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Electric, piezoelectric, and elastic characteristics of the orthorhombic quantum paramagnet are calculated. Using 
the exact analytical solution it was shown that the electric permittivity, piezoelectric, and elastic modules can mani-
fest strong dependences on the values of the external magnetic, electric field, external strain, and temperature. 
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Last years magneto-electric, piezoelectric, and magne-
to-elastic effects attract the attention of researchers. Those 
effects are the manifestation of the coupling between the 
electric, magnetic, and elastic subsystems of the studied 
compounds. The interest to the studies of such effects is 
stimulated by the possibilities to utilize them in dissipa-
tion-free systems for writing and reading an information. 
The most attractive subjects for such a purpose are so-called 
multiferroics, which have both magnetic and ferroelectric 
properties (see, e.g., [1–4]). The magneto-electric response 
appears there due to the action of the own exchange magnet-
ic field, and used in experiments the external magnetic field 
is applied mostly for the monodomenization of investigated 
samples. This is why, most of studies were performed on 
magnetically ordered systems, ferro- and antiferromagnets 
(like ferroborates, see, e.g., [5–7]), for the recent studies see 
[8–10]. However, it is clear from general grounds that simi-
lar effects can exist in magnetic systems without spin order-
ing, i.e., in quantum paramagnets. 

The goal of the present study is to find the effects of the 
renormalization of electric, piezoelectric, and elastic char-
acteristics of a paramagnet due to the coupling between the 
electric, magnetic, and elastic subsystems of the crystal. 
Namely, we investigate the orthorhombic paramagnetic 
crystal with magnetic ions surrounded by ligands. The lat-
ter determine the crystalline electric field, which acts on 
magnetic ions, and, together with the spin-orbit interaction, 
defines the magnetic anisotropy in the effective spin mod-
el. Then the interaction between the spin, charge and elas-
tic subsystems of the crystal can yield magneto-electric, 
piezoelectric, and magneto-elastic effects in such a quan-
tum paramagnet. Below we calculate how such an interac-
tion can be observed in the temperature and magnetic field 

dependences of the characteristics of such a crystal, like 
the electric permittivity, piezoelectric, and elastic modules. 

The Hamiltonian of the considered model can be 
written as  
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where effg  is the effective g-factor for the magnetic field 
H  (supposed to be directed along the z  axis), Bµ  is the 
Bohr magneton, 2 2

0 = ( 1) / 3zO S S S− +  and 2 2 2
2 = x yO S S−  

are the Stevens operators, see, e.g., [11] (operators of the 
components of the quadrupolar tensor), 1,2B  are the parame-
ters of the magnetic anisotropy, xE E≡  is the electric field 
directed along the x  axis, ε is the electric permittivity, e is the 
piezoelectric modulus, C  is the elastic modulus, u  is the strain 
( 0u  is the static strain), and a and b  are the coefficients of the 
magneto-electric and magneto-elastic couplings, respectively 
(all issues are connected with the coordinate x). Using the 
standard formulas of the elasticity theory  

= = ,F Cu eE bQ
u

∂
σ + +

∂
(2) 

where F  is the free energy of the system, σ  is the elastic 
deformation, 2

2=Q O〈 〉 (the brackets denote the averaging 
with the density matrix) is the average value of the compo-
nent of the quadrupole operator, and the definition  

= ,de
dE
σ (3) 

for the effective piezoelectric modulus [12], we get 
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Then using the equation for the electric induction D   

 = 4 FD
E
∂

− π
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 (5) 

and the definition of the electric permittivity  

 = D
E
∂

ε
∂

 (6) 

one can find the effective permittivity  

 eff = 4 .Qa
E
∂

ε ε − π
∂

 (7) 

Finally, according to the elasticity theory [13] we have  
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where ρ  is the density of the crystal. Calculating the right 
hand side of that equation we get  

 = .u E Q u Q EC e b
x x x u x E x

∂σ ∂ ∂ ∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (9) 

Then, using the equation of the electric neutrality (we use here 
only the necessary component of the electric induction)  

( ) = 4 4 = 0E u Q u Q ED e a
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we obtain  

 eff eff

eff eff
= 4 4 .
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The right hand side of the latter can be presented via 
the effective elastic modulus effC . Let us denote 

eff
2 2 0= ( )B B aE b u u− − − . We obtain eff

2= /Q F B−∂ ∂ , and 
eff
2/ = ( / )Q E a Q B∂ ∂ − ∂ ∂  and eff/ = ( / )Q u b Q B∂ ∂ − ∂ ∂ . It 

can be taken into account that eff
2/ = QQ B∂ ∂ χ  is the in-

plane component of the tensor of the quadrupolar suscepti-
bility. Then it is clear that all above mentioned characteris-
tics of the system can be presented as a function of that 
component of the quadrupolar susceptibility. Below, we 
present analytical results for that component of the 
quadrupolar susceptibility as a function of the temperature, 
applied electro-magnetic field, and the parameters of the 
magnetic anisotropy for the orthorhombic quantum para-
magnet for the cases = 1S  and = 3 / 2S . 

The free energy of the spin = 1S  orthorhombic quan-
tum paramagnet in the magnetic field directed along z  axis 
can be written, see, e.g., [14], as (here we suppose that the 
electric field E  and the strain u  are classical)  

 1 12
= ln 1 2exp cosh ,
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− +    

     
 (12) 

where Bk  is the Boltzmann constant, T  is the temperature, 

and eff 2 2
2 eff= ( ) ( )BA B g H+ µ . Then we can obtain the 

expressions for the necessary components of the 
quadrupolar moment and quadrupolar susceptibility  
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where 1 1= 1 2exp( / ) cosh( / )B BZ B k T A k T+ . It is seen that 
for eff

2 = 0B  the quadrupole moment is zero, = 0Q , while 
the susceptibility 

1 eff eff= 2exp( / )sinh( / ) / (Q B B B BB k T g H k T g Hχ µ µ × 

1 eff[1 2exp( / ) cosh( / )]B B BB k T g H k T× + µ  

is finite, as it must be. In the ground state we have 
eff
2= /Q B A and 2 3

eff= ( ) /Q Bg H Aχ µ  (which implies 
zero ground-state quadrupolar susceptibility without the 
application of the external magnetic field). On the other 
hand, at high temperatures we obtain eff

2 / BQ B k T≈  and 
(2 / 3 )Q Bk Tχ ≈ . In the absence of the external magnetic 

field, = 0H , one can replace eff
2A B→ . 

For the partition function of the spin = 3 / 2S  ortho-
rhombic quantum paramagnet in the magnetic field di-
rected along z  axis we can write [14]  
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Fig. 1. (Color online) Quadrupolar in-plane susceptibility of the 
easy-axis 1 > 0B  paramagnet in the absence of external fields and 
the static strain as a function of the temperature and the parameter 
of the in-plane orthorhombic anisotropy 2B . Color surface: = 1S ; 
grey surface: = 3 / 2S . 

where 2 eff 2
1 eff 2= ( ) 3( )BA B g H B± ± µ + . The necessary 

components of the quadrupolar moment and the 
quadrupolar susceptibility are then  

 

eff
eff
2

exp sinh
26

=

B

B B

g H A
k T k TBQ

Z A

−

−

    µ
−    
    +




 

 

effexp sinh
2

,

B

B B

g H A
k T k T

A

+

+

   µ
   

    + 



 (16) 

and 
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Again at eff
2 = 0B  we have = 0Q  and finite quadrupole 

susceptibility. In the ground state we have 
eff 1 1
2= 6 [ ]Q B A A− −

− ++  and 2 2= 6[ ( )Q A A A A+ − + −χ + −  
eff 2 3 3 3 3
23( ) ( )] /B A A A A+ − + −− + . Notice that unlike the case 

= 1S  the ground-state quadrupole susceptibility is finite even 
at = 0H . At high temperatures, we obtain eff

23 / 2 BQ B k T≈  

and 3 / 2Q Bk Tχ ≈ . In the absence of the external magnetic 
field (which lifts the degeneracy between two doublets) we 
have 2 eff 2

1 2= = 3( )A A B B+ − + . 
Figures 1 and 2 show the temperature and 2B -depen-

dences of the quadrupolar susceptibility for the easy-axis 
1( = 3)B  and the easy-plane ( 1 = 3B − ) magnetic anisotropy 

for the absence of the extenal electric and magnetic fields 
= = 0H E  and the static strain 0 = 0u . From the above 

Fig. 2. (Color online) The same as in Fig. 1 but for the easy-plane 

1 < 0B  magnetic anisotropy. 
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formulas we know that the dependences have to be the 
same for negative and positive 2B  for 0= = 0E u . We see 
that the quadrupolar susceptibility, as a rule, decays at high 
enough temperatures, while for low temperatures it can 
manifest non-monotonic temperature dependence. 

Figures 3 and 4 show the temperature and magnetic 
field dependences of the quadrupolar in-plane susceptibil-
ity of the orthorhombic paramagnet for the fixed value of 
the in-plane anisotropy in the absence of the external elec-

tric field and static strain. As a rule, the external magnetic 
field can essentially change the behavior of the 
quadrupolar susceptibility, especially at low temperatures. 

Figures 5 and 6 show the temperature and electriс field 
dependences of the quadrupolar in-plane susceptibility of 
the easy-axis and the easy-plane 1B  magnetic anisotropy, 
respectively, for the fixed value of the in-plane anisotropy 
in the absence of the external magnetic field and the static 
strain for = 0.5a . At low temperatures the electric field 
dependence of the quadrupolar in-plane susceptibility of 
the paramagnet is non-monotonic, and the position of the 
maximum is dependent on the value of 2B . 

Fig. 3. (Color online) Quadrupolar in-plane susceptibility of the 
easy-axis paramagnet for 0= = 0E u  and 2 = 1B  as a function of 
the temperature and the external magnetic field. Color surface: 

= 1S ; grey surface: = 3 / 2S . 

Fig. 4. (Color online) The same as in Fig. 3 but for the easy-plane 

1B  magnetic anisotropy. 

Fig. 5. (Color online) Quadrupolar in-plane susceptibility of the 
easy-axis paramagnet for 0= = 0H u  and 2 = 1B  as a function of 
the temperature and the external electric field. Color surface: 

= 1S ; grey surface: = 3 / 2S . 

Fig. 6. (Color online) The same as in Fig. 5 but for the easy-plane 
magnetic anisotropy. 
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Then, using the above obtained results, we calculate the 
renormalized characteristics  

 eff = ,Qe e e ab∆ ≡ − − χ
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Taking into account that the component of the quadrupole 
susceptibility is positive, we see that the change of the 
electrical permittivity effε − ε  is positive. The change of 
the elastic modulus effC C−  exists even for = 0a , i.e., for 
the absent magneto-electric coupling (in that case, howev-
er, the piezoelectric coupling produces the constant term). 
The change obviously consists of two contributions (see 
the first line of the above formula). The first contribution 
(the magneto-elastic contribution) is negative; it manifests 
the softening of the elastic modulus due to the magneto-
elasticity. The second term is positive; it manifests the 
hardening of the elastic modulus, caused by the piezoelec-
tricity. Hence, the softening or the hardening of the elastic 
modulus (the sign of the change) of the considered system 
depends on whether the quadrupole susceptibility is larger 
or smaller than 24 / (8 )e b ae bπ π − ε , see the second line. 
Finally, the sign of the change of the piezoelectric modulus 

effe e−  depends on the sign of ( )ab− . 

In Fig. 7 we present the results for the static strain de-
pendence of the electric permittivity of the easy-plane par-
amagnet in the absence of the external electro-magnetic 
field for = 0.5a −  and = 0.5b . For high enough tempera-
tures the electric permittivity decays with T , while for 
small temperatures the dependence is non-monotonic. Also 
we see that the electric permittivity decays with the growth 
of the static strain 0u . 

In Fig. 8 The renormalization of the electric permittivity 
of the easy-axis case is shown as a function of the tempera-
ture and the magnetic field for 0= = 0E u . 

Fig. 7. (Color online) The renormalized electric permittivity of 
the easy-plane paramagnet 1 = 3B −  for 2 = 1B  in the absence of 
external electric and magnetic fields = = 0E H  as a function of 
the temperature and the static strain 0u . Color surface: = 1S ; grey 
surface: = 3 / 2S . 

Fig. 8. (Color online) The renormalized electric permittivity of 
the easy-axis paramagnet 1 = 3B  for 2 = 1B  in the absence of the 
external electric field = 0E  and zero static strain 0 = 0u  as a 
function of the temperature and the external magnetic field H . 
Color surface: = 1S ; grey surface: = 3 / 2S . 

Fig. 9. (Color online) The renormalized elastic modulus of the 
easy-axis paramagnet 1 = 3B  for 2 = 1B  in the absence of external 
magnetic field and static strain 0= = 0H u  as a function of the 
temperature and the external electric field E . Color surface: = 1S ; 
grey surface: = 3 / 2S .  
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In Figs. 9 and 10 the renormalization of the elastic 
modulus of the considered paramagnet are shown as a 
function of the temperature and the external magnetic field, 
and temperature and the external electric field, respectively. 
We used the parameters = 20ε , = 2e , = 0.5a − , = 0.5.b  
Both figures show the low-temperature minimum, charac-
teristic for that kind of systems. The growth of the external 
electric and magnetic field induces hardening of the elastic 
modulus. 

Finally, in Fig. 11 the renormalization of the piezoelec-
tric modulus is shown as a function of the temperature and 
the electric field for 0= = 0H u . We see that depending on 
the value of spin the low-temperature piezoelectric modu-
lus can decay or grow with the growth of the electric field. 

In summary, electric, piezoelectric, and elastic charac-
teristics of the orthorhombic quantum paramagnet have 
been calculated analytically. It is shown that electric per-
mittivity, piezoelectric, and elastic modules can manifest 
strong dependences on the values of the external magnetic, 
electric field, external static strain, and temperature. We 
point out that the dependences of the electric permittivity, 
piezoelectric, and elastic modules in a quantum paramag-
net were recently observed [15]. 
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Fig. 10. (Color online) The renormalized elastic modulus of the 
easy-plane paramagnet 1 = 3B −  for 2 = 1B  in the absence of the 
external magnetic field and static strain 0 0H u= =  as a function 
of the temperature and the electric field E. Color surface: = 1S ; 
grey surface: = 3 / 2S . 

Fig. 11. (Color online) The renormalized piezoelectric modulus 
of the easy-plane paramagnet 1 = 3B −  for 2 = 1B  in the absence 
of external magnetic field and the external strain 0= = 0H u  as a 
function of the temperature and the electric field E . Color sur-
face: = 1S ; grey surface: = 3 / 2S . 
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П’єзоелектричний та магнітопружний 
ефекти у квантовому парамагнетику 

A. A. Zvyagin, G. A. Zvyagina 

Розраховано електричні, п’єзоелектричні та пружні ха-
рактеристики квантового орторомбічного парамагнетика. 
Використовуючи точне аналитичне рішення, показано, що 

електрична проникність, п’єзомодуль та модуль пружності 
можуть виявляти сильні залежності від значень зовнішних 
магнітного та електричного полів, зовнішньої пружньої на-
пруги та температури. 

Ключові слова: електрична проникність, модуль пружності, 
п’єзомодуль, магнітна анізотропія.

 


