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Using the models of elastic and dielectric continuum the system of differential equations is obtained, the exact 
analytical solutions of which describe the elastic displacement of the medium for nitride-based semiconductor 
nanostructure and the piezoelectric effect, which is caused by shear acoustic phonons. The theory of the shear 
acoustic phonons spectrum and caused by them piezoelectric potential were developed. It is shown that shear 
acoustic phonons do not interact with electrons due to the deformation potential, but such interaction can occur 
due to the piezoelectric potential. Using the method of temperature Green’s functions and Dyson equation, ex-
pressions that describe the temperature dependences of the electronic levels shifts and their decay rates are ob-
tained. Calculations of the spectra of electrons, acoustic phonons, and characteristics that determine their interac-
tion at different temperatures were carried out using the example of physical and geometric parameters of typical 
AlN/GaN nanostructure, which can function as an element of a separate cascade of a quantum cascade laser or 
detector. 
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1. Introduction 

The operation of modern quantum cascade detectors [1] 
and lasers [2] of the middle and far range electromagnetic 
waves substantially depends on polarization effects in ni-
tride-based semiconductors, which serve as material for the 
layers of these nanodevices cascades. The most substantial 
is the effect of a strong internal field [3] caused by sponta-
neous [4, 5] and piezoelectric polarizations [6]. Besides, 
different values of the total polarization at the boundaries 
of the nanostructure layers give rise to charges at these 
heterointerfaces. This effect, as well as the presence of a 
dynamic charge in nanostructures caused by the gradient of 
acceptor impurities in the nanostructure, is the main difficul-
ty in the development of theoretical methods for calculating 

the energy schemes of these nanostructures. Due to the ana-
lytical complexity of the effective nanostructure potential 
components for an electron, a rough approximation is often 
used, in which only the contribution from the internal elec-
tric field is stored [3] or grid numerical methods are used 
[7]. The method, which deals with the analytical calcula-
tion of the effective potential components and their se-
quential self-consistent approximation by solutions of the 
Schrödinger and Poisson equations, is effective enough [8]. 

Recently, for nitride resonant tunneling nanostructures 
(RTS), the spectra of acoustic phonons [9] have been in-
vestigated and the interaction of electrons with them [10] 
have been studied for the first time. The results obtained 
demonstrate significant differences in the spectra of acoustic 
phonons for multilayer nanostructures in comparison with 
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the results obtained on the basis of the single-well nano-
structures simplified models [11]. 

An interesting case of processes in nitride nanosystems 
is that the piezoelectric effect arising, which is caused by 
the shear acoustic phonons in AlN/GaN plane nanostruc-
tures [12, 13]. As a result, the polarization effects in the 
nitride layers are revealed being more sufficient than these 
for arsenide semiconductors. The resulting piezoelectric 
effect is likely to have a significant effect on the spectrum 
of acoustic phonons and the spectral characteristics of elec-
trons in such nanostructures. In fact, there are only two 
papers [12, 13] in which the spectrum of acoustic phonons 
was calculated from the multilayer Fibonacci nanostructure 
transparency coefficient in a certain frequency range of the 
electromagnetic field. Since the authors of these papers set 
somewhat different goals, in fact, the dependences of the 
acoustic phonons spectrum were only partially investigated, 
saying nothing about the electron-phonon interaction. Be-
sides, the study of the transparency coefficient corresponds 
to the case, when the investigated nanostructure is placed 
into a medium in which waves can propagate freely. In 
such a model the nanostructure cannot be treated as a con-
stituent part of a separate cascade, for example, because 
the condition for the components of elastic displacement 
and stress tensors going to zero will not be satisfied. 

The proposed paper is structured as follows. In the first 
part, the theory of acoustic phonons and piezoelectric po-
tential arising in layers of piezoelectric AlN/GaN nano-
structure is developed on the basis of the elastic continuum 
model. In the second part, the theory of the stationary spec-
trum and wave functions of electrons in the approximated 
effective potential of the nanostructure is developed. This 
section also presents a developed consistent theory of the 
interaction of electrons with acoustic phonons due to the 
piezoelectric potential for arbitrary temperatures using the 
temperature Green’s functions and the Dyson equation, 
based on solutions of the system of stationary Schrödinger 
and Poisson equations. The last section is devoted to calcu-
lations and investigation of the electronic and phonon 
spectra dependences. The dependences of the electronic 
spectrum levels temperature shifts and their decay rates due 
to the interaction with acoustic phonons are investigated. 

2. Theory of the acoustic phonons spectrum 
and piezoelectric potential in the multilayer AlN/GaN 

nanostructure 

The investigated nanostructure will be considered in the 
Cartesian coordinate system, the z axis being perpendicular 
to the interfaces between its layers (Fig. 1). Due to the need 
to ensure the arbitrariness of the choice of this nanostructure 
as a separate element of the nanodevice cascade, we will 
consider it to be placed in an external unstressed medium 
AlN corresponding to potential barriers. Accordingly, the 
potential wells of the nanostructure correspond to the GaN 
semiconductor medium.  

Taking into account various types of semiconductors 
forming the nanostructure, its density ρ, elastic constant 
tensor components iklmC , piezoelectric constants ikle  and 
dielectric constants ikε  are dependent on the z coordinate: 
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The components of elastic displacement for each of the 
layers of the studied nanostructure are obtained by solving 
the equation 

2

2
( , ) ( , )

( ) ,i ik

k

u r t r t
z

xt
∂ ∂σ
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 ( )1 2 3( , ) ( , , , ) T
i i i i iu r t u x y z t u u u= = , (2) 

where in (1) and (2): , , , (1; 2; 3),i k l m =  1 2, ;x x x y= =  
3x z=  according to the selected coordinate system. 

The components of the stress tensor in the presence of 
the piezoelectric effect are conveniently represented as 
follows: 

 ( , ) ( ) ( , ) ( ) ( , )ik iklm lm ikl lr t C z u r t e z E r tσ = − , (3) 

where the components of the strain tensor are as follows: 

 
( , ) ( , )1( , )

2
l m

lm
m l

u r t u r t
u r t

x x
 ∂ ∂

= + ∂ ∂ 
. (4) 

Equation (3) being substituted into (2) taking into ac-
count (5), gives the equation of the second order: 

Fig. 1. Geometric scheme of the multilayer nanostructure of 
plane symmetry. 
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since the electric field ( )lE r  belongs to the potential as 
( , ) ( , ) /l lE r t r t x= −∂φ ∂ . 
The electric displacement vector is defined as follows: 
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where the components of the permittivity tensor, which, as 
it is known [13, 14], form the matrix 
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where for binary semiconductors, depending on the fre-
quency, we have 
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where ∞ε  is high-frequency dielectric permittivity, LOω  
and TOω  are the frequencies of longitudinal and transverse 
optical phonons, respectively defined in the vicinity of the 
Γ-point as irreducible representations 1( )A z  and 1( )E xy .  

Further, having assumed, that there are no free charges 
in the nanostructure, we get 

 div 0
k

DD
x
∂

= =
∂

, (9) 

which results in 

( , ) ( , )( ) ( , ) 0k
ikl ik
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   ∂∂ ∂ ∂φ
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. (10) 

Having presented the Eqs. (5) and (10) for an arbitrarily 
chosen pth layer of the nanosystem, we have a system of 
coupled differential equations: 
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It is convenient to solve the system of equations (11) at 
first by passing to Voigt’s notation: ( ) ( ) ;p p

sniklmC C→  
( ) ( )p p

snikle e→ . Taking into account the symmetry of the prob-
lem, it is assumed that the deformation of the nanostructure 
in the plane xOy  and along the axis Oz  is isotropic [9, 
11–13], then the piezoelectric effect is completely described 
by the displacement 2 2(0, ( ),0) (0, ( , ),0)u r u x z=  and po-
tential ( ) ( , )r x zφ = φ . Taking into account the form of ten-
sors ( ) ( ),p p

sn snC e  for crystals with a wurtzite-type lattice [15], 
from system (11), we obtain the equations for 2u  and φ: 

 ___________________________________________________  
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Solutions for system (12) are found by the method described below. The time dependence of the displacement can be 
considered harmonious, that is: 2 ( , , )u x z t = 2 ( , )e i tu x z − ω  and ( , , ) ( , )e i tx z t x z − ωφ = φ . Than we represent the desired solution 
in the form of a column matrix: 
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which after substitution in (12) looks like: 
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 ______________________________________________  

From the first Eq. (14) it is seen that the acoustic pho-
nons caused by the displacement 2 ( )u z , have the same 
nature as the shear acoustic phonons (SH). Besides, this 

equation at ( ) 0zφ → , looks like the equation for these 
phonons obtained in the paper [9]. 

Than the following notation is introduced: 
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Then system (14) turns out to be equivalent to such 
equation: 
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Solutions of the Eq. (16) are expected to look like: 
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In results in the equation for finding the eigenvalues λ 
and functions ( )pµ : 
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Taking into account (15), these solutions are as follows: 
 ___________________________________________________  
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where the index “p” is omitted for convenience. 
The eigenfunctions ( )pµ  are found from Eq. (19) by the Cayley–Hamilton theorem: 
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Thus, the final solutions of the system (14) are: 
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In the external environment, the elastic displacement 
and potential should follow to zero, that is 
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To determine all unknown coefficients, we use the 
boundary conditions at the boundaries of all layers of the 
nanostructure, which are fulfilled for elastic displacement 
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and from the normal component of the electric displacement vector as well: 
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These boundary conditions are: 
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Let us introduce such ket vectors: 
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( , ) ( ) , ( , ) ( ) ,

( , ) ( ) ,
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p p p p p p p p

p p p p p p

p p

q V C q C

q e С V q q e С V q

q V C q C

q V

ω β ω = λ − +ρ ω

γ ω = −λ λ γ ω = −λ λ
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  (31) 
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The spectrum of acoustic phonons 

1 1
( )n nqω = ω  is now 

determined from the dispersion equation: 

 ( , 1)

0
det ( , ) 0

N
p p

p
T q+

=

  ω = 
  
∏ . (32) 

Using boundary conditions (29), we express the coeffi-
cients ( ) ( ) ( ) ( )

1 1 1 1, , ,p p p pA B C D  in terms of one of them. This 
coefficient is obtained from the normalization condition for 
the displacement values 2u , which is 

2 2( ) ( , , ) ( , , )
2q q qq

x y
z u q z u q z dz

l l

+∞
∗

′ ′
−∞

′ρ ω ω = δ
∆ ∆ ω∫
 , (33) 

where x yl l∆ ∆  is the cross-sectional area of the nanostruc-
ture with the xOy  plane, moreover, ,x y Nl l z∆ ∆ >> . 

Having performed a Fourier series 2 ( , , )qu q zω  for the 
displacement and potential ( , , )qq zφ ω : 

 11

11

22 ( , , )( , , )
e

( , , )( , , )
n qn q iqr

n qq n q

u q zu q r

q zq z

ωω   
=      φ ωφ ω   
∑ , (34) 

where the functions 
12 ( , , )n qu q zω  and 

1
( , , )n qq zφ ω , which 

play the role of expansion coefficients, containing all pos-
sible modes of acoustic phonons 

1n qω . 
Now passing from the Fourier components to the gene-

ralized coordinates and momentum, and then to the opera-
tors of occupation numbers according to [14], we obtain 
the elastic displacement operator in the representation of 
occupation numbers: 

 ___________________________________________________  

 
( )1 1 1 1

11

1 1

( )
2 12( )

0

( ) ( )( )
12 2

( , , ) ( ) ( ) ( , , )e ( ) ( ) ,
2

( , , ) ( , , ), .

N
p iqr

n q n n n q p pp
x y n qp n q

p pp
n q n q

u q r b q b q w q z z z z z
l l

w q z u q z z

−
=

 ω = − + ω θ − −θ − ∆ ∆ ρ ω

ω = ρ ω = −∞

∑∑
 


 

 

 (35) 

To determine 
1

( , , )n qq zφ ω , we substitute expansion (34), taking into account (35), into the second equation of system 
(14). After simplifications we obtain the differential equation: 

 1
1

2 ( )
( ) ( )2 ( )
33 112

( , , )
( ) ( ) ( , , )

p
n qp p p

n q
d q z

q q z
dz

φ ω
ε ω − ε ω φ ω =   

 1
1

1

( )2
2( ) ( )2

15 2( ) 2

( , , )
( , , )

2

p
n qp p

n qp
x y n q

d w q z
e q w q z

l l dz

 ω
 = − ω

∆ ∆ ρ ω   




 , (36) 

its solution is not presented due to its very cumbersome nature. 
 ______________________________________________  

Now, the Hamiltonian of acoustic phonons in the se-
cond quantization representation looks like: 

 
1 1 1

1

1
2ac n q n q n q

n q
H b b+ = ω + 

 
∑

 


 , (37) 

where 
1n qb +  and 

1n qb


 are the bosonic creation and annihila-
tion operators of the phonon state respectively. 

3. Spectrum and wave functions of an electron 
in the nanostructure effective potential. 

Renormalization of the electron spectrum 
by interaction with acoustic phonons 

The energy scheme of the investigated AlN/GaN 
nanostructure substantially depends on the internal electric 
field created in its layers by the total polarization (total)P = 

Pz SpP P= + , where PzP  is the piezoelectric polarization, SpP  
is the spontaneous polarization [6]. Besides, due to different 
polarization values surface charges with a density ( )pσ = 

1p pP P+= −  appear at the heterointerfaces of the nanostructure.  
The interaction of an electron with an internal electric 

field is defined as follows: 

1
1 1 1

1
( ) ( 1) ( ) ( ) ( ) ,

N
p

E p p p p p
p

V z e F z F z z z z z−
− − −

=

 = − − θ − − θ − ∑  

  (38) 

where the electric field strength in an arbitrary layer of the 
nanostructure is obtained from the condition, when the 
total value of the voltage applied to the nanostructure is 
zero [3, 7, 8]: 

( )
0

( ) ( ) ( )
1 1

1 1

0;

( ) / ( ) / .
N N

k p k
p k p k k k k

k k
k p

F

F P P z z z z+ ∞ ∞ + ∞
= =
≠

=

= − − ε ε − ε∑ ∑  

  (39) 
In addition, there is the so-called exchange correlation 

potential in the Hedin–Lundqvist approximation [7, 8, 15]: 

 

( )

1 3

2

2

*
0

1 3*3 *

1 9( )
4 4

0,6213 211 ln 1 ,
21 ( ) ( ) ( ) ( )

( ) 4 ( ) / 3 , ( ) ( ) / ( ) ,

HL

s

s s B

s B B B

V z

r e
r z r z z a z

r z a n z a z z m z a

∞

−
∞

 = − × π π 
  

× + +  
ε ε   

= π = ε

  

  (40) 
where Ba  is the Bohr radius.  

Without taking into account the influence of the internal 
electric field and fields caused by the distribution of static 
charge in nanostructures, choosing zero energy for the bot-
tom of the conduction band, for potential barriers, we have 
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 ( ) 0.765( (AlN) (GaN))C g gE z E E∆ = − . (41) 

The temperature dependence of the bandgap is calculat-
ed using the Varshni ratio: 

 
2

( ) (0)g g
TE T E

T
α

= −
β+

, (42) 

where AlN(0) (0)g gE E= = is band gap at 0KT = , ,α β  are 
the Varshni parameters [8, 15]. 

For functioning of nanodevices, the main role is played 
by the movement of electrons along the Oz axis. For such a 
motion, the levels of states of the electronic spectrum nE  
and the corresponding wave functions ( )E zΨ  are solutions 
of the system of stationary Schrödinger and Poisson equa-
tions: 

 

2

(elect)

0

1 ( ) ( ) ( ) ( ),
2 ( )

( )
( ) ( ),

E E

H

d d z V z z E z
dz m z dz

dV zd ez z
dz dz∞

  Ψ
− + Ψ = Ψ  
  


  ε = − ρ  ε 



  

  (43) 
where the charge density in the nanostructure is defined as 
follows: 

 (elect)

1
( ) ( ( )) ( )

N

D p p
p

z e N n z z z+

=

ρ = − + σ δ −∑ , (44) 

where DN +  is the concentration of ionized donor impurities,  

2
2

( )
( ) ( , ) ln 1 exp F nB

n
Bn

E Em z k Tn z E z
k T

 −
= Ψ +  

π  
∑



  

is the concentration of electrons creating a static charge 
inside a nanostructure, FE  is the Fermi level for the nano-
structure [7, 8, 16].  

In total, the quantities given by Eqs. (38), (40), and (41) 
constitute the nanostructure effective potential for an elec-
tron:  
 ( ) ( ) ( ) ( ) ( )C E HL HV z E z V z V z V z= ∆ + + + . (45) 

The last term ( )HV z , which is the solution of the Pois-
son equation, specifies the interaction of an electron with 
the total charge inside the nanostructure (43). 

The solution of system (43) cannot be found exactly. It 
is usually found numerically [7]. However, in our case, we 
can use the analytical method [8] calculating the compo-
nents (44) using the solutions of system (43) found with 
the required accuracy, where: 

 ___________________________________________________  
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0 0 0
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=

+

∞
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    − = − − Ψ + +σ δ −     ε ε π      

∑

∑∫ ∫


 (46) 

Thus, the wave function in the approximated potential 

 1
1

1
appr

1 0
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p pp l

V z V z
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+= =

−
 = θ − − θ − −∑∑  (47) 

can be presented in the external environment as an exponent decreasing at z ±∞ , and inside the nanostructure as a linear 
combination of the Airy functions ( ), ( )Ai z Bi z : 
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+
χ

= =

+ −χ
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 (48) 

 ______________________________________________  

The double sums in relation (46) define a piecewise 
continuous function formed by the splitting points 

lpz = 
1/ 2 ( ),p pl M z z −= −  01... , 0p N z= =  of an arbitrary pth 

layer of the nanostructure, M  is the number of these splits.  
The dispersion equation, from which the levels of the 

stationary electronic spectrum nE  are determined, is ob-
tained by applying the continuity conditions for the wave 
function (46) and the flows of its probabilities at the 
boundaries 

lpz  of each of the layers (it is clear that the set 
of points { }

lpz  includes all the heterointerfaces of the 
nanostructure), with a thickness 1l lp pz z+ − : 

1
1

1

( )
( ) ( )

0

( )

0

( , )
( , ) ( , );

( )

( , )
( )

l
l l

l l

pl

l
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p
p p n

p p
z z

p
n

z z

d E z
E z E z

m z dz

d E z
m z dz

+
+

+

= −

= +

Ψ
Ψ = Ψ =

Ψ
=

. 

  (49) 

In the general case, assuming, that the geometric dimen-
sions of the cross-section of the nanostructure are much 
larger than it longitudinal dimensions, that is , ,x y Nl l z∆ ∆ >>  
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in this case, the wave function of the electron can be repre-
sented as a Bloch-like function [10, 17]: 

 
0 0

1( ) ( , ) e ( ), ( , , )ikr
EE k E k

x y
R r z z R x y z

l l
Ψ = Ψ = Ψ =

∆ ∆
, 

  (50) 
where r  is the vector in plane xOy , k  is the electron 
quasimomentum. In this case, the total energy, describing 
the longitudinal and transverse motion of the electron, is as 
follows: 

 
2 2

(eff)2nnk
n

kE E
m

= +
 , (51) 

where the effective mass averaged over all layers of the 
nanostructure is introduced, which is determined by the 
expression [17]: 

 ( )2
(eff)
1 ( , ) / ( )n n
n

E z m z dz
m

+∞

−∞

= Ψ∫ . (52) 

The electron wave function ( , )n nE zΨ  is normalized 
with the condition: 

 ( , ) ( , )n n n n nnE z E z dz
+∞

′ ′ ′
−∞

Ψ Ψ = δ∫ . (53) 

Next, having applied the boundary conditions one can 
determine the coefficients ( ) ( )(0) (6), , ,l lp pA B A B  and thus 
fully determine the wave function ( , )n nE zΨ . 

The transition from the coordinate image to the second 
quantization image is performed by introducing a quan-
tized wave function: 

 ( ) ( , ) ( , )nk nk nk nk
nk k n

R r z a r z aΨ = Ψ = Ψ∑ ∑∑


  . (54) 

In this case, the Hamiltonian of noninteracting electrons 
in the second quantization image will look like: 

 
,

( ) ( ) ( )e e nk nk nk
n k

H R H R R dR E a a+ += Ψ Ψ =∑∫
   

  , (55) 

where the total energy nkE  is determined in accordance 
with the expression (51), where nka+  and nka  are the 
fermionic operators of creation and annihilation of elec-
tronic states respectively. 

The deformation potential due to the stress tensor com-
ponents ijε  and the deformation potential constants 1 2,c сa a  

is determined for a crystal lattice of the wurtzite type as 
def

1 1 ( ) 0c zz c xx yyE a a∆ = ε + ε + ε =  [18–20], since, as for 
the components 2[0, ( , ),0]u x z , taking into account (35), it 
follows, that 0yyε =  and 0xx zzε = ε =  from the problem 
statement. Thus, in the presence of the piezoelectric effect, 
electrons and shear acoustic phonons do not interact either 
due the deformation potential, as in the case without taking 
into account the piezoelectric effect. However, as can be 
seen further, such interaction is possible due to the piezoe-
lectric potential. The Hamiltonian of this interaction is de-
scribed by the expression: 

 
1 1 1

1
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1
( , , )( ( ) ( ))e

N
pz p iqr

n q n n
q n p

H q z b q b q+

=

= φ ω + − ×∑∑


  

 1 1( ) ( ) .p pz z z z− + × θ − − θ −   (56) 

Then, the Hamiltonian describing the interaction of 
electrons with acoustic phonons due to the piezoelectric 
potential looks like: 

 
1 1 1

1
,

, , , ,
( ) ( ) ( ) ,e pz nn n nn k q nk

n n n k q
H F q a a b q b q+ +

− ′ +
′

 = + − ∑

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  (57) 
where the binding function is 

1 1

1

*( )( ) ( )( ) ( , ) ( , , ) e ( , ) .
p

p

z
pp p iqr

nn n n n q nn
z

F q E z q z E z dz
−

′ ′= Ψ φ ω Ψ∫  

  (58) 

Thus, the Hamiltonian of the electron-acoustic phonon 
system in the presence of the piezoelectric effect looks 
like: 
 e ac e pzH H H H −= + +

   

. (59) 

We will take into account only the levels of the station-
ary electronic spectrum. Then, to perform their renormali-
zation by the interaction with acoustic phonons due to the 
piezoelectric potential, one should perform the Fourier 
transform for the Green's function obtained from the Dy-
son equation [10, 21]: 

 ( ) 1( ) ( )n nnkG E M −
Ω = Ω− − Ω . (60) 

Having applied the one-phonon approximation, we rep-
resent the mass operator in the Dyson equation as follows: 

 ___________________________________________________  

 1 1
/

1
1 11

2

, ,

1
( , ) ( ) ,n n

n nn n
n nqn n n k q n k q

M k F q
E i E i′ ′ ′+ +

 + ν ν
Ω = + 

Ω − − ω + η Ω− + ω + η  
∑

 

 0η→ ± , (61) 

where 1
1

/ 1(e 1)n Bk T
n

ω −ν = −  is the occupation number for acoustic phonon modes.  
 ______________________________________________  

In the available nanodevices the electron flow is directed 
in such a way, that it moves almost strictly along the axis 

,Oz  perpendicular to the layers of the nanostructure. The 

value 0k =  satisfies this case, then we obtain that according 
to (51) nEΩ = . The interaction of electrons with acoustic 
phonons due to the piezoelectric potential is determined 
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by the renormalized value of the energy of the electronic 
spectrum nE , which, in turn, are characterized by tempera-
ture shifts ( n∆ ) and decay rates ( nΓ ). The latter quantities 
were obtained from the poles of the Fourier transform for 
the Green’s function (60). 

Because of that we have 

 ( , 0)
2
n

n n nM E k i
Γ

Ω = = = ∆ − , (62) 

then the solutions of the dispersion equation 

 , ( , 0) 0n n q n nE E M E k− − Ω = = =  (63) 

are as follows: 
 ___________________________________________________  
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l l
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−

±

−

±
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∑ ∫∫

∑ ∫∫





 (64) 

where the first integral in expressions (64) is taken in the sense of the principal Cauchy value. 
 ______________________________________________  

4. Discussion of the results 

The direct calculations based on the theory developed 
in Secs. (2) and (3) were performed using the example of a 
two-well (width of the potential wells 1 2 5 nmw w= = , the 
thickness of the barriers 1 2 3 2 nmb b b= = = , the 
nanostructure cross-sectional area parameters are xl∆ =  

510 nmyl −= ∆ = ) nanostructure with the physical parame-
ters, which are taken from papers [15, 18–20, 22], given in 
Table 1. 

In Fig. 2(a) the results of calculating the dependences of 
the shear acoustic phonons spectrum on the wave vector are 
shown. As can be seen from the figure, the shear acoustic 
phonons spectrum 

1
( )n qΩ  in the presence of the piezoelec-

tric effect consists of a set of dependences branches, which 
are located in the range from 2 ( )q′Ω  to 1( )q′Ω , and these 
boundaries are determined by solutions of the equation, 
which follows from the relation (21): 

( )
( ) ( )

( )
1

1

2( ) ( )2 ( ) 2 2
44 ( )2( )2 ( ) 2

15 2( )2
( )

0

p pp
LO E

p p

p
TO E

q C
q e q∞

 −ρ ω ω − ω 
 + ε =

ω − ω
 

  (65) 
and the conditions imposed on the possible values of the 
acoustic phonons energies [23]: 

 ( ) 25 30 meVac qΩ ≤ − , (66) 

which, determines the values of 1( )q′Ω  and 2 ( )q′Ω , respec-
tively, rejecting the values ( )qω , that do not satisfy condi-
tion (66). 

Fig. 2. Dependences of the shear acoustic phonons spectrum on 
the wave vector q (a) and on the total width of the potential well 

1 2(0 )d d d≤ ≤ +  (b) at q = 24/z3. 

Table 1. Physical parameters of the AlN/GaN nanostructure materials 

 m/me ε∞ Ρ, kg/m3 C44, GPa e15, C/m2 PSp, C/m2 

GaN 0.186 10 6150 105 0.33 –0.029 
AlN 0.322 8.5 3255 116 –0.42 –0.081 

 
1( ) , meVLO Eω  

1( ) , meVTO Eω  
1( ) , meVLO Aω  

1( ) , meVTO Aω  

GaN 91.83 69.25 90.97 65.91 
AlN 113.02 83.13 110.3 75.72 
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The calculated dependences 
1
( )n qΩ  are formed at the 

corresponding values 2 ( )q′Ω  and increase quasilinearly, 
exhibiting insignificant quadratic tendencies with a small 
change in the value of q near the point of their formation. 
The main feature of the spectrum dependences 

1
( )n qΩ  is 

that, firstly, for each group of branches, four branches of 
dependences are first formed, two of which each with dif-
ferent variance on q. With the increase of q values, as it 
can be seen from the footnote in Fig. 2(a), two branches 
with the same dispersion first approach and merge are 
formed, and then these branches also merge — one branch 

is formed, the energy values in which slowly approach the 
dependence 1( )q′Ω .  

It should be noted, that the following effect is available 
for each of the formed branches: with an increase of the 
number n1, the distance between the adjacent branches of 
acoustic phonon energies increases. 

Further, in Fig. 2(b) the dependences of the shear acous-
tic phonons spectrum on the value of the total potential well 
( 1 20 d d d≤ ≤ + ) are shown. It can be seen from the figure 
that in the calculated dependences for the first branches, n1 
maxima and n1-1 minima are clearly formed, respectively, 

Fig. 3. Dependences of the elastic displacement u2(z) (a), (c), and (e) and potential ϕ(z) (b), (d), and (f) calculated at q = 24/z3 for 
the acoustic phonons energies: 5.312, 6.401, and 7.287 meV. 
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for each branch. Next, for each of the branches 
1
( )n dΩ , 

there are n1+1 maxima and n1 minima. Besides, we observe 
an weakly expressed extrema (minima for odd values of n1 
and maxima for even values of n1), which is located in the 
vicinity of the point corresponding to the symmetric posi-
tion of the internal potential barrier [ 1 2( ) / 2d d d→ + ].  

In Figs. 3(a)–3(f) the examples of the elastic displace-
ment u2(z) and the potential φ(z) dependences on z, calcu-
lated for a fixed value of q and the corresponding values of 
the energies of acoustic phonons qω  are shown. As can 
seen from Figs. 3(a), 3(c), and 3(e), the dependences of the 
elastic displacement u2(z) can behave differently in differ-
ent the nanostructure layers. So, in the left and right poten-
tial barriers and the external semiconductor medium, in 
accordance with relation (26), the displacement values 
follow to zero while acquiring positive values, as can be 
seen from Figs. 3(a) and 3(c), or acquiring negative values in 
the medium to the right of the nanostructure as in Fig. 3(e). 
The established effect does not take place in the dependences 
for the potentials shown in Figs. 3(b), 3(d), and 3(f).  

It should be noted, that in the potential wells the elastic 
displacement dependences behave as antisymmetric func-
tions relative to the center of these nanostructure layers 
[Fig. 3(a)] or symmetric functions relative to this point 
[Figs. 3(c) and 3(e)]. For such cases, the corresponding 
dependences for the potentials [Figs. 3(b) and 3(d)]: in the 
first case, the potential first decreases from left to right and 
increases further, and in the second case it increases practi-
cally over the entire region of the nanostructure. For the 
case in Figs. 3(e) and 3(f) we reveal, that the maxima of 
the function u2(z) correspond to the minima of the function 
φ(z) and vice versa. 

If the maxima [Fig. 3(a)] or minima [Fig. 3(b)] of the 
function u2(z) is formed in the layer corresponding to the 
internal barrier of the nanostructure, then the dependence φ(z) 
in this region decreases [Fig. 3(b)] and increases [Fig. 3(d)] 
correspondingly. For the case in Figs. 3(e) and 3(f) both 
functions u2(z) and φ(z) decrease in the region of the inner 
barrier. 

In Fig. 4 the dependences for the first four electronic lev-
els of the investigated nanostructure, calculated at room 
temperature (T = 300 K), on the position of the internal po-
tential barrier in the total potential well (d) are shown. As 
can be seen in the figure the calculated dependences are 
specified by the presence of n maxima and n-1 minima for 
each number of the energy level n. It must be noted, that the 
formation of anticrossings for the dependences of the nearest 
energy levels takes place. In addition, the dependences En(d) 
lack their symmetry relative to the symmetric position of the 
internal potential barrier, which is due to the presence of 
strong internal electric fields, according to relation (39).  

In Figs. 5(a)–5(h) the results of calculation the values 
of the stationary electronic spectrum level shifts and their 
decay rates at different temperatures are shown as the 
dependence of the internal potential barrier position in 

the total potential well. To clarity the obtained results, all 
calculations were performed for temperature values rang-
ing from 0 K (the most obvious case) to 300 K (room tem-
perature case) with an increment of 100 K, covering the 
value of 100 K (corresponds to the temperature range for 
the operation of nanodevices, in which liquid nitrogen cool-
ing is used). As can be seen from Figs. 5(a), 5(c), 5(e), and 
5(g), the values of the electronic spectrum level shifts, de-
pending on the value of d, take the values having both posi-
tive and negative signs, which is not observed in the case of 
interaction of electrons with flexural and dilatational acous-
tic phonons [10] (in this case, the temperature shift is always 
negative). This effect is determined by the properties of 
symmetry and the sign of the functions 

1
( ) ( , , )p

n qq zφ ω  
included in relation (64). It should be noted, that in most 
configurations of the nanostructure total potential well, the 
absolute values of the shifts ( )n d∆  increase with the tem-
perature increasing, and there is no correlation between the 
maximum value of the temperature shift and the number of 
the electronic level n. With an increase of temperature, the 
dependence obtained at T = 0 K is deformed, the extrema 
formed with a change in d being more sufficient, acquiring 
larger absolute values, their position changes slightly. As it 
can be seen from the above dependences, there is a regular-
ity for temperatures shifts ( )n d∆ , relatively the symmetric 
position of the internal potential barrier 1 2( ( ) / 2).d d d→ +  
At this point, a minimum belonging to the interval, in 
which the shift of the level is negative in all dependences is 
formed. The width of this interval decreases with the in-
crease of the electronic level number n. To the left and 
right of the mentioned interval, two intervals with the posi-
tive values of energy levels shifts are formed. This shift 
becomes significant with the increase of temperature for all 
levels, except for level n = 3. In this case, the intervals with 
the positive shifts are the most (width about 1.5 nm), but 
the shifts increase slightly with the increase of temperature, 
reaching  maximum  values at the end of these intervals. 

Fig. 4. Dependences of the first four levels of the electronic 
spectrum on the total potential well width ( 1 20 d d d≤ ≤ + ) at 
T = 300 K. 
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Fig. 5. (Color online) Dependences of the shifts for the first (n = 4) levels of the electronic spectrum and their decay rates on the total 
width of the potential well d ( 1 20 d d d≤ ≤ + ) (b) at q = 24/z3, calculated for various values of the temperature T: 0 K (black solid line), 
100 K (red dashed line), 200 K (blue dash-dotted line), 300 K (green dotted line). 
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Besides the energy levels shifts at small sizes of the left 
potential well [interval 1 20 / 3( )d d− + ] is significant at 
n = 3, changing its sign in this interval and forming a posi-
tive maximum. In general, it should be concluded, that in 
the regions at 1 2( ) / 2d d d> +  (for the larger left potential 
well) the magnitude of the temperature shifts is smaller 
than at 1 2( ) / 2d d d< + . 

Further, in Figs. 5(b), 5(d), 5(f), and 5(h), the depend-
ences on the value of d for the decay rates of electronic 
states calculated for the same temperature values as the 
temperature shifts, are shown. As can be seen from the 
given dependences for Γn(d) at T = 0 K, they form a number 
of maxima equal to the number of the electronic level n, and, 
accordingly, n–1 minima. As the values of temperature T 
increase, so do the values of the decay rates for the elec-
tronic levels: if at a temperature of 100 K these values in-
crease by 1.5–2 times, and at a temperature of 300 K by 5–6 
times. It should be noted that extrema in the dependences 
Γn(d) arising at T = 0 K are also presented at 100, 200, and 
300 K, but there is a gradual deformation of these depend-
ences with the emergence of new extrema. This effect 
mostly arises for the third (n = 3) and fourth (n = 4) elec-
tronic levels. For the first two electronic levels, the defor-
mation of the Γn(d) dependences is relatively insignificant. 

To sum up, it should be concluded, that the interaction 
of electrons with acoustic phonons due to the piezoelectric 
potential results in the renormalization of the electronic spec-
trum levels, thus directly affecting the energy of electronic 
transitions ,nm m nE E n mΩ = − ≠ . In this case, the renor-
malization of the absorption band ,nm m n n mΓ = Γ + Γ ≠  
(for electronic transitions with detection of the electromag-
netic field energy) or the laser radiation band (for laser quan-
tum transitions) also occurs. With the increase of tempera-
ture, the expansion ( ) (0)nm nm nmT∆Γ = ∆Γ −∆Γ  of these 
bands increases, which requires practical investigation of 
such effects. 

Conclusions 

An analytical theory of the interaction of electrons with 
shear acoustic phonons due to the created by them piezoelec-
tric potential for arbitrary values of temperature is developed. 

Using the method of Green’s functions and the Dyson 
equation, expressions that describe the temperature shifts 
of the electronic levels of the nanostructure and their decay 
rates were established. 

Calculations of the electrons spectrum, spectrum of the 
acoustic phonons, and the potential caused by them have 
been performed using the physical parameters of the dou-
ble-well AlN/GaN nanostructure. 

Results of direct calculations of the temperature shifts for 
electronic levels and their decay rates have shown, that the 
increase of temperature to values close to the room tempera-
ture makes it necessary to take into account the renormaliza-
tion of the energies of quantum electronic transitions and 
expansion of the bands of absorption or laser radiation. 
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Теорія спектру поперечних акустичних фононів 
та їх взаємодії з електронами 

через п’єзоелектричний потенціал у AlN/GaN 
наноструктурах плоскої симетрії 

I. V. Boyko, M. R. Petryk, J. Fraissard 

З використанням моделей пружного та діелектричного 
континууму отримано систему диференціальних рівнянь, 
знайдені точні аналітичні розв’язки якої описують пружне 
зміщення середовища нітридної напівпровідникової нано-
структури та п’єзоелектричний ефект, який зумовлений по-
перечними акустичними фононами. Розвинено теорію спектру 
поперечних акустичних фононів та пов’язаного з ними п’єзо-
електричного потенціалу. Показано, що поперечні акустичні 

фонони не взаємодіють з електронами через деформаційний 
потенціал, проте така взаємодія може відбуватися через 
п’єзоелектричний потенціал. За допомогою методу темпера-
турних функцій Гріна та рівняння Дайсона отримано вирази, 
які описують температурні залежності зміщень рівнів елект-
ронного спектру та їх згасання. Розрахунки спектру електро-
нів, акустичних фононів та характеристик, що визначають їх 
взаємодію при різних температурах, виконувались на прикладі 
фізичних та геометричних параметрів типової AlN/GaN нано-
структури, що може бути елементом окремого каскаду кван-
тового каскадного лазера чи детектора. 

Ключові слова: акустичний фонон, напівпровідник на 
основі нітриду, п’єзоелектричний ефект, 
рівняння Дайсона, функція Гріна. 
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