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Evolution of the nonequilibrium inhomogeneities and topological defects is studied in terms of complex kink 
solutions of the sine-Gordon equation. The weakly damped oscillation of the sine-Gordon kink, named as the 
kink quasimode, is described explicitly. It is shown that the oscillatory kink behavior and the wave packet genera-
tion depend significantly on the initial nonequilibrium kink profile. In order to specify conditions of the generation 
of wobbling kinks with a multibreather structure we reformulate the direct scattering problem associated with the 
sine-Gordon equation as the spectral problem of the Schrödinger operator. We obtain the dependence of the radi-
ation energy, which is emitted during formation of the multi-frequency wobbling kink, on the effective dimen-
sion of its initial profile. 
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Introduction 

The structure and dynamics of topological defects and 
inhomogeneities in solid state physics are described by non-
linear equations. Well-known examples of such topological 
objects are domain walls in anisotropic magnets, fluxons in 
long Josephson junctions, and dislocations in crystals. In 
general, locally inhomogeneous fields created by these ob-
jects look like kink configurations when two parts of the 
system lie in neighboring equivalent potential minima sep-
arated by the energy barrier. Corresponding field variables 
are described by the kinks, one-parametric soliton solu-
tions of the nonlinear equations. 

The sine-Gordon (SG) equation and its kink solution are 
most famous [1] due to the complete integrability of the SG 
model. This model describes in the explicit form the station-
ary dynamics of magnetic domain walls, fluxons, and dislo-
cations mentioned above. In the framework of the SG equa-
tion, the kink as a true soliton moves freely with a constant 
velocity and an unchanged profile. Topological solitons can 
be excited dynamically through the formation of soliton-
antisoliton pair as a result of the decay of a large-amplitude 
breather, that is considered as the soliton-antisoliton oscil-
lating bound state. On the other hand, introducing a single 
topological kink in a medium can be done only through 

a boundary or interface. In this case, it would be expected 
that an initial kink profile does not coincide with stationary 
one. Additionally, a variety of physical factors disturbing the 
integrability of the SG model could affect the particle-like 
behavior of the kink. In particular, the kink shape can stop to 
be a rigid structure. Then besides a static deformation, the 
shape becomes able to oscillate around a previously sta-
tionary profile under the action of both kinds of perturba-
tions, either nonequilibrium initial conditions or disturbing 
the equation. As a result, a generation of the oscillating kink 
appears to be possible. If the amplitude of oscillations is 
small and localized in space, it means an existence of the 
internal mode in the linear excitation spectrum of the kink [2]. 
If the amplitude is not small, then the nonlinearity of the SG 
equation becomes essential, and a complex oscillating solu-
tion can be considered as a combination of the kink and the 
breather, which is a time-periodic and space-localized non-
linear excitation of the system. Such an exact combined 
solution of the SG equation is well-known and called the 
wobbling kink or the wobble [3, 4]. 

Although a mathematical theory of solitons establishes 
strictly a full set of excitations of the SG model, namely 
kinks, antikinks and breathers, and linear waves of contin-
uous spectrum, the existence of the internal oscillating 
mode and the quasimode in the SG system, as collective 
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excitations of the kink, is discussed for a long time [5, 6]. 
Usually, reports about theoretical revealing and further 
observation of these modes are based on variational or as-
ymptotical approaches to the problem [7, 8] and numerical 
simulations of the soliton dynamics under perturbation of 
the SG equation or initial conditions for the kink [9, 10]. 
Then every finding of quasi- and internal modes forces to 
seek for physical reasons and factors of their appearance in 
numerical experiments. 

In general, the internal modes of kinks are responsible 
for nontrivial inelastic interaction of kinks in nonintegrable 
nonlinear equations, as it takes place in the 4φ  model and 
the double sine-Gordon system [11, 12]. Corresponding 
equations possess topological soliton solutions, a kink and a 
kink-kink bound state called a wobbler, respectively, with 
well-defined internal modes. Discrete solitons also can pos-
sess such kind of localized modes. The sine-Gordon equa-
tion is derived from the discrete sine-Gordon equation de-
scribing the Frenkel–Kontorova model for dislocations [13]: 

 
2

1 12 2
12 sin 0n

n n n n
u

u u u u
t d− +

∂
+ − − + =

∂
. (1) 

Depending on applications, the function nu  can denote 
either atomic displacements in a crystal as in the Frenkel–
Kontorova model or the double azimuthal angle of rotation 
of spins in the easy plane in the discrete model of an aniso-
tropic magnetic chain, as well as the phase difference of 
the wave functions of superconductors in a discrete set of 
the Josephson junctions. The parameter d  is a measure of 
the discreteness of the model. The integrable SG equation 
is the long-wavelength limit of the discrete equation (1): 

 sin 0tt xxu u u− + = . (2) 

Taking into account a higher dispersion term in the expan-
sion of the second difference 1 1 2n n nu u u− ++ − ≈  

xx xxxxu u≈ +β , where 21/12dβ =  is a dispersive parame-
ter, we obtain the dispersive SG equation. To void artifi-
cial instability of linear excitations, we perform the tran-
sition from the equation with fourth spatial derivatives to 
regularized sine-Gordon equation (RSGE) [14–18]: 

 sin 0tt xx xxttu u u u− −β + = . (3) 

The discrete kink of the equation (1) has the internal mode 
with an extremely weak localization [19], and in the case 
of a large enough parameter d  and respectively a small β 
this feature of the kink behavior can be reproduced in the 
framework of the dispersive SG equations [15, 20]. More-
over, we showed [2, 21] that the static kink of the RSGE, 
having the same form as a kink of the SG equation  

 ( )4arctan expKu x= , (4) 

can possess a whole set of internal modes, depending on 
the value of the parameter β. If β tends to unity, then a 
continuous spectrum of the kink excitations degenerates, 

and a number of internal modes become infinite. Thus a 
character of the kink dynamics and interaction of kinks in 
the RSGE depends on the strength of dispersion. In partic-
ular, in the case of small dispersion, we studied analytical-
ly a nonstationary motion of a kink having an initial profile 
of the SG equation kink in the framework of the RSGE and 
described explicitly consistent oscillatory behavior of its 
effective width and velocity [14]. The influence of a true 
internal mode appears to be negligible in this case, while 
the quasimode plays a principal role. 

The effect of nonlinearity on developing the internal 
mode is traditionally studied by use of different kinds of 
mathematical procedures [22, 23] constructing formal asymp-
totic expansions. However, these approaches usually have a 
restricted application area as it was pointed out still by 
Segur in Ref. 3. At the same time, it appears that nonline-
arity itself can produce a mechanism of generation of in-
ternal kink oscillation, which develops into a breather set-
tled on the kink. 

In the present work, we described explicitly the oscilla-
tory regime of the quasimode of the nonequilibrium SG 
kink, introduced in Ref. 5. Its frequency lies in the contin-
uous spectrum and tends to the lowest frequency edge from 
the above. It is shown that the oscillatory behavior of the 
quasimode, in particular the frequency approach to the low-
est frequency, depends significantly on the initial nonequi-
librium kink profile. In the framework of the SG equation, 
we describe exactly the conditions of the generation of 
wobbling kinks with a multibreather structure as a result of 
the evolution of the nonequilibrium SG kink profile. For 
this purpose, we analyze the direct scattering problem as-
sociated with the SG equation and find a dependence of the 
radiation energy on the effective dimension of the initial 
kink profile.  

Quasi-local oscillations of kinks in the sine-Gordon 
equations 

Earlier, we theoretically studied the internal oscillations of 
a static kink of the regularized equation (3) [2, 15, 21]. We 
also found analytically and numerically a number of features 
of its nonstationary motion and show efficiency of a simple 
analytical approach consisting in the use of the perturbation 
theory in the case of the weak dispersion, i.e., for a small 
value of the parameter β. In particular, the problem of evolu-
tion of the initial SG kink in the RSGE was solved and short-
ly reported in Ref. 14. Here we show that the found solutions 
can be used to solve the quasimode problem about oscillation 
of the perturbed SG kink profile in the SG equation (2). 

In Ref. 14, in the framework of the RSGE, we studied the 
motion of the SG kink ( )Ku z  obtained from (4) by the Lo-

rentz transformation of coordinates 2( ) / 1z x Vt V= − − , 
where V  is the initial value of kink velocity. We sought a 
nonstationary solution to the equation (3) in the form: 

 ( ) ( ) ( )1, ,Ku x t u z u z= + τ , (5) 
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where 2( ) / 1t Vx Vτ = − −  and the small additional func-
tion to the kink obeys the linearized equation: 

 

( )( )

2
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Because of the small value of β and smallness of the addi-
tional function with respect to ( )Ku z , we neglected 1u  on 
the right side of Eq. (6). Thus we did not take into the very 
weakly localized internal mode of the RSGE kink [15, 21]. 
As a result of evolution, the RSGE kink tends to a quasi-
equilibrium state with the static addition to its profile: 

 2
sinh( ) 3
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−
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The general solution can be written as 1( , )u z τ = 
( ) ( , )u z v z= ∆ + τ , where ( , )v z τ  is the solution to the homo-

geneous side of Eq. (6) (without the right hand side). In-
deed, suppose that at the initial moment ( ,0) ( )Ku z u z=  
and ( ,0) 0u zτ = . This means that ( ,0) ( )v z u z= −∆  and 

( ,0) 0v zτ = . Using the continuous spectrum eigenfunctions 
of the operator L  [24]: 

( )
( )

( ) ( )1 tanh exp
2k z z ik ikz

k
ψ = −

πω
, ( ) 21k kω = + , 

  (8) 
we solved the initial problem for the function ( ),v z τ : 

 ( )
( )2

2

2

cos 11 3,
4 1 cosh
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kkv z
k k

∞

−∞
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τ = − ×
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 ( )tanh cos sinz kz k kz dk× + . (9) 

The central part of this additional function, localized on the 
RSGE kink, can be interpreted as oscillations of its effec-
tive dimension. The rest part of the function corresponds to 
the spreading radiation of the continuous spectrum waves 
that are responsible for the decay of the kink oscillation. 
As the measure of the effective length of the kink profile 
we used the quantity ( )l τ  introduced as follows: 

 
( ) ( ) ( )

0

,1 1
2 z

u z
l z

=

∂ τ
≡ κ τ =

τ ∂
. (10) 

In further we call the function ( )κ τ  as the reverse kink 
length. In particular, for the static kink solution (4) this 
parameter is constant and equal to unity. For the quasi-
stationary kink profile with the additional function (7) the 
reverse kink length is 0 1κ = +α . 

In Ref. 14 the time-dependent additional function ( )∆κ τ  
for the reverse kink length as a characteristic of the 
nonstationary evolution of the RSGE kink was found from 
Eq. (9): 

( ) ( ) ( ) ( )2 2

0 0

1 3 cos 1,1
2 4 cosh

2
z

k kv z
dk

z k

∞

=

+ + τ∂ τ α
∆κ τ = = −

π∂ ∫ . 

  (11) 

As a result, we showed that the reverse kink length could 
be regarded as a collective variable that describes the qua-
si-local oscillations of the kink with the frequency in the 
continuous spectrum. 

It is easy to see, that the solved problem turns out to be 
closely related to the problem of the quasimode (quasi-
local oscillation) in the integrable SG equation [5–7], and 
its solution is directly associated with the formulas pre-
sented above. 

Indeed, in Ref. 5, the solution of the SG equation (1) 
was numerically sought, assuming that at the initial mo-
ment, the kink is at rest and has the nonequilibrium profile 
with the reverse kink length 1κ = + η where 1η << : 

( ) ( ) ( ) 2,0 4arctan exp 4arctan exp
cosh

xu x x x
x

= κ ≈ + η . 

  (12) 

Using a smallness of the parameter η, we shall look for a 
solution to the SG equation in the form: 

 ( ) ( ) ( ), ,Ku x t u x x t= + φ , (13) 

 ( ),0 0tu x = .  

We assume that ( ,0) 2 / coshx x xφ = η  and ( ,0) 0t xφ = , and 
then the small addition function φ to the kink obeys the 
linearized equation: 

 
2 2 2

2 2 2 2
21 0
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L

t t x x
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∂ ∂ ∂   

. (14) 

Representing ( , )x tφ  in the form 

( ) ( )( )cosk kC x k t dk
∞

−∞

ψ ω∫  

by the use of eigenfunctions (8) we find coefficients kC  
from the initial conditions: 
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As a result, we obtain the following solution of the quasi-
mode problem of the SG equation: 

( )
( )

( )
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2
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1 cosh
2

k t
x t z kz k kz dk

k k

∞

−∞

+
φ = η +

π
+

∫ . 
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Notice that the function ( ,0)xφ  differs from the second 
term in the expression (7) for the addition ( )u z∆  only by 
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a numerical factor. The evolution of this kind of the per-
turbation of the kink is shown in Fig. 1. Here and further 
we show only a half of picture on the positive axis x  be-
cause the left part is antisymmetric reflection of the right 
one due to the oddness of functions. The time interval be-
tween configurations is chosen as 2t∆ = π. As can be seen, 
the kink slope changes periodically and causes the radiation 
of extending waves. We call this oscillating kink behavior as 
the quasimode regime. In order to study the time behavior 
of a central part of the kink we again relate the addition to 
the reverse kink length with a half of the derivative of the 
function 1( , )x tφ  in the zero point and calculate numerically 
the corresponding integral: 

 ( ) ( ) ( )2
1

1
0 0

cos 1,1
2 cosh

2
x

k tx t
t dk

x k

∞

=

+∂φ
∆κ = = η

π∂ ∫ .  (17) 

Its time dependence is shown in Fig. 2. The fast Fourier 
transform of this time series restricted by a first hundred 
periods reveals a peak at frequency 1 1.0048Ω = , which is 

above the lowest frequency edge 0 1Ω = , and this result is 
in full agreement with the numerical result BWΩ =  

1.004 0.001= ±  by Boesch and Willis [5] and the fact that 
the kink has no internal mode in the SG equation in the 
linear approximation [2]. Analysis of the dependence (17) 
shows that the frequency of damped oscillations of the 
reverse kink length rapidly approaches the edge of the con-
tinuous spectrum from the above. Indeed the expression for 

1( )t∆κ  can be represented in the form of 1( )t∆κ =  
( )( ) cos ( )A t t t= η + γ , where the amplitude is equal to 

( ) ( )A t J t=  and the phase ( ) Arg ( )t J tγ = , and the integral 
( )J t  is defined as 

 
( )2

0

exp 1 1
( )

cosh
2

i k t
J t dk

k

∞  + −  =
π∫ . (18) 

The amplitude ( )A t  is appeared to be a monotonically de-
creasing function, as shown in Fig. 3(a). This dependence 
quickly approaches asymptotics tσ  with the numerical 
value 2.514σ =  but then slowly decreases according to 
this decay law. In order to estimate a contribution of 
phase ( )tγ  in the time behavior of the reverse kink length, 
we construct the time derivative of the full phase 

( ) ( )1 dt t
dtγΩ = + γ  and derive for it the following expression 

Fig. 1. The evolution of the addition to the SG kink in the 
quasimode regime. 

Fig. 2. Weakly damped oscillations of the addition to the reverse 
kink length in the quasimode regime. 

Fig. 3. The time dependencies of the amplitude (a) and the deriv-
ative of the full phase (b) of the addition to the reverse kink 
length in the quasimode regime. 
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 ( ) ( )1 Im lndt J t
dtγ

 Ω = +  
 

. (19) 

As shown in Fig. 3(b), ( )tγΩ  is also a monotonically de-
creasing function, which rapidly approaches 0 1Ω = , but 
then it stays above at a very close distance for a long time. 
Thus the time dependence of the effective kink length 
( ) 1 ( )l t t= κ  indicates the quasi-local character of this type 

of internal oscillations, and being a collective variable ( )l t  
describes a coherent motion of particles forming the kink 
central part. The oscillations dissipate in virtue of a loss of 
the kink energy through the excitation of spreading waves.  

The kink slope can vary not only through altering the ef-
fective kink length ( )l t , but it also steepens through chang-
ing another collective variable, which can be introduced as 
follows: 

( ) ( )( ) ( )( ){ }, 2 arctan exp arctan expu x t x i t x i t= + ρ + − ρ . 

  (20) 
Naturally, Eq. (20) is a real function and can be written as 

 sinh( , ) 2arctan
cos ( )

xu x t
t

 
= π +   ρ 

. (21) 

When parameter ρ is constant and small 1ρ << , then we 
obtain the kink with the addition to its form  

 ( ) 2
sinh( ,0) 4arctan exp

cosh
xu x x
x

ρ
= + . (22) 

Comparing the addition in (22) with the first term of the 
expression (7), we see that they coincide as functions and 
differ only by constant factors.  

There is once more possibility to deform the exact kink. 
The following ansatz can be used to describe the dilation of 
the kink  

( ) ( )( ) ( )( ){ }, 2 arctan exp arctan expu x t x r t x r t= + + − , 

  (23) 
or 

 ( ) sinh, 2arctan
cosh ( )

xu x t
r t

 
= π +   

 
, (24) 

where the collective variable ( ) ( )R t r t=  is a half of a 
distance between two π-subkinks. When r  is constant and 
small 1r <<  we again find the same function (22) for the 
addition to the kink shape but with a coefficient of the oppo-
site sign: 

 ( ) ( ) 2
sinh, 4arctan exp

cosh
r xu x t x

x
= − . (25) 

Thus a transition from the real r  over zero to the imaginary 
iρ  in the Eqs. (22–24) means the transition from a contrac-
tion of the separation between subkinks to the kink slope 
steepening. 

Now we consider the Cauchy problem of Eq. (14) for 
the addition ( ),x tφ  to the exact kink (4) with initial condi-

tions: ( ) 2,0 sinh / coshx x xφ = ρ  and ( ),0 0t xφ = . In the 

representation ( ) ( ) ( )( )2 , cosk kx t D x k t dk
∞

−∞

φ = ψ ω∫  the 

coefficients kD  are defined from the initial conditions as 
follows 

 
( )

8 cosh
2

k
k

D
k

ωπ
=

π
 (26) 

and after substitution we find the addition function in the 
form 

( )
( )

( )
2

2

cos 1
, tanh  cos sin .

4 cosh
2

k t
x t x kx k kx dk

k

∞

−∞

+ρ
φ = +

π∫  

  (27) 

It appears that main features of evolution of the additions 
1( , )x tφ  and 2 ( , )x tφ  are similar because the integral in 

Eq. (27) determines the main contribution to the integral in 
the expression (16). Therefore, we call such an oscillating 
kink behavior as the second quasimode regime. We show 
the pictures of the evolution of the addition 2 ( , )x tφ  in 
Fig. 4 over the interval t∆  less than the period 0 2T = π, 
namely 08 / 9T T∆ = , in order to show the oscillation of the 
kink slope evidently and, as a result, the generation of the 
radiation taking away its energy.  

Proceeding similarly to the previous calculations, we find 
the expression for the addition to the reverse kink length 

( ) ( ) ( ) ( )2 2
2

2
0 0

1 cos 1,1
2 4 cosh

2
x

k k tx t
t dk

x k

∞

=

+ +∂φ ρ
∆κ = =

π∂ ∫ . 

  (28) 

Its oscillating time dependence is shown in Fig. 5 and it is 
qualitatively similar to the time dependence 1( )t∆κ  (Fig. 2). 

Fig. 4. The evolution of the addition to the SG kink in the second 
quasimode regime. 
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As we see from the solution (9) the definite linear com-
bination of 1( , )x tφ  and 2 ( , )x tφ  solves the problem of 
transformation of the SG kink to the RGSE kink with the 
addition (7). Now we concentrate on the difference be-
tween 1( , )x tφ  and 2 ( , )x tφ . We show how it can be used to 
excite the kink that can throw the wave packets. We 
choose the static initial kink profile in the form: 

( ) ( ){ }* * * *( ,0) 2 arctan exp arctan expu x x i x i= κ + ρ + κ − ρ , 

  (29) 

where constant * 1κ = −η and * 2ρ = η , and parameter 
1η . Then in the first approximation with respect to pa-

rameter η the initial addition to the exact kink (4) becomes 
as follows 

 ( ) 2
sinh,0 2 2

coshcosh
x xx

xx
 φ = η − 
 

.  (30) 

Notice that the same function with the opposite sign can be 
obtained using a combination of the kink form (12) and the 
ansatz (23) after the following choice of the constant para-
meters 1κ = + η and 2r = η , where η is small as before. 

The solution of the Cauchy problem of Eq. (14) in the 
case of the initial condition (30) and ( ,0) 0t xφ =  looks like 
the following: 

( )
( )

( )
( )

2 2

3
2

cos 1
, tanh cos sin

1 cosh
2

k k t
x t z kz k kz dk

k k

∞

−∞

+
φ = η +

π
+

∫ . 

  (31) 

The evolution of the addition to the exact kink profile is 
presented in Fig. 6. We call this oscillating kink behavior as 
the damped quasimode regime. As can be seen, the kink 
gives out almost all its energy to the emitted wave packet 
that goes quite local. Thus in order to use the kink as a 
source of the wave packets in the SG system we can prepare 
the initial deformed kink by its simultaneous smoothing and 

steepening through the special choice of the parameters κ  
and ρ respectively. 

The expression for the addition to the reverse kink 
length is found following the previous schemes: 

( ) ( ) ( )2 2
3

3
0 0

cos 1,1
2 cosh

2
x

k k tx t
t dk

x k

∞

=

+∂φ
∆κ = = η

π∂ ∫ . (32) 

Its time dependence is shown in Fig. 7. The fast Fourier 
transform of the dependence gives a maximum of amplitude 
at the frequency 2 1.1304Ω = , which is certainly above the 
lowest frequency edge 0 1Ω =  and distinctly close to Rice’s 
frequency 2 3 / 1.1027RΩ = π =  [7]. Notice that the period 
of the oscillation with the frequency 2Ω  is very close to the 
time interval T∆  which separates configurations in Fig. 4. 
The addition to the reverse kink length can be represented 
again in the form ( )3 ( ) ( ) cos ( )t B t t t∆κ = η + δ , where the 
amplitude and the phase are given by ( ) ( )B t I t=  and 

( ) Arg ( )t I tδ =  respectively, and the integral ( )I t  is defined as 

Fig. 5. Weakly damped oscillations of the addition to the reverse 
kink length in the second quasimode regime. 

Fig. 6. The evolution of the addition to the SG kink with a for-
mation of the wave packet in the damped quasimode regime. 

Fig. 7. Fast decaying oscillations of the addition to the reverse 
kink length in the damped quasimode regime. 
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 ( )
( )( )2 2

0

exp 1 1

cosh
2

k i k t
I t dk

k

∞ + −
=

π∫ . (33) 

The time dependencies for ( )B t  and ( )tδ  are calculated 
numerically as well as the time derivative of the full phase 

( ) ( )1 dt t
dtδΩ = + δ . Corresponding curves for ( )B t  and 

( )tδΩ  are shown in Figs. 8(a) and 8(b). They are monotonic 
decreasing functions, which go to their asymptotics evi-
dently faster than analogous dependences of the addition 

( )1 t∆κ  to the reverse kink length. 
Thus all types of internal kink oscillations after a transi-

ent period of evolution show a quasi-local character of mo-
tion with slowly decaying frequencies just above the lowest 
edge 0 1Ω = . They can be considered as lagrangian collec-
tive coordinates describing periodic changing of the slope 
and the effective length of kink profiles. Further inclusion 
of dissipation in the consideration is absolutely necessary 
[8], because of loss of the kink energy, which is expended 
to excitation of linear waves, and external periodic forces 
can compensate for this energy leakage. The question 
about the energy radiation by the nonequilibrium kink in 
the framework of the SG equation (2), including a genera-
tion of breathers, we discuss in the next section. 

Breather generation and energy radiation 
by nonequilibrium kink 

The analysis of small oscillations of a nonequilibrium 
kink by means of the perturbation theory led to the linear-
ized equation and finally to the solution of the quasimode 
problem. The general problem on the evolution of the 
nonequilibrium kink (12) with considerable deviation from 
the exact solution (4) has to be solved in the framework of 
the nonlinear SG equation (2). In order to solve the Cauchy 
problem of the integrable sine-Gordon equation, the inverse 
scattering method is usually used [1]. In point of fact, it is 
enough to solve the direct scattering problem associated 
with the sine-Gordon equation. This task for the kink (4) 
was formulated in Ref. 25 in the general form, in particu-
lar, the exact profile (4) was considered to have the non-
zero velocity ( ,0) 2 / cosh( )tu x x= µ  with an arbitrary con-
stant parameter µ. As a result, authors of [25] achieved suc-
cess in the construction of a sequence of exact multibreather 
wobbling kinks which correspond to the reflectionless spec-
tral problem. 

We use the direct scattering problem formulated in [25] 
to analyze the Cauchy problem for initially static kink 

( )( ,0) 4arctan exp( )u x x= κ  with an arbitrary value of the 
parameter κ . We reduce the task to solving the spectral 
problem of the well-known one-dimensional Schrödinger 
operator, which eigenvalues determine the number of 
breathers generated from the nonequilibrium kink and val-
ues of their parameters. The final solution presents the 
multibreather wobbling kink, in which all breathers are 
located strictly in the central part, and the excess energy is 
emitted as linear wave packets. Eventually, the radiation 
energy can be found as a function of the effective length of 
the initial kink profile. 

It is known [1], that the spectral problem associated 
with the SG equation in the inverse scattering method can 
be formulated as follows: 

 1 2 3
1

2 8 4
i iU U U

iξ
λ

= + +
λ

J J J J, (34) 

where λ is the spectral parameter, 1

2

ψ 
=  ψ 

J  is the Jost 
functions and matrices are equal to: 

1
1 0
0 1

U  
=  − 

, 2
cos sin
sin cos

u i u
U

i u u
− 

=  − 
, 

 3
0

0
x t

x t

u u
U

u u
− 

=  − 
. (35) 

In [25], the matrix eigenvalue problem was significantly 
simplified. After carrying out the following replacements 

 2z = λ , 1 1
4

S z
z±

 = ± 
 

, (36) 

the problem was rewritten as 
Fig. 8. The time dependencies of the amplitude (a) and the de-
rivative of the phase (b) of the addition to the reverse kink 
length in the damped quasimode regime. 
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( )( ) ( ) ( )
( ) ( ) ( )( )

1 1

1 1

4 1 cos sin
4

sin 4 1 cos
x t

x
x t

S z u z u i u u
i

z u i u u S z u

− −
−
− −

−

 + − − − +
=  

− + + − − −  
J J 

  (37) 
and by the use of the rotation transformation 

 ( )
cos sin

4 4
; ,

sin cos
4 4

u u

x z t A
u u

    
        = =

    −    
    

J J J (38) 

it was reduced to the form: 

1cos sin
2 2 4

1sin cos
2 4 2

t

x

t

u uS S iu
i

u uS iu S

− +

+ −

    − −        =
    − + −    

    

J J . (39) 

As can be seen, for the class of initial conditions with the 
time derivative ( ,0) 0tu x = , the direct scattering problem 
has an even simpler form: 

 
cos sin

2 2

sin cos
2 2

x

u uS S
i

u uS S

− +

+ −

    −        =
    − −    

    

J J . (40) 

Starting from Eq. (40), we analyze the problem of the 
evolution of the initially static nonequilibrium kink profile 

( )( ,0) 4arctan exp( )u x x= κ . It is known that the spectral 
eigenvalues lie exactly on the imaginary axis of the upper 
half-plane of a complex parameter z  for kinks and on the 
circle of the unity radius for breathers, respectively. Inter-
esting in the kink and breather solutions, we introduce for 
the spectral parameter the notation exp( )z i= χ  that is valid 
for unmovable breathers and also for the exact kink (4) 
when 0χ =  and 1z = . For this choice of z  parameters S−  
and S+  become 

 sin
2
iS− = χ, 1 cos

2
S+ = χ. (41) 

Introducing notations 1
1 sin cos
2 2

uU = χ  and 2
1 cos sin
2 2

uU = χ , 

we rewrite the matrix equation as the system 

 1
1 1 2 2

d U iU
dx
ψ

= ψ + ψ , 2
2 1 1 2

d iU U
dx
ψ

= ψ − ψ . (42) 

We define conjugate operators  

 1
dL U
dx

− = + , 1
dL U
dx

+ = − +  (43) 

and obtain the following compact form the system (42) 

 1 2 2L iU+ψ = − ψ , 2 2 1L iU−ψ = ψ . (44) 

Then the equations for real and imaginary parts of func-
tions 1,2 1,2 1,2g ivψ = +  take the form 

 1 2 2L g U v+ = , 2 2 1L v U g− = ; (45) 

 1 2 2L v U g+ = − , 2 2 1L g U v− = − . (46) 

By replacing 1 1g v→  and 2 2v g→ − , it is easy to see that 
these systems are equivalent. We aim to obtain the differ-
ential equation of the Schrödinger-like type from the sys-
tem (45). Therefore we apply the operator L− to the first 
equation from the system (45)  

 2 2
2 1

ln
0

d UL L U L g
dx

− + + − − = 
 

 (47) 

and similarly the operator L+ to the second equation (46) of 
this system  

 2 2
2 2

ln
0

d UL L U L v
dx

+ − − − + = 
 

, (48) 

and find the following explicit form of the second order 
differential equation: 

2
11 2 2 2 2

1 1 22
2

ln ln
0

gdU d U d Ud dU U U
vdx dx dx dxdx

   − ± − + − + =   
    

. 

  (49) 

The upper sign refers to the function 1g  and the lower sign 
to the function 2v , respectively. In order to exclude the first 
derivate, we perform the substitution, for definiteness, for 
function 1 2g U f=  and obtain the equation of the spectral 
problem of the Schrödinger operator 

 ( )
2

2 ,sin 0d W x f
dx

 
− + χ = 
 

, (50) 

where the potential well is as follows 

( ),sinW x χ =  

2 2
2 2 2 2 1

1 2 12
2

ln ln1 1 ln .
4 2

d U d U UdU U U
dx dx Udx

 = − + − + 
 

 

  (51) 
This potential well can be expressed explicitly in the terms 
of the function u  

( ),sinW x χ =  

2
2

2 2
2

ln sin ln sin1 2 22 sin sin
4 2

u ud d u
dx dx

  = − + χ − −    

 

 
ln tan

22sin cos .
2

udu
dx




− χ 



 (52) 

The equation (50) with the potential (52) can be used for 
any static initial condition ( ,0)u x  to determine easily 
whether or not breathers are generated and to find their 
parameters using developed methods of analysis and solv-
ing the one-dimensional Schrödinger equation [24]. 
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In the case of the initial condition in the form of a 
nonequilibrium kink (12) the functions in the potential (52) 
are as follows: 

 1sin
2 cosh
u

x
=

κ
, cos tanh

2
u x= − κ . (53) 

As a result, after the substitution (53) into Eqs. (50) and 
(52) and the introduction of a variable y x= κ  we obtain the 
following eigenvalue equation: 

22

2 2 2
1 1 1 1 sin1 1
4 4cosh

d f f
dy y

  χ   − − − = − −    κκ    
. (54) 

Using the formula for discrete levels of this well-known 
equation from [24]: 

 ( )( )2
0

1 1 2 1 4
4n n UΛ = − − + + + , (55) 

where 
21 sin1

4n
χ Λ = − − κ 

and 0 2
1 1 1
4

U  = − κ 
 we obtain 

the condition on the number and parameters of breathers 
arising from the unequilibrium kink (12): 

 sin 1 2n n nε ≡ χ = − κ. (56) 

It is easy to see that at 1κ = , the number of breathers is 
0n = . When 1/ 2κ =  and 1n = , the first breather appears, 

and when 1/ 2n nκ =  then nth breather arises.  
In general, the solution presents the multi-frequency os-

cillating kink that generates linear waves of the continuous 
spectrum. This complex kink is a nonlinear superposition 
of the kink and breathers with parameters nε  which deter-

mine their frequencies 21 cosn n nω = − ε = χ  and eventual-
ly their energies. In the integrable SG system the integral 
of the energy  

 ( )2 21 1 cos
2 t xE u u u dx

∞

−∞

 = + + − 
 ∫  (57) 

is the additive function of energies of all the nonlinear and 
linear excitations [1]. Therefore, the energy of the nth 
breather, 16n nE = ε , is conserved and does not depend on 
its interaction with other excitations. Returning to the ef-
fective length 1/l = κ  of the nonequilibrium kink, we ob-
tain the expression for the energy of the nth emerging 

breather ( ) 216 1n
nE l
l

 = − 
 

. Now it is easy to calculate 

the energy of radiation arising during the evolution of a 
nonequilibrium kink: 

 ( ) ( ) ( ) 0
brsr K KE l E l E l E= − − , (58) 

where the energy of the initial profile of the kink is 

( ) 14KE l l
l

 = + 
 

, the energy of all breathers ( )brsE l = 

1

216 1
N

n

n
l=

 = − 
 

∑ , where their total number is equal to the 

integer part of / 2l , i.e. 
2
lN  =   

, and the energy of the 

static kink as a final state of its evolution is 0 8KE = . After 
calculating we obtain for the energy of all breathers 

 ( )brs
1

1
2 216 1 16 1

2

N

n

l
n lE l
l l=

   +        = − = −        
 
 

∑ , (59) 

and get finally the following dependence: 

 ( )
1

1 24 16 1 8
2r

l
lE l l

l l

   +        = + − − −        
 
 

. (60) 

This function is shown in Fig. 9. 
It is easy to verify that for an even integer 2l m= , at the 

moment of birth of the next breather, the radiation energy 
reaches its maximum (2 ) 2 /rE m m= . For odd numbers 

2 1l m= + , the radiation energy is absent, (2 1) 0rE m + = , 
and all the energy of the system is localized in space in the 
form of an ensemble of breathers settling on the kink, i.e., 
in the form of a multi-frequency oscillating kink. In partic-
ular, in the case 3l =  and 1n =  the exact wobbling kink is 
formed from the unequilibrium profile (12). The wobbling 
kink presents a nonlinear superposition of the kink (12) 
with 1/ 3κ =  and the breather with parameters 1 1/ 3ε =  
and the frequency 1 2 2 / 3ω =  as it follows from Eq. (56). 
Notice that the explicit cosine form of this solution was 
found first in the Ref. 25.  

No breather exists up to the length value 2l = . In the vi-
cinity of the point 1l = , there is the single oscillating kink 
which relaxes to the exact solution (4) in the quasimode 
regime described in the previous section. Therefore no 
internal oscillation appears with the frequency below 

0 1Ω =  from the slightly perturbed kink (12) at the nonlinear 
evolution stage. 

Fig. 9. The dependence of the radiation energy on the effective 
length of the initial kink profile. 
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Analysis of the Cauchy problems with initial condi-
tions (22) and (29) in the previous section dealt with linear 
waves around the kink and indicated only the formation of 
wave packets. In order to clarify whether breather birth 
happens at the nonlinear stage, we have to solve the equa-
tions of the direct scattering problem. In this case, the ob-
tained equation (50) with the potential (52) has a certain 
advantage. The substitution of the exact kink solution (4) 
into the potential (52) leads to the absence of the potential 
well in Eq. (54) at all. Therefore, any small addition to the 
shape of this kink is entirely responsible for the creation of 
the own potential and its specific features. After the substi-
tution of Ku u= + φ and linearization of ( ,sin )W u χ with 
respect to small φ, we find new potential ( , ,sin )KV uφ χ  for 
the Schrödinger equation (50), the discrete levels of which 
determine a presence and parameters of the breather. In the 
case of the initial conditions (12) with the small parameter ,η  
the corresponding equation is found directly from Eq. (54) 
after the substitution 1κ = + η and the linearization with 
respect to η. In accordance with the above conclusion, the 
linearized equation has no discrete eigenvalue. Further, we 
performed calculations for the initial condition (22) and 
found the following equation  

( )
2

2
2 2 4

1 sin 3 1 1 sin
4 4cosh cosh

d f f
dx x x

 ρ + χ − − − = − − χ  
  

, 

  (61) 

in which the suitable discrete eigenvalue is also absent in 
the case of small parameters ρ and χ.  

However, it does not mean that the arbitrary small static 
deformation of the exact kink (4) can not cause the breath-
er birth. For example, the following initial condition for the 
addition to the kink shape with a free parameter ε 

 ( ) 1tanh( ,0) 1 tanh tanh
cosh

xx x x
x

−ε ε
φ = − − ε ε  (62) 

generates the exact wobbling kink solution of the SG equa-
tion. We present here this wobbling kink in the form that 
shows evidently that the breather, settling on the exact kink 
(4), can possess the small amplitude ε and the frequency 

21ω = − ε that is close to unity: 

costanh tanh tanh
2 2 cosh4arctan

cos1 tanh tanh
2 cosh

WK

x x tx
xu

x tx
x

 ω  − ε ε + ⋅  ε  = π +
ω  − ε ⋅ ε −  ε  

. 

  (63) 

Finally notice, while the breather standing alone is evi-
dently the even function [26], the small amplitude breather 
on the kink background is the odd function and has the 
form of the kink internal mode. 

Conclusion 

The main findings of this study are as follows: 
1. Nonstationary dynamics of topological defects and 

inhomogeneities described by the sine-Gordon equation is 
studied. The evolution of nonequilibrium profiles of these 
topological objects is considered, and their oscillation re-
gimes of the approach to static configurations are investi-
gated in terms of nonlinear excitations of the sine-Gordon 
equation, kinks and breathers. In order to describe explicitly 
oscillatory behavior of these objects, the Cauchy problem 
for the equation linearized near the exact static kink is 
solved for the small addition to the kink shape. The obtained 
solution describes explicitly the regime of long-living oscil-
lations of the kink, named in Ref. 5 the quasimode of kink. 
It is shown that the kink deformations leading to its initial 
compression and tension evolve as weakly damped oscilla-
tions with the frequency lying just above the lowest edge 
of the continuous spectrum. The specially combined de-
formation leads to a great rate of damping the kink oscilla-
tion and to the formation of the well-defined wave packet 
carrying away all the exceed energy of the initial kink pro-
file. The patterns of the kink evolution and the time de-
pendencies of its effective length are presented. 

2. The nonlinear stage of evolution of the kink with the 
deformed slope is investigated in the framework of the in-
verse scattering method. In fact, the direct scattering prob-
lem solution appears to be enough to find exactly the condi-
tions of arising the breathers from the nonequilibrium kink 
and to determine their amplitudes, frequencies and finally 
their energies. In general, we reduce the direct scattering 
problem, considered in Ref. 25, first to our knowledge, to 
solving the spectral problem of the one-dimensional 
Schrödinger equation. In the case of the nonequilibrium 
kink, this equation corresponds to the well-known one in 
quantum mechanics [24] with the famous spectrum of dis-
crete levels. After finding parameters of breathers for the 
multi-frequency oscillating kink, we are able to consider 
the complex solution consisting of namely the kink, arising 
breathers and wave packets generated by the kink. We cal-
culate the dependence of the radiation energy on the effec-
tive length of the initial kink profile and analyze the struc-
ture of the ensemble of linear and nonlinear excitations 
depending on this parameter. At last, we note the ad-
vantage of the obtained Schrödinger equation that using 
the equation we are able to determine whether or not a 
small deformation of the exact kink (4) leads to the small-
amplitude breather birth. 
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Генерація хвильових пакетів та бризерів 
осцилюючими кінками в системі  

синус-Ґордон 

M. M. Bogdan, O. V. Charkina 

Досліджено еволюцію нерівноважних неоднорідностей та 
топологічних дефектів у термінах складних розв’язків-кінків 
рівняння синус-Ґордона. Явно описано слабко загасаюче 
коливання синус-ґордонівського кінка, яке зветься квазімодою 
кінка. Показано, що коливальна поведінка кінка і генерація 
хвильових пакетів суттєво залежать від початкового профілю 
нерівноважного кінка. Для того, щоб визначити умови вини-
кнення осцилюючих кінків з багатобризерною структурою, 
переформульовано пряму задачу розсіювання, пов’язану з 
рівнянням синус-Ґордона, як спектральну проблему для опе-
ратора Шредінгера. Отримано залежність енергії випроміню-
вання, що генерується під час формування багаточастотного 
осцилюючого кінка, від ефективного розміру його початко-
вого профілю. 

Ключові слова: нелінійна динаміка, рівняння синус-Ґордона, 
квазімода, осцилюючий кінк, випромінювання. 
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