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Quasiclassical calculations of the effective mass and the spectrum of Landau levels have been carried 
out for carriers of the size-quantized H2 subband with a nonmonotonic dispersion law, which forms a valence 
band of 20.5-nm-wide HgTe quantum well with an inverted band structure. The model of the so-called 
“extremum loop”, previously developed by Rashba and Sheka for semiconductors with a wurtzite lattice, has 
been used for calculations. The results obtained are compared both with the empirical picture and with quantum-
mechanical calculations of the Landau level spectrum for the HgTe quantum well in the semimetallic phase. 
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1. Introduction 

In recent years, high-mobility HgTe-based heterostruc-
tures have become available for experimental investiga-
tions due to advances in the molecular beam epitaxy (MBE) 
technology (see, for example, [1, 2] and references therein). 
At present, the study of magnetotransport, including the 
quantum Hall effect (QHE) regime, in HgTe / HgCdTe sys-
tems is an extensive and rapidly developing area of research. 

A notable property of HgCdTe / HgTe / HgCdTe hetero-
structures is that, by varying the width of the HgTe quantum 
well (QW), transitions between the phases of a convention-
al (band) insulator, topological insulator, and semimetal can 
be achieved [1–8] (see, for example, Fig. 1 in Ref. 5). 
A clear physical model of the formation of size quantized 
subbands in a CdTe / HgTe / CdTe quantum well, based on 
information about the bulk structure of HgTe and CdTe, is 
presented in Ref. 1. 

As the thickness of the HgTe layer increases, the mate-
rial becomes more and more similar to bulk HgTe, and for 
wide QWs ( 6.3 QW Cd d> ≈  nm) the spatially quantized 
energy spectrum of the HgTe layer is markedly specific 
due to its inversion character. 

For 8.3 nmQWd   both the conduction and valence 
subbands built of the 8Γ -symmetry wave functions contrary 

to the traditional semiconductor structures with a conduc-
tion subband of the 6Γ  character. 

In HgTe QW case, the first size-quantized heavy-hole 
subband H1 has an electronic character [9] and is a con-
duction band. The second size-quantized subband of heavy 
holes H2 with a nonmonotonic dispersion law becomes the 
upper valence band. 

Owing to a uniaxial strain of HgTe layer, which is 
caused by the lattice mismatch of HgTe and CdHgTe [10], 
the energy spectrum of the H2 subband is essentially non-
monotonic and has maxima away from the Γ  point of the 
2D Brillouin zone. 

Moreover, the conduction subband may overlap here 
with the lateral maxima of the valence subband leading to 
the formation of a semimetal (SM) with coexisting elec-
trons and holes. The overlap (and thus SM state) occurs 
in a relatively wide HgTe quantum wells (18–21 nm) with 
an inverted energy spectrum and various surface orienta-
tions (013), (112), and (100) [6–8]. 

Diverse new physics arises in such a semimetal. The 
picture of magnetic (Landau) levels in this semimetal is 
very intricate as it consists of two overlapped fan-charts 
oppositely directed in energy [11–13]. 

In this paper, we present the results of semiclassical cal-
culations of the cyclotron effective mass and the spectrum of 
the Landau levels (LL) of the QW HgTe valence band with 
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an inverted band structure both in the isotropic approxima-
tion (the “extremum loop” model) and with the accounting 
for the effects of cubic symmetry. The semiclassical ap-
proach is important for the theoretical estimation of the ef-
fective mass of holes in a complex valence band with a non-
monotonic dispersion law. 

Numerical calculations of the effective mass of holes in 
the lateral maxima of the valence band (subband H2) for 
strong spectrum anisotropy (accounting for corrugation; 
asymmetry of the boundaries of a quantum well and differ-
ences in their smearing) in the quasiclassical approxima-
tion were performed in [14]. 

2. Band structure of the HgTe quantum well at B = 0 

Band structure of 0.7 0.3HgTe / Cd Hg Te QW, grown on 
(001) HgTe buffer for 20 nm QW width (SM phase), cal-
culated within the 8-band k p×  Hamiltonian for the 6Γ , 8Γ  
and 7Γ  bands is schematically presented on Fig. 1 (see 
also, for example, [15]). 

The H1 and H2 subbands energy dispersion ( )E k


 
for a fully strained 20 nm-wide HgTe QW in 

0.35 0.65 0.35 0.65Hg Cd Te / HgTe / Hg Cd Te nanostructure is shown 
in Fig. 2 for the (001) orientation. We suppose that differ-
ences between the calculated (001) and experimental (013) 
orientations, although introduce some quantitative correc-
tions, would not considerably influence the results of the pre-
sent study. Calculations are performed in an envelope func-
tion approach within the framework of 8-band k p×  theory 
self-consistently with the Poisson equation for the charge 
distribution [11]. 

In the inverted regime of HgTe QW the first size-
quantized heavy hole subband H1 becomes the lowest 
conduction band as the theory [9] predicts for it an elec-
tron-like effective mass. The highest valence band is now 

the second size-quantized heavy-hole subband H2 with non-
monotonic dispersion law (see Fig. 1). A substantial over-
lap of about 6.45 meV of the valence H2 and conduction 
H1 subbands is obtained when the strain is considered in 
calculations. 

3. The Landau level fan diagram 

The scheme for computing ( )E k


 was developed further 
for calculations of magnetic levels [11]. The magnetic levels 
picture for the spectrum presented in Fig. 2 is demonstrat-
ed in Fig. 3. The LL notation corresponds to the notations 
of [11]. Here an example of the Fermi level dynamics for 

15 21.5 10 mn −= ⋅  is shown for the simplest case of δ-shap-
ed density of states in the levels. 

It is seen from Fig. 3 that LL are essentially nonequi-
distant and nonlinearly depend on the magnetic field that 
is caused by the mixed nature of the H1 and H2 subbands 
in the inverted-band regime due to a coupling between 
heavy-hole to light-particle states both at finite in-plane 
wave vectors k



 (at 0B = ) [16, 17] and under the action of 
a magnetic field [11]. 

For the H1 subband, only the lowest Landau level 
( 2N = − ↓) contains pure heavy-hole states, which do not 
mix with the light-particle states [11] (see also [18–20] and 
references therein). It is shown in [19, 20] that this level is 
of the same nature in two and in three dimensions and it is 
mapped on the b set level of Guldner et al. [21]: 

 ( ) ( )0 0b b
eBE
m

= ε
 , (1) 

where ( )1(0) 1 3
2bε = γ + γ − κ .   

Fig. 1. The scheme of the size-quantized level layout for HgTe 
QW of 20 nm width. The electron-like subbands are shown in 
blue (E2), the red curves correspond to the heavy-hole-like 
subbands (H1, H2, H3). 

Fig. 2. The calculated band structure of a strained HgTe quantum 
well with 20 nmQWd =  for orientation (001): bold solid lines for 
( , )  (1,0)x yk k = , dotted lines for ( , ) (1,1) x yk k = , thin solid curves 
for the averaged subband structure (isotropic model). 
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For the set of 8Γ  Luttinger parameters for HgTe 
1( 12.8γ = , γ  = 8.4 and 10.5κ =  [21]) we have 

 ( )13κ > γ + γ , (2) 

and, according to (1), the level 2N = − ↓ lowers its energy 
linearly with increasing magnetic field. All the other LL of 
the H1 subband rise in energy with the magnetic field due to 
mixing of states of heavy holes with states of light carriers 
induced by the magnetic field (see [11]). 

A nonmonotonous behavior of the main set of the H2 
subband levels may be understood from a quasiclassical 
view for the nonmonotonic dispersion law of the valence 
subband with the lateral maxima, but the anomalous be-
havior of one the lowest magnetic level [designated as 
0 (H2)↓  on Fig. 3] does not have a quasiclassical interpre-
tation. 

It is a so-called zero-mode level [22, 23]; it starts from 
the valence subband at 0B =  but monotonously moves up 
with field, as it should be for an electron level, while all 
the other valence subband levels, also starting from the 
valence subband at 0B =  and moving initially like electron 
levels, turn down later at a certain field as they reach the 
energy of the lateral maximum thus behaving further like 
the hole levels (see Fig. 3). 

The unusual behavior of 2N = − ↓ level from the con-
duction subband H1 in inverted band HgTe QWs together 
with the peculiar dispersion of the 0N = ↓  level from the 
topmost valence subband H2 leads to a crossing of conduc-

tion- and valence-subband states at some value cB  of the 
magnetic field (see Fig. 3). Such behavior is specific for 
HgTe QWs and has been examined theoretically and ex-
perimentally (see, for example, [23]). 

In fact, the movement of FE  is more complicated with-
in the levels of finite width. Especially, within the field 
ranges where the electron and hole levels overlap, accord-
ing to the modeled picture of levels in Fig. 4. 

4. Precursive scheme for the superposition of electron 
and hole Landau levels 

The specific features observed by Yakunin et al. [13] in 
magnetotransport in the double quantum well (DQW) 
structure built of the quasi-2D HgTe layers with the invert-
ed energy spectrum give evidence to the overlap of the 
conduction and valence subbands and can be described on the 
basis of a calculated picture of magnetic levels in a DQW. 

The coexisting electrons and holes were found in the 
whole investigated range of positive and negative Vg as 
revealed from fits to the low-field N-shaped ( )xy Bρ , from 
the Fourier analysis of oscillations in ( )xx Bρ  and from a 
specific behavior of the quantum Hall effect. The described 
behavior can be qualitatively explained within the frame-
work of a simplified scheme of superposition of purely 
electronic and purely hole fans of LL (Fig. 4). 

Fig. 3. Landau levels of H1 and H2 subbands for an n-type 

0.3 0.7HgTe / Hg Cd Te (001) QW as a function of the magnetic 
field for 20 nmWd = , 15 21.5 10  mn −= ⋅ . The Landau levels are la-
beled in accordance with the notations of [11]: the quantum num-
bers 2, 1, 0,N = − − …, and the arrows ( , )↑ ↓  indicate the do-
minant spin orientation of the state. The thick line represents FE . 

Fig. 4. (Color online) Calculation of the evolution of the Fermi 
level in the model of the intersection of fans of an abstract hole 
and electron magnetic levels with a reduced hole density ( )p n−  
(solid lines) compared to the corresponding cases without elec-
tronic levels: n = 0 (dashed lines). The densities shown in figure 
are given in 15 210  m− . The Lorentzian shape of the density 
of states at the LL with a width Г 0.5 meV=  is assumed. Inset: 
The corresponding Fermi contours in the ( ;  )x yk k  plain for the 
valence and conduction subbands (for the averaged energy in the 
valence subband so that the warping is ignored). 



S. V. Gudina, A. S. Bogolubskiy, V. N. Neverov, et al. 

14 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 1 

For the calculation of the Fermi level we simulated the 
finite width of the Landau levels Γ  by introducing the 
Lorentzian shape of the density of states. The representa-
tion of the finite width of the levels allows one to display 
the features of the QHE (in particular, to obtain a plateau 
of finite dimensions), and these calculations make it possi-
ble to represent the behavior of FE  in the region of super-
position of electron and hole levels. 

To clarify this behavior, the calculated FE  curve for the 
complete set of levels (solid lines in Fig. 4) was compared 
with the FE  calculated for the case without electronic levels: 

0n = , dashed lines. It can be seen that the population of 
electronic levels significantly changes the location of the QHE 
features near the intersection point of the electron and hole 
levels. 

The empirical scheme for the overlap of the electron 
and hole fan diagrams of the Landau levels was also used 
to describe the experimental results on the quantum Hall 
effect near the charge neutrality point in a two-dimensional 
electron-hole system of a 20.5 nm HgTe quantum well by 
Gusev et al. [12]. 

5. Quasiclassical calculation of the Landau level 
spectrum (“extremum loop” model) 

We use a semiclassical approach to calculate the effec-
tive mass and the LL spectrum of the valence band, based 
on the known dispersion law, ( ,  )x yE k k , of the H2 sub-
band (see Fig. 2). Physically, we will assume that the ap-
pearance of holes in the valence band, completely filled by 
the electrons, begins from the tops of the H2 subband, which 
are at its lateral maxima. We get a set of isoenergetic trajec-
tories, sequentially cutting off the dependence ( ,  )x yE k k  by 
the planes constε = , starting from 0ε =  at the tops of the 
lateral maxima. 

For the calculation in the isotropic approximation, the 
so-called “extremum loop” model was used when the ex-
tremum (in our case maximum) of the electron energy is 
achieved not at separate isolated points, but on a whole 
closed curve in momentum space [24, 25]. 

5.1. Isotropic approximation 

Figure 5(a) shows the band structure of a strained HgTe 
quantum well with 20 nmQWd =  in the isotropic approxi-
mation when the corrugation of zone 8Γ  is not taken into 
account [11, 13]. Figure 5(b) shows the isoenergetic con-
tours of the bottom of the conduction band (small circle cen-
tered at a point Γ) and of the top of the valence band [circles 
with radii ( 0 Δk k± ) in coordinates ( ,  x yk k )] corresponding 
to energy ε [dashed line in Fig. 5(a)].  

In the isotropic approximation, the isoenergetic contours 
near the top of the valence band have the form of rings [see 
Fig. 5(b)], and we use the model proposed in [24] for semi-
conductors with a wurtzite lattice to calculate the effective 
mass and the LL spectrum of holes. Rashba and Sheka [24] 
showed that if we neglect the anisotropy of relativistic 

Fig. 5. (a) Band structure of a strained HgTe quantum well with 
  20 nmQWd =  in the isotropic approximation. (b) Isoenergetic 

contours of the bottom of the conduction band and the top of the 
valence band in coordinates (  ),x yk k , corresponding to the energy ε 
[dashed line in Fig. 5(a)]. (c) The spectrum of the Landau levels 
of the valence band, calculated in the “extremum loop” model. 
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interactions, then the minimum of the electron energy in 
these semiconductors is achieved not at separate isolated 
points of momentum space, but on a whole curve — a circle, 
which was called a “loop of extrema”. 

In this model for the 2D case, the dispersion law of 
holes with energies close to extremum (at 0 0p p k⊥ = ≡  ), 
when calculating the energy to the valence-band depth, 
may be taken in the form 

 ( )2
0

1

a
p p

m ⊥ε = −   (3) 

with 2 2 1/2( )x yp p p⊥ = +  and am  being the curvature of the 
side parabola vertex in the Fig. 2. 

In the semiclassical approximation [26] for the effective 
cyclotron mass we have 

 0
21 ( ) 2( )

2
a a

c a
mdSm p m

d
εε

ε = = =
π ε ε ε

 (4) 

with  
2
0 

2a
a

p
m

ε =  ,  

where 0( ) 4 2 aS p mε = π ε  is the area of the ring cut off 
from the lateral maximum in the valence band by the plane 
of constant energy, depicted in Fig. 5(b). 

It is seen that cyclotron effective mass diverges when 
approaching the top of the valence band as 1/ ε . The ana-
lysis of the features of the semiclassical effective mass of 
carriers in crystals of the wurtzite type is done in the work 
of Yermolaev [25]. 

For the distance between energy levels quantized by 
magnetic field B (cyclotron energy) we have 

 с (
 

) a
c a

eB
m

ε
ω = = ω

ε ε


   with a
a

eB
m

ω = .  (5) 

The energy of the Nth Landau level (at 1N  ) is deter-
mined by the expression с  Nε = ω  and taking into account 
the dependence ( )cm ε , for the LL spectrum of holes in the 
QW HgTe valence band in the “extremum loop” model we 
finally find 

 
( )2

( , )
4

a

a

N
N B

ω
ε =

ε



, i. e., 2 2( , ) ~N B N Bε .  (6) 

The spectrum of the LL of the valence band, calculated 
in the “extremum loop” model, is schematically shown in 
Fig. 5(c). It is important that this LL fan starts with energy 

0ε = , corresponding to the energy of the tops (side maxima) 
of the valence band (H2 subband) and overlaps with the 
LL fan of the conduction band (H1 subband), as it should be 
in the SM phase. 

5.2. Effects of cubic symmetry in hole spectrum 

Taking into account anisotropy, in accordance with Fig. 2, 
leads to a more complex form of isoenergetic contours near 
the top of the H2 subband (see, for example, [27]). The pat-
tern of the constant energy lines of the valence band, taking 

into account the corrugation, is shown in Fig. 6(a): at low 
energies, the ground states of holes become four maxima 
displaced from the center of the Brillouin zone in direc-
tions ( 1; 1)± ± , and there are four saddle points.in directions 
(0; 1)±  and ( 1;0)± . 

Indeed, multiple intersections of the Fermi level with 
nonmonotonic energy spectrum (Fig. 2) lead to a compli-
cated Fermi surface for 2D electrons (Fermi arc) composed 
of more than one closed branches providing both electron-
like and hole-like orbits in the presence of the perpendicu-
lar magnetic field [28]. 

Fig. 6. (a) The pattern of constant energy contours near the top of 
the H2 subband with allowance for the corrugation of the hole spec-
trum. Only one quadrant of the Brillouin zone is shown. The num-
bers on the curves correspond to the values of the energy ε  
(meV) measured from the top of the lateral maximum of the va-
lence band. (b) Dependence of the effective mass on energy with 
the corrugation effects in the hole spectrum. It is taken into ac-
count that the states above the saddle point (open points) are four-
fold degenerate. 
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At energies below the saddle points, the isoenergetic con-
tours take the form of deformed (“crimped”) rings, and we 
again have an “extremum loop” when the maxima of the hole 
energy are reached on a smooth closed curve in momentum 
space (see Fig. 3(b) in [29]). 

Figure 6(b) shows the dependence of the cyclotron ef-
fective mass on the energy, ),(cm ε  taking into account the 
effects of cubic symmetry. On the whole, the corrugation 
effect leads to an anomalous dependence of ( )cm ε  with a 
logarithmic divergence at the saddle points and, as a conse-
quence, to a complex form of the LL pattern. At energies 
above the saddle point [open dots in Fig. 6(b)], these values 

cm  of the effective cyclotron mass correspond to a fourfold 
degenerate (without taking into account spin) state. Below 
the saddle point, the values cm  of the cyclotron effective 
mass behave similarly to the states in the case of the extre-
mum loop model. 

Generally, the quasiclassical approach provides a quan-
titative ground for the empirical Landau level scheme of 
HgTe QW in the SM phase (see Fig. 4). On the other hand, 
in quantum-mechanical calculations, the “electronic” part 
of the LL of the H2 subband (at 2B T<  in Fig. 3) is formal-
ly obtained due to the additional (with respect to mix at 
finite k



 for 0B = ) mixing of the states of heavy holes with 
states of light carriers, induced by a magnetic field. 

If we proceed from the dispersion law in Fig. 2, this 
part of the Landau level system is in the forbidden band of 
the semiconductor. So additional consideration of the form 
of the magnetic level spectrum for H2 subband, from the 
point of view of the completely filled valence band, seems 
necessary. 

6. Conclusions 

This work is devoted to the analysis of the spectrum of 
the valence band in HgTe QW with an inverted band struc-
ture, which is formed by the states of the size-quantized H2 
subband of heavy holes with a nonmonotonic dispersion law. 
A brief overview of the concepts of the dispersion law at 
B = 0, as well as of the available phenomenological models 
and quantum-mechanical calculations of the Landau level 
spectrum for the HgTe QW in the semimetallic phase is 
given. 

The effective mass and the Landau level spectrum for 
H2 subband are calculated in the quasiclassical “extremum 
loop» model. Under this model, in the semimetallic phase, 
the fan of Landau levels in the valence band starts at 0B =  
with an energy corresponding to the energy of the side 
maxima of this band and overlaps with the fan of Landau 
levels in the conduction band. 

The correspondence of quantum-mechanical calculations 
of the Landau levels spectrum [11, 13] with the semiclassical 
picture, considered in this article, was analyzed in the report 
of Yakunin et al. [30]. Note that the semiclassical approach 
is important for the theoretical estimation of the effective 

mass of holes in a complex valence band with a nonmono-
tonic dispersion law. 

The research was carried out within the state assign-
ment of Ministry of Science and Higher Education of the 
Russian Federation (theme “Electron” No. АААА-А18-
118020190098-5), supported in part by RFBR, project 
number 18-02-00172. 
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Квазикласичний розрахунок спектра рівнів Ландау 
в квантовій ямі шириною 20,5 нм у HgTe: 

модель «петлі екстремумів» 
та ефекти кубічної симетрії 

S. V. Gudina, A. S. Bogolubskiy, V. N. Neverov, 
K. V. Turutkin, N. G. Shelushinina, M. V. Yakunin 

У квантовій ямі HgTe шириною 20,5 нм з інвертованим зон-
ним спектром  виконано  квазикласичні розрахунки  ефектив-
ної маси та спектра рівнів Ландау для носіїв розмірно-кван-
тованої  підзони  H2  з  немонотонним  законом  дисперсії, що 
утворює валентну смугу в цій структурі. Для розрахунків ви-
користовувалася модель  так  званої «петлі  екстремумів», ра-
ніше  розроблена  Рашбою та Шекою для  напівпровідників  з 
граткою  вюрцита. Отримані  результати  порівнюються  з  ем-
піричною картиною та з квантово-механічними розрахунками 
спектра рівнів Ландау  для квантової  ями HgTe  в напівмета-
левій фазі. 

Ключові  слова: петля екстремумів,  обернена  смугова  струк-
тура, квантові ями, напівметалева фаза, рівні 
Ландау. 
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