3 
at σ = 1, –1, respectively). It can be seen that at J0 < ΔS in 
the area of the gap maximum for the FM, the exchange 
suppresses ΔN, although for high transparencies the decrease 

Fig. 6. (a) Spectrum of coherent electron excitations ω1,res and 
ω2,res in a paramagnetic N metal at 

∆
 = ∆S = 6.6 K and ΓS = 0.5 

(curves 1 and 2, respectively) and 5 K (curves 3 and 4, respec-
tively) at frequencies iσω p  > ∆S; (b) corresponding homogene-
ous spectral densities of incoherent excitations for iσω p  > ∆S at 
ΓS = 0.5 and 5 K (solid curves 1 and 2, respectively) and those of 
coherent excitations from (a) at ΓS = 0.5 and 5 K (dark and light 
points, respectively). The straight line 3 corresponds to the spectral 
density value 2π in units 1( )Nρ µ  for an N metal with a coherent 
spectrum. 

Fig. 7. Gap function ΔN as a function of the SC transparency ΓS at 
the temperature T = 0 K for different values of the barrier transpa-
rency ΓN of the N metal: 0.2, 1.0, 2.5, and 3.4 K (curves 1–4, 
respectively). 
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in ΔN is not so significant. Also, the gaps for spins σ = 1 
and –1 differ significantly, that is caused by the asymmetric 
exchange shift of the electron energy bands with corre-
sponding spins. For J0 > ΔS, the difficulties arise in calcu-
lating ΔN at low transparencies ΓS due to oscillations of the 
integrand in Eq. (27). Therefore, at J0 = 10 K the curve 4 in 
Fig. 9 ends abruptly at ΓS = 4 K. 

Conclusions 

In this paper, we consider an application of the time 
perturbation theory to a model in which a self-consistent 
uniform effective field formed by the electron-phonon 

coupling of SC induces an order parameter in the N metal 
due to electron tunneling processes. The electron-electron 
scattering is not taken into account that is appropriate for 
tunnel barriers, the linear sizes of which do not exceed an 
electron mean free path.  

It was found that at the critical transparency ΓN values 
of the order of the SC critical temperature TC, the tunneling 
electrons of an N metal in the ground state destroy the 
spontaneous superconductivity. The presence of incoherent 
excitations leads to a complex relationship between the ef-
fects of ordering, thermal fluctuations, and tunneling, which 
in the vicinity cr

N NΓ Γ  can stabilize the superconducting 
state in certain temperature ranges. Thus, the phenomenon 
of the reentrant superconductivity is realized. The study of 
the direct proximity effect showed that a dimensionless 
order parameter is induced in the N metal in the form of an 
abnormal correlator, which determines a gap in the spectrum 
of electron excitations independently of the N metal effective 
field. This field automatically exists when the electron-
phonon interaction in this subsystem is taken into account.  

The performed numerical calculations for Al showed 
that the induced energy gap function is significantly smaller 
than a gap without the electron-phonon coupling. It was 
found that the induced gap first increases and then saturates 
at high transparency SΓ  values. This means that a further 
increase in the volume of the superconducting part of the 
hybrid structure has a small effect on the proximity effect. 
Also, in the range of the gap ΔN growth as a function of SΓ , 
the FM exchange decreases the ΔN value. The gaps for spin 
indices σ = 1 and –1 differ significantly, that is connected 
with an asymmetric exchange shift of the electron energy 
bands with corresponding spins. The studied spectral pro-
perties of the hybrid structure are in a good agreement with 
experimental data and reflect the presence of both coherent 
and incoherent elementary excitations in certain frequency 
ranges. New detailed experiments dealing with tunneling 
junctions, where one of the electrodes is a normal metal–
superconductor hybrid structure [24], are needed to test our 
theoretical predictions.  

The study was carried out within the Fundamental Re-
search Programme funded by the Ministry of Education 
and Science of Ukraine (Project No. 0120U102059). 

Appendix 
Equations for Green’s functions and order parameters 

of a superconductor 

In accordance with Hamiltonians (5), (6), the Fourier 
transforms of the unperturbed Matsubara causal Green’s 
functions for an N metal and a superconductor read as 

1 20,

1 20, 2

1( ) ( ) (0) ( ),
( )

1( ) ( ) (0) ( ),
( )

n

n

n ni n

n ni n
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ω = − τ = = − − ω
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p p

q q

 

 

  (A.1) 

Fig. 8. Temperature dependences of the induced gap function ΔN 
in aluminum with ΓN = 2.65 (a) and 3.495 (b) K for different 
barrier transparency ΓS of tin: (a) 0.5, 1.0, 2.5, 3.5, and 10 K 
(curves 1–5, respectively); (b) 0.1 (dark points), 0.5 (light points), 
1.5 (dark squares), 2.5 (dark triangles), 3.5 (solid line), and 10 
(light triangles) K. The dotted curve corresponds to the spontaneous 
reentrant superconductivity at the critical transparency ΓN = 3.495 K 
in Fig. 4. 

Fig. 9. Induced gap ΔN as a function of the barrier transparency 
ΓS in the ground state for exchange values J0 equal to 0 (curve 1) 
and 6 K (curves 2 and 3 at σ = 1, –1, respectively). Curve 4 corre-
sponds to J0 = 10 K and σ = 1. 
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where the symbol <…>0 denotes an averaging with Hamil-
tonians (5) or (6). The imagine frequency iωn = iπ(2n + 1)/β 
and 1/β = T is the temperature. 

In the zero approximation of a self-consistent field, the 
above Green’s functions are interconnected by means of 

graphical equations in the Fourier space (the details can be 
found in [20]). In the analytical form, these equations are 
written as follows: 

 ___________________________________________________  
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where ε1p = ε1–p, ε2q = ε2–q and Tpq are Fourier transforms of 
the hopping integrals t1ij and t2ij for the N metal, the SC and 
the tunnel matrix element, respectively. Note that the mo-
mentum p always refers to the N metal, and q to the SC. 

From the system of Eqs. (A.2), in the absence of tunneling, 
when Til = 0, the trivial solutions ( ) 0nY i−−

− −σ ω =pq  and 
( ) 0nY i+−

σ ω =pq , and the first two equations coincide with the 
Gor’kov equations. Taking tunneling into account, the system 
becomes integral and describes nonlinear proximity effects, 
since it includes infinite series of contributions to the Green’s 
functions from the tunneling matrix element. Despite the 
integral character of the system of Eqs. (A.2), it can be easily 
solved. To do this, from the third and fourth equations we 
find the unknowns ( )nY i−−

− −σ ωpq  and ( )nY i+−
σ ωpq  functions 

and substitute them into the first two equations of the 
above system, that gives the system of Eqs. (11).  

The functions 1 ( )ni−σϕ ω  and 2 ( )niσϕ ω , which deter-
mine an influence of an N metal on a superconductor, are 
represented in the form 
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To determine the spontaneous gap in accordance with 
Eq. (9), after the analytic continuation iω→ω+ δ , it is 
necessary to calculate the functions 1 ( )−σϕ ω  and 2 ( )σϕ ω . 
Obviously, these functions are connected by the relation 
 1 2( ) ( ).−σ −σϕ ω = −ϕ −ω   (A.4) 

The expression for the spectral density of states ( , )Rσ ωq  
from Eq. (10) reads as 

2 2
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  (A.5)  

where 2 2( ) ( ) SE ω = ξ ω + ∆q q
 , 0( ) ( , )Nξ ω = ξ + ϕ ω Γq q

 , 
( )θ ω  is the Heaviside step function, and 0 ( , )Nϕ ω Γ  is the 

function from Eqs. (12). Let us define the homogeneous 
spectral density as follows:  

2( ) ( , ) ( ) ( , )
D

D

S
U SR R d R

ω

σ σ
−ω

ω = ω = ρ µ ξ ω∑ ∫ q
q

q q , (A.6) 

where 2( )Sρ µ  is the bulk electron density of states of a SC 
metal at the Fermi level. 

In Fig. 10, the frequency dependences of a homogeneous 
spectral density of superconducting Sn at a temperature 
T = 0 K for different ΓN values and at the critical transpa-
rency cr

N NΓ = Γ  = 3.495 K in the temperature interval from 
1.6 to 3.1 K, where the reentrant superconductivity emerges, 
are shown. It can be seen from Fig. 10(a) that for small ΓN 

Fig. 10. Frequency dependences of the homogeneous spectral 
density ( )R ω  from (A.6) in units ρS(µ2) for the superconductor in 
a hybrid normal metal–Sn structure: (a) at the temperature 
T = 0 K  and ΓN = 0 (ΔS = 6.6 K, dashed line), 0.2, 1.0, 2.0, 3.0, 
and 3.44 K (ΔS = 6.57, 6.32, 5.44, 3.50, 1.54 K, solid lines 1–5, 
respectively); (b) at the critical transparency cr

N NΓ = Γ  = 3.495 K 
and T = 1.625, 1.7, 2.4, 3.1 K (ΔS = 1.7, 2.53, 3.51, 2.34 K, 
curves 1–4, respectively). 
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the ( )S
UR ω  function is close to the conventional ( )SRσ ω  

function for a homogeneous superconductor:  

 2
2 2

2 ( )
( ) SS

S

Rσ
πρ µ ω

ω =
ω −∆

. (A.7) 

With increasing ΓN, the spectral density ( )R ω  approaches a 
value 22 ( )Sπρ µ  that corresponds to an N metal and re-
flects the inverse proximity effect. In Fig. 10(b), ( )R ω  is 
shown at the critical transparency cr 3.495NΓ =  K, and in the 

temperature range of the reentrant superconductivity emer-
gence. It can be seen from the figure that in this case, due to a 
high barrier transparency, an influence of the N metal on the 
spontaneous order parameter is quite significant. Also, due 
to the jump at the singular point ω = 0, ( )R ω  is asymmetric 
near the origin. The presented dependences are in good 
agreement with the known experimental data [25].  

The expressions for ( )α ω , ( )β ω , and ( )γ ω  functions 
from Eqs. (23), (24) are 
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where 22( )b ω = ω − ∆ .  

Let us prove the coherence of electron excitations in an 
N metal with frequencies ω < ∆ . We need it for correct 
calculations of the corresponding spectral density. Indeed, 
it is easy to see that at ω < ∆  the tunnel functions (A.8) 
are real. Relatively unknowns ξp , the equation ( ) 0σΩ ω =p  
is quadratic for the integrand pole singularities of the homo-
geneous spectral density ( )N

UR ω : 
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p p
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  , (A.9)  

where ( , ) 2 Im ( )R Y i−+
σ σω = − β ω+ δpp  and Dω  is Debye 

frequency for the N metal. That is why one can write its 
solutions 1( )ξ ω  and 2 ( )ξ ω  in the form 
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, (A.10) 

where 2 2( ) Sb ω = ∆ −ω . Obviously, Eq. (A.10) gives 
poles on the real frequency axis if the radical expression is 
non-negative. Consider the simplest case J0 = 0. Then at 
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we have the coherent spectrum, if Sω < ∆  and 
1

0( ) ( )S Sg −ω > Γ = ω Γ , where g–1(x) is the inverse function 
from Eq. (A.11). The numerical analysis with analytic con-
tinuation iω→ω+ δ  shows that ( )( )1sign Im ( ) sign( )iξ ω+ δ = ω  
and ( )( )2sign Im ( ) sign( )iξ ω+ δ = − ω . In accordance with 
the Landau bypass rule, it is easy to find the spectral density 

of coherent electron excitations in the N metal for frequen-
cies Sω < ∆ : 
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that is shown in Fig. 6(b). 
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 ___________________________  

Поворотна надпровідність в гібридній 
гетероструктурі з високою бар’єрною прозорістю 

E. E. Zubov 

В рамках самоузгодженого наближення ефективного поля 
часової теорії збурень розглядається вплив тунелювання 
електронів на спонтанні та індуковані параметри порядку в 
гібридній структурі нормальний метал–надпровідник. Для 
моделі без електрон-електронного розсіювання, а також елект-
рон-фононного зв’язку в нормальному металі отримано критич-
ну бар’єрну прозорість, коли надпровідність зникає в основ-
ному стані. Наявність некогерентних збуджень призводить до 
складного взаємозв’язку ефектів упорядкування, теплових 
флуктуацій та тунелювання. Поблизу критичної бар’єрної 
прозорості це може стабілізувати надпровідний стан у певних 
температурних інтервалах. В результаті спостерігається явище 
поворотної надпровідності. Вивчені спектральні властивості 
цієї гібридної структури відображають існування як когерент-
них, так і некогерентних елементарних збуджень. 

Ключові слова: надпровідність, критична температура, гіб-
ридна структура, тунельний бар’єр, ефект 
близькості, когерентність. 
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