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Supertunneling effect in graphene
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The ballistic transmission of the Dirac ultrarelativistic quasielectrons in graphene structures with the rectan-
gular potential barrier is considered and both the single and the double-barrier structures are analyzed. Within the
framework of the continuum model, the transmission coefficient of quasielectrons T is calculated depending on
the parameters of the problem. It is believed that there is an electrostatic barrier, as well as the Fermi velocity
barrier due to the fact that this quantity may acquire different values in the barrier and out-of-barrier regions (v
and vy, respectively) of the considered structures. It is shown that the effect of the supertunneling manifests it-
self in these structures which consists in the fact that under certain conditions the transmission through the struc-
ture is perfect (transmission rates 7= 1) for the arbitrary angle of incidence of quasielectrons on the barrier. In
the case of different values of the Fermi velocities in the barrier and out-of-barrier regions (the parameter
B =vm/vp, which characterizes the velocity barrier, is not equal to unity), the supertunneling is observed for a
certain ratio between the energy £ and the barrier height U and significantly depends on B. The expression is
given that determines the specified conditions for the supertunneling. In the case of equal velocities (B = 1),
the supertunneling effect is observed for the quasielectron energy value E equal to half the height of the electro-
static barrier U. The analysis of the dependence of the transmission on the problem parameters is also provided.
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Last years, the researchers close attention was focused on
the so-called Dirac materials ([1] and references therein).
These include some various and diverse substances such as
the topological insulators, d-wave high-temperature super-
conductors, the superfluid phase *He, etc. Graphene also
belongs to them (see the corresponding table in [1]) and
much attention has been paid to the study of graphene as
well as of the various graphene-based structures in recent
years. This is due to nontrivial properties of graphene such
as a linear dispersion relation for the quasiparticles, unusual
quantum Hall effect, the property of chirality, the Klein tun-
neling, high mobility, ballistic transport, etc. [2]. The key
value that characterizes the dispersion relation of the Dirac
quasiparticles is the Fermi velocity. Therefore, it is clear
that significant efforts have been made to be able to control
this value and also to use this control in practice [3—13].
For this purpose, a number of different methods were pro-
posed and experimentally tested. Recently, one interesting
property of some Dirac materials attracted the close atten-
tion of the researchers: this is the so-called super-Klein or
omnidirectional tunneling. This effect means that, under
some conditions, the transmission through the potential bar-
rier becomes perfect, i.e., the transmission rates are equal to
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unity independently on an angle of incidence of the parti-
cles on the barrier. It was first observed in the spin-1 struc-
tures (the dice lattice-based structures) and also manifested
itself in some other structures (see, e.g., [10, 16]). This
effect can be implemented in the photonic crystals and in
the fabrication of the perfect electron focusing lens [10].
As far as we know, there were no reports on the observa-
tion of this effect in graphene by far. The aim of the pre-
sent paper is to show that the effect of supertunneling can
be observed in graphene.

Assume first that there is the single rectangular one-
dimensional electrostatic potential barrier with the height
U and width d, the interfaces coordinates being x; = 0 and
x, = d for the left and the right interfaces, respectively. The
low-energy fermion excitations in the considered structure can
be described by the following Hamiltonian (see, e.g., [2]):

J’ay

0 0
H=-ihv,|o,—+0c,— |+0,U, (1)
ox
where vy is the Fermi velocity, 6, ¢ ) are the Pauli matri-
ces, and o is the unit matrix; the external potential is
defined as follows:



0, x<0,
U(x): U, 0<x<d,
0, x>d.

In the case when the Fermi velocity varies in space this
Hamiltonian is not the Hermitian one [14, 15]. Assume that
the Fermi velocity depends on the coordinate x (only). As
usual in the relevant cases, it is assumed also that the barrier
width is much larger than the near-interface regions associ-
ated with the gradual change in the Fermi velocity. Then in
accordance with the considerations made in [14, 15], the
Hamiltonian of the problem can be represented as

H =—ih UF(x)[Gxﬁ—i\/m+mcy %}Lcou,

2)
and now it has the Hermitian form [14, 15]. We must keep
in mind that the derivative acts on the product

07 (x)y = ¢, where y are the spinorial eigenfunctions.

If the electron wave moves along the axis Ox from the
left to the right, then for the wave functions in the left and
in the right out-of-barrier regions it is possible to write,
respectively:
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for the barrier area we have
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hvpk, = Ecos®, hvpk, =Esinb, ¢= arctan(ky /qx).

The relevant boundary conditions follows from the conser-
vation of the probability current density [2, 14, 15] and read

UFI\VI(x:(r): U2V (x=0*),
sz\yb(x:d‘): vFl\y,.(xzaﬁ). 6)

Using them we find the coefficient ¢ in expressions for the
wave functions:

t(E, 0) =—2coso cosO e hxd
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and hence the transmission coefficient 7'(E, 0) =|/(E, 9)|2 .
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Fig. 1. Dependences of the transmission rates 7 on the quasi-
particle energy E, d =10 nm, 0 =0.6 rad, U=0.3 eV, =0.5, 1, 2.

Figure 1 shows the dependence of the transmission co-
efficient T on the quasielectrons energy E (transmission
spectra) for the following fixed values of the problem pa-
rameters: the barrier thickness d = 10 nm, the incidence an-
gle 8 =0.6rad, the electrostatic barrier height U= 0.3 eV,
the parameter § = 0.5, 1, 2 for the solid, dotted, dashed lines,
respectively. Note firstly that all spectra show the pro-
nounced resonant-tunneling character, which is the magni-
tude of T is equal to unity for some energies and 7' < 1 for
other energies. Some particular energy values, for exam-
ple, E.=U/2 (B=1, the dotted line), £.=2U/3 (B=0.5,
the solid line), £ =2U (B = 0.5, the solid line), attract the
special attention. The thing is that, for these energies, the
effect of the supertunneling is realized: the transmission
rates are equal to the maximum, 7= 1, independently on
the particle angle of incidence on the barrier. This is con-
firmed by Fig. 2 which demonstrates the dependence of
the rates 7 on the incidence angle 0 for different
B=0.5,1,1.5,2. The parameters for all lines are as follows:
d=10nm,E=02¢eV,U=04¢eV.

The horizontal line with 7=1 refers also to values
E = U2 for arbitrary U, and to some other values (e.g., for
U=03eV, B=05, E.=02¢V, E =0.6¢eV used in
Fig. 1). Hence, really, the effect of the supertunneling
manifests itself in the graphene structures. It follows from
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Fig. 2. Dependences of the transmission rates 7 on the incidence

angle 0 forthed=10nm, E=02¢eV,U=04¢eV,B=0.5,1, 1.5,2.
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the above formulae that in the case of the gapless graphene
and the presence of both the velocity and the electrostatic
barriers the energies for the supertunneling are determined
by the following expression:

-

E, - ®)

I+

[ 1B

and, hence, they essentially depend on the electrostatic bar-
rier height U and also on the parameter . This expression
follows from the condition g, = k, which corresponds to the
leveling of the resulting barrier. Thus, the supertunneling
effect takes place in the pristine graphene and it is realized
for energies that are subjected to the condition (8). When
the quantity B approaches unity the energy for the super-
tunneling £, tends to the value U/2 — as for the dice lattice
case [10].

The considered structure also reveals a phenomenon
similar to the Klein paradox: for the zero incidence angle,
the transmission coefficient is equal to one, as shown in
Fig. 2. This type of tunneling is observed regardless of
and U magnitudes.

The process of tunneling is also affected by the presence
of the so-called critical angle of incidence of quasielectrons
on the barrier 6, — for quasielectrons that fall at angles
greater than 0, barrier is impermeable. The formulas above
give the following expression for the critical angle

0, =arcsin [(E-U)/EB]. 9)

So, the value of the critical angle depends on the parameters
U, B and is markedly sensitive to the change of each. In the
presence of the electrostatic potential (U # 0) the critical
angle can exist for both § > 1 and § < 1 cases. The range of

incidence angles for which the value of 7'(0) is significant
as well as the value of 6, are substantially reduced with
increasing in f.

The T(E) spectra are also characterized by the presence
of the region where the magnitude of 7 is close to zero but
not equal to (“energy gap”). Its presence is explained by
the fact that at energies close to the top of the potential
barrier, the electron wave becomes evanescent [see expres-
sions (5)]. The “gap” width is highly dependent on the pa-
rameters P, 0 increasing sharply as each of them increases.
The increase in “gap” width with the growth of B is illus-
trated, in particular, by Fig. 1 (compare the solid and the
dotted curves). Note that the incidence angle exceeds the
critical one for the dashed curve in Fig. 1 so that the value
of T tends to zero for large energies.

In addition to resonances related to the supertunneling
phenomenon, there are a number of resonance peaks of a
different origin (see, e.g., Fig. 1). Namely, these are the
Fabry—Perot-type resonances whose energy position is
determined by the formula

(E-U)°
(7”’1'«‘2)2

wheren=1,2,3,....

The phenomenon of the supertunneling occurs also in
graphene-based double-barrier resonant tunneling structure
(DBRTS). Assume that barriers are symmetric with the
same thickness d and the quantum well width is equal to w.
The expression for the transmission rates in this case can
be found in a manner analogous to the SBRTS case and it
reads

(10)

2
—ky =nm,

T, = cos> Ocos? (p/{cos2 Ocos? @+

+(2 sin (g ,d)(sin O —sin @) [(sin 0sin @ —1)sin(g,d)sin (k,w)+cosOcos pcos(g.d) cos(kxw)])2 } . (11)

It follows from this formula that the energies of the
supertunneling E. are determined by the same expression
as in the case of the single barrier RTS (8). Other barrier
resonances (Fabry—Perot-type) also retain their energy po-
sitions (location on the energy axis). The dependence of
the transmission rates 7, on energy E is depicted in Fig. 3
for the following parameters: d=10nm, w=25nm,
U=03eV,9p=0.6rad, =0.5,1,2.

There are a number of new resonances with high values
of the coefficient 7'— these are the well-induced resonances.
Their number increases with the quantum well widening.
Besides, there are special resonances in the transmission
spectra. Their energy positions are determined by the fol-
lowing equation:

(l—sin(psin G)tg (k,w)tg(g,d)=cospcos. (12)
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Fig. 3. Dependences of the transmission rates 7 on the quasi-
particle energy E for the DBRTS. The parameters are as follows:
d=10nm,w=25nm, U=03eV,p=0.6rad, =05, 1, 2.
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In the general case, there may be a large variety of dif-
ferent configurations of the spectra due to the well-induced
resonances. Varying the problem parameters it is possible to
obtain very different spectra including the symmetric ones.
The tunneling spectra in the DBRTS in general are irregu-
lar (nonperiodic) over the entire energy scale, comprising
the part where they are periodic in the SBRTS. By select-
ing certain sets of the problem parameter values it is possible
to achieve the full periodicity of the spectra. This is possible
if the number Bwcos @/ (2d cos 0) is the rational one; if it is
an irrational number then the spectra 7(E) are irregular.
The location of the spectral resonances (peaks) may not be
fully random even in those parts of the spectrum where at
the first glance the resonance peaks are quite chaotic.
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EdekT cynepTyHentoBaHHS B rpadeHi
A. M. Korol

Po3srisiHyTO GamicTHYHY TPaHCMICIIO yIBTPapesIITHBICTCHKHAX
kBasienekTpoHiB Jlipaka B rpad@HOBHX CTPYKTypax i3 MpsIMOKYT-
HHM NOTEHLIaJbHUM 6ap’€poM Ta MPOaHaII30BaHO SIK OJHO-, TaK
i aBoOap’epHy CTPYKTYpH. B pamkax KOHTHHYyalbHOI Mopeni
po3paxoBaHO Koe(ilieHT TPaHCMICIT KBa3ieneKTpoHiB 7 B 3aJexkK-
HOCTI BiJl mapameTpiB 3a1a4i. BBaxkaeTbcs, 110 iCHYe eeKTpocTa-
THUHHE Gap’ep, a Takox Oap’ep mBuakocti Depmi, oOymoBIte-
HUH THM, L0 Il BeJIMYMHA Mae pi3Hi 3HaueHHs B Oap’epHiil Ta
no3abap’epHiil 00JIACTSIX PO3TISIHYTHX CTPYKTYP (U Ta Vpy BiI-
noBinHO). [Toka3aHo, 0 B IaHUX CTPYKTypax Mae micie e(ext
CYIICpPTYHEJIOBaHHS, KU TOJIArac B TOMY, L0 3a IIEBHUX YMOB
TpaHCMicist Kpi3b CTPYKTYPY € igeanbHoo (KoedilieHT TpaHeMicii
T=1) s 6ynp-AKoro KyTa IaaiHHSI KBa3ieJIeKTPOHiB Ha Gap’ep.
V pasi pi3Hux 3HaueHs mBHAKOCTI Pepmi B Gap’epHiii Ta mo3a-
Oap’epHiil obnacTsax (mapamerp = Vm/Ur, SKHH XapaKTepH3ye
6ap’ep MIBUIKOCTI, HE JOPIBHIOE OJUHUILI) €PEKT CYNepTyHEeIro-
BaHHSI CIIOCTEPIraeThesl IPH NEBHOMY CITIBBIIHOIICHH] MiX eHep-
rieto KBa3ieneKkTpoHiB £ i BUCOTOIO €JIEKTPOCTATHIHOTO Oap’epa
U Ta icToTHO 3anexuth Bix . HaBeneHo BHpas, IKUM BH3Haya-
€ThCS 3a3HAUCHA YMOBA JUI cynepTyHemoBaHHs. Skimo =1, To
CYIIEPTYHEIIIOBAaHHS Ma€ MicIle NP eHeprii, o JOPiBHIOE II0JI0-
BHHI BHCOTH €JIEKTpOCTaTHYHOrO Oap’epy. Takoxk mpoBeneHo aHa-
J1i3 3aIeXKHOCTI KoeillieHTa TpaHCMicCii BiJ] mTapaMeTpiB 3axadi.

KurouoBi cmoBa: rpadeH, koedillieHT TpaHCMicii, cymepTyHe-
JIFOBaHHSI.
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