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The ballistic transmission of the Dirac ultrarelativistic quasielectrons in graphene structures with the rectan-
gular potential barrier is considered and both the single and the double-barrier structures are analyzed. Within the 
framework of the continuum model, the transmission coefficient of quasielectrons T is calculated depending on 
the parameters of the problem. It is believed that there is an electrostatic barrier, as well as the Fermi velocity 
barrier due to the fact that this quantity may aсquire different values in the barrier and out-of-barrier regions (υF2 
and υF1, respectively) of the considered structures. It is shown that the effect of the supertunneling manifests it-
self in these structures which consists in the fact that under certain conditions the transmission through the struc-
ture is perfect (transmission rates T = 1) for the arbitrary angle of incidence of quasielectrons on the barrier. In 
the case of different values of the Fermi velocities in the barrier and out-of-barrier regions (the parameter 
β = υF2/υF1, which characterizes the velocity barrier, is not equal to unity), the supertunneling is observed for a 
certain ratio between the energy E and the barrier height U and significantly depends on β. The expression іs 
given that determines the specified conditions for the supertunneling. In the case of equal velocities (β = 1), 
the supertunneling effect is observed for the quasielectron energy value E equal to half the height of the electro-
static barrier U. The analysis of the dependence of the transmission on the problem parameters is also provided. 
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Last years, the researchers close attention was focused on 
the so-called Dirac materials ([1] and references therein). 
These include some various and diverse substances such as 
the topological insulators, d-wave high-temperature super-
conductors, the superfluid phase 3He, etc. Graphene also 
belongs to them (see the corresponding table in [1]) and 
much attention has been paid to the study of graphene as 
well as of the various graphene-based structures in recent 
years. This is due to nontrivial properties of graphene such 
as a linear dispersion relation for the quasiparticles, unusual 
quantum Hall effect, the property of chirality, the Klein tun-
neling, high mobility, ballistic transport, etc. [2]. The key 
value that characterizes the dispersion relation of the Dirac 
quasiparticles is the Fermi velocity. Therefore, it is clear 
that significant efforts have been made to be able to control 
this value and also to use this control in practice [3–13]. 
For this purpose, a number of different methods were pro-
posed and experimentally tested. Recently, one interesting 
property of some Dirac materials attracted the close atten-
tion of the researchers: this is the so-called super-Klein or 
omnidirectional tunneling. This effect means that, under 
some conditions, the transmission through the potential bar-
rier becomes perfect, i.e., the transmission rates are equal to 

unity independently on an angle of incidence of the parti-
cles on the barrier. It was first observed in the spin-1 struc-
tures (the dice lattice-based structures) and also manifested 
itself in some other structures (see, e.g., [10, 16]). This 
effect can be implemented in the photonic crystals and in 
the fabrication of the perfect electron focusing lens [10]. 
As far as we know, there were no reports on the observa-
tion of this effect in graphene by far. The aim of the pre-
sent paper is to show that the effect of supertunneling can 
be observed in graphene. 

Assume first that there is the single rectangular one-
dimensional electrostatic potential barrier with the height 
U and width d, the interfaces coordinates being xl = 0 and 
xr = d for the left and the right interfaces, respectively. The 
low-energy fermion excitations in the considered structure can 
be described by the following Hamiltonian (see, e.g., [2]): 

0 ,F x yH i U
x y

 ∂ ∂
= − σ + σ + σ ∂ ∂ 

v  (1) 

where Fv  is the Fermi velocity, xσ , yσ  are the Pauli matri-
ces, and 0  σ  is the unit matrix; the external potential is 
defined as follows:  
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In the case when the Fermi velocity varies in space this 
Hamiltonian is not the Hermitian one [14, 15]. Assume that 
the Fermi velocity depends on the coordinate x (only). As 
usual in the relevant cases, it is assumed also that the barrier 
width is much larger than the near-interface regions associ-
ated with the gradual change in the Fermi velocity. Then in 
accordance with the considerations made in [14, 15], the 
Hamiltonian of the problem can be represented as 

 ( ) ( ) ( ) 0 ,F x F F yH i x x x U
x y

 ∂ ∂
= − σ + σ + σ ∂ ∂ 

 v v v   

  (2) 
and now it has the Hermitian form [14, 15]. We must keep 
in mind that the derivative acts on the product 

( ) ,F x ψ = φv  where ψ  are the spinorial eigenfunctions.  

If the electron wave moves along the axis Ox from the 
left to the right, then for the wave functions in the left and 
in the right out-of-barrier regions it is possible to write, 
respectively:  

 ( ) (  ) ( ) 1 11, e e
2 2
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− +
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for the barrier area we have 
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( )1 1cos ,   sin ,    arctan / .F x F y y xk E k E k q= θ = θ ϕ = v v  

The relevant boundary conditions follows from the conser-
vation of the probability current density [2, 14, 15] and read 

 ( ) ( )1 20 0 ,F l F bx x− +ψ = = ψ =v v   

 ( ) ( )2 1 . F b F rx d x d− +ψ = = ψ =v v  (6) 

Using them we find the coefficient t in expressions for the 
wave functions: 

 
[ ] [ ]{ } 1

( , ) 2cos cos e

1 cos ( ) e 1 cos ( ) e .

x

x x

ik d

ik d iq d

t E −

−
θ = − ϕ θ ×

× − θ−ϕ − + θ+ ϕ
 (7)  

and hence the transmission coefficient 2( ,  ) ( ,  ) .T E t Eθ = θ  

Figure 1 shows the dependence of the transmission co-
efficient T on the quasielectrons energy E (transmission 
spectra) for the following fixed values of the problem pa-
rameters: the barrier thickness d = 10 nm, the incidence an-
gle 0.6 rad,θ =  the electrostatic barrier height U = 0.3 eV, 
the parameter β = 0.5, 1, 2 for the solid, dotted, dashed lines, 
respectively. Note firstly that all spectra show the pro-
nounced resonant-tunneling character, which is the magni-
tude of T is equal to unity for some energies and 1T   for 
other energies. Some particular energy values, for exam-
ple, E+ = U/2 (β = 1, the dotted line), E+ = 2U/3 (β = 0.5, 
the solid line), E– = 2U (β = 0.5, the solid line), attract the 
special attention. The thing is that, for these energies, the 
effect of the supertunneling is realized: the transmission 
rates are equal to the maximum, T = 1, independently on 
the particle angle of incidence on the barrier. This is con-
firmed by Fig. 2 which demonstrates the dependence of 
the rates T on the incidence angle θ for different 
β = 0.5, 1, 1.5, 2. The parameters for all lines are as follows: 
d = 10 nm, E = 0.2 eV, U = 0.4 eV. 

The horizontal line with T = 1 refers also to values 
E = U/2 for arbitrary U, and to some other values (e.g., for 
U = 0.3 eV, β = 0.5, E+ = 0.2 eV, E– = 0.6 eV used in 
Fig. 1). Hence, really, the effect of the supertunneling 
manifests itself in the graphene structures. It follows from 

Fig. 1. Dependences of the transmission rates T on the quasi-
particle energy E, d = 10 nm, θ = 0.6 rad, U = 0.3 eV, β = 0.5, 1, 2.  

Fig. 2. Dependences of the transmission rates T on the incidence 
angle θ for the d = 10 nm, E = 0.2 eV, U = 0.4 eV, β = 0.5, 1, 1.5, 2. 



Supertunneling effect in graphene 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 2 149 

the above formulae that in the case of the gapless graphene 
and the presence of both the velocity and the electrostatic 
barriers the energies for the supertunneling are determined 
by the following expression: 

 
1
UЕ± = ±β

 (8) 

and, hence, they essentially depend on the electrostatic bar-
rier height U and also on the parameter β. This expression 
follows from the condition xq  = xk  which corresponds to the 
leveling of the resulting barrier. Thus, the supertunneling 
effect takes place in the pristine graphene and it is realized 
for energies that are subjected to the condition (8). When 
the quantity β approaches unity the energy for the super-
tunneling E+ tends to the value U/2 — as for the dice lattice 
case [10]. 

The considered structure also reveals a phenomenon 
similar to the Klein paradox: for the zero incidence angle, 
the transmission coefficient is equal to one, as shown in 
Fig. 2. This type of tunneling is observed regardless of β 
and U magnitudes. 

The process of tunneling is also affected by the presence 
of the so-called critical angle of incidence of quasielectrons 
on the barrier cθ  — for quasielectrons that fall at angles 
greater than cθ  barrier is impermeable. The formulas above 
give the following expression for the critical angle 

 ( )arcsin / .c E U Eθ = − β    (9) 

So, the value of the critical angle depends on the parameters 
U, β and is markedly sensitive to the change of each. In the 
presence of the electrostatic potential ( 0)U ≠  the critical 
angle can exist for both β > 1 and β < 1 cases. The range of 

incidence angles for which the value of ( )T θ  is significant 
as well as the value of cθ  are substantially reduced with 
increasing in β.  

The ( )T E  spectra are also characterized by the presence 
of the region where the magnitude of T is close to zero but 
not equal to (“energy gap”). Its presence is explained by 
the fact that at energies close to the top of the potential 
barrier, the electron wave becomes evanescent [see expres-
sions (5)]. The “gap” width is highly dependent on the pa-
rameters β, θ increasing sharply as each of them increases. 
The increase in “gap” width with the growth of β is illus-
trated, in particular, by Fig. 1 (compare the solid and the 
dotted curves). Note that the incidence angle exceeds the 
critical one for the dashed curve in Fig. 1 so that the value 
of T tends to zero for large energies. 

In addition to resonances related to the supertunneling 
phenomenon, there are a number of resonance peaks of a 
different origin (see, e.g., Fig. 1). Namely, these are the 
Fabry–Perot-type resonances whose energy position is 
determined by the formula 

 ( )2
2

2
2( ) y

F

E U
d k n

−
− = π

v
, (10) 

where n = 1, 2, 3, … . 
The phenomenon of the supertunneling occurs also in 

graphene-based double-barrier resonant tunneling structure 
(DBRTS). Assume that barriers are symmetric with the 
same thickness d and the quantum well width is equal to w. 
The expression for the transmission rates in this case can 
be found in a manner analogous to the SBRTS case and it 
reads 

 ___________________________________________________  

{2 2 2 2
2 cos cos cos cosT = θ ϕ θ ϕ+   

 [ ]( ) }22sin ( )(sin sin ) (sin sin 1)sin ( )sin ( ) cos cos cos( )cos( ) .x x x x xq d q d k w q d k w+ θ− ϕ θ ϕ− + θ ϕ  (11) 
 ______________________________________________  

It follows from this formula that the energies of the 
supertunneling E± are determined by the same expression 
as in the case of the single barrier RTS (8). Other barrier 
resonances (Fabry–Perot-type) also retain their energy po-
sitions (location on the energy axis). The dependence of 
the transmission rates T2 on energy E is depicted in Fig. 3 
for the following parameters: d = 10 nm, w = 25 nm, 
U = 0.3 eV, φ = 0.6 rad, β = 0.5, 1, 2. 

There are a number of new resonances with high values 
of the coefficient T — these are the well-induced resonances. 
Their number increases with the quantum well widening. 
Besides, there are special resonances in the transmission 
spectra. Their energy positions are determined by the fol-
lowing equation: 

 ( ) 1 sin sin tg ( ) tg ( ) cos cos .x xk w q d− ϕ θ = ϕ θ  (12) 

Fig. 3. Dependences of the transmission rates T on the quasi-
particle energy E for the DBRTS. The parameters are as follows: 
d = 10 nm, w = 25 nm, U = 0.3 eV, ϕ = 0.6 rad, β = 0.5, 1, 2. 
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In the general case, there may be a large variety of dif-
ferent configurations of the spectra due to the well-induced 
resonances. Varying the problem parameters it is possible to 
obtain very different spectra including the symmetric ones. 
The tunneling spectra in the DBRTS in general are irregu-
lar (nonperiodic) over the entire energy scale, comprising 
the part where they are periodic in the SBRTS. By select-
ing certain sets of the problem parameter values it is possible 
to achieve the full periodicity of the spectra. This is possible 
if the number ( )cos / 2 cosw dβ ϕ θ  is the rational one; if it is 
an irrational number then the spectra T(E) are irregular. 
The location of the spectral resonances (peaks) may not be 
fully random even in those parts of the spectrum where at 
the first glance the resonance peaks are quite chaotic. 
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Ефект супертунелювання в графені 

A. M. Korol 

Розглянуто балістичну трансмісію ультрарелятивістських 
квазіелектронів Дірака в графенових структурах із прямокут-
ним потенціальним бар’єром та проаналізовано як одно-, так 
і двобар’єрну структури. В рамках континуальної моделі 
розраховано коефіцієнт трансмісії квазіелектронів Т в залеж-
ності від параметрів задачі. Вважається, що існує електроста-
тичний бар’єр, а також бар’єр швидкості Фермі, обумовле-
ний тим, що ця величина має різні значення в бар’єрній та 
позабар’єрній областях розглянутих структур (υF2 та υF1 від-
повідно). Показано, що в даних структурах має місце ефект 
супертунелювання, який полягає в тому, що за певних умов 
трансмісія крізь структуру є ідеальною (коефіцієнт трансмісії 
Т = 1) для будь-якого кута падіння квазіелектронів на бар’єр. 
У разі різних значень швидкості Фермі в бар’єрній та поза-
бар’єрній областях (параметр β = υF2/υF1, який характеризує 
бар’єр швидкості, не дорівнює одиниці) ефект супертунелю-
вання спостерігається при певному співвідношенні між енер-
гією квазіелектронів Е й висотою електростатичного бар’єра 
U та істотно залежить від β. Наведено вираз, яким визнача-
ється зазначена умова для супертунелювання. Якщо β = 1, то 
супертунелювання має місце при енергії, що дорівнює поло-
вині висоти електростатичного бар’єру. Також проведено ана-
ліз залежності коефіцієнта трансмісії від параметрів задачі. 

Ключові слова: графен, коефіцієнт трансмісії, супертуне-
лювання. 
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