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The Monte Carlo method was used to calculate the relative dispersions of the magnetization Rm, susceptibility 
Rχ, and heat capacity RС for a weakly diluted impurity Potts model with the number of spin states q = 4. It is 
shown that the introduction of disorder in the form of nonmagnetic impurities into the two-dimensional Potts 
model with q = 4 on square lattice leads to nonzero values for Rm, Rχ, and RС at the critical point. 
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Introduction 

Investigations of real magnetic systems have shown that 
systems in a pure homogeneous state are rarely found, 
there are always nonideal features such as impurities and 
structural defects that affect the magnetic and thermal 
properties in magnetic structures [1–5]. It should also be 
borne in mind that in some works the dependence of the 
thermodynamic parameters on the way of realizing the 
disorder in the model under study was found. For example, 
in [6, 7] it was found that the disorder realized by the ca-
nonical method (fixing the fraction of magnetic nodes) 
leads to results that differ from the case when the disorder 
was realized by the method of the grand canonical type 
(the fraction of magnetic nodes in each impurity configura-
tion fluctuates). Although the study [8], carried out by the 
renormalization group methods, explained this behavior by 
the difference in finite-size effects in these two types of 
dilution. A rigorous study of such regularities in the near 
future is possible only based on numerical experiment data 
and is practically impossible by other methods. Note that 
the behavior of the thermodynamic critical parameters of 

disordered models for various realizations of disorder in 
the form of nonmagnetic impurities in a wide range of 
changes in the impurity concentration cimp = 1 – p, where p 
is the spin concentration, has been insufficiently studied 
with the observance of a unified technique.  

The features of the distribution and self-averaging of 
thermodynamic parameters over the corresponding ensem-
ble have not been clarified. Clarification of these issues in 
relation to the two-dimensional weakly diluted Potts model 
with the number of spin states q = 4 based on the cluster 
Monte Carlo (MC) method is the main task of this work. 

2. Potts model with quenched-in disorder 

A weakly diluted Potts model with the number of spin 
states q = 4 is shown in Fig. 1. In the model under consid-
eration, the disorder is distributed in the form of nonmag-
netic impurities in a canonical way (by fixing the fraction 
of magnetic nodes):  

(i) At the sites of a square lattice there are Si spins, 
which can be in one of the q = 4 states, and nonmagnetic 
impurities (vacancies). Nonmagnetic impurities are random-
ly distributed and fixed (see Fig. 1). 
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(ii) The binding energy between two neighboring sites 
is zero if at least one site contains a nonmagnetic atom, and 
is equal to |J| if both sites are occupied by magnetic atoms. 

The Hamiltonian of such a system has the form [9] 

 i,j
,

1 cos , 1, 2, 3, 4
2 i j i

i j
H J S= − ρ ρ θ =∑ , (1) 

where J is the parameter of the exchange interaction of the 
nearest neighbors (J < 0); ρi = 1 if site i is occupied by a 
magnetic atom, ρi = 0 if there is a nonmagnetic impurity in 
the site; θi,j is the angle between the interacting spins Si – Sj. 
The concentration of magnetic spins p is determined by 
summing the absolute values of the spin at all lattice sites: 
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where L is the minimum system size. 
The value p = 1 corresponds to the pure Potts model, 

p = 0 corresponds to an empty purely impurity lattice. The 
quenched Potts model has a fairly long history. To date, 
the effect of nonmagnetic impurities in Ising-like models 
has been well studied [10–15]. At the same time, the prob-
lem of the distribution of thermodynamic parameters and 
their averaging over an ensemble of disordered systems 
with different realization of disorder has not been studied 
for all models. It should be noted that, in accordance with 
the Harris criterion [16], for the two-dimensional Potts 
model with q = 4, the effect of impurities on the magnetic 
and thermal characteristics should be significant, since the 
critical heat capacity index α > 0 for the pure Potts model 
with q = 4. 

The interest in this model is due to the following main 
reasons. 

First, the weakly diluted Potts model with the frozen-in 
disorder is of practical interest, since it allows, at the level of 
the simplest model, to include into consideration the macro-
scopic effects of the disorder, which are always present in 
real materials. 

Second, the study of the effect of quenched disorder on 
the universal characteristics of critical behavior, in addition 
to practical, is of great theoretical interest [1, 2]. 

Third, the first attempts to study this model with a cano-
nical distribution by methods of computational physics were 
made at a time when the power of computers and the algo-
rithms used by the MC method did not allow calculating the 
critical parameters with the required degree of accuracy. 

3. Research methodology 

The research was carried out based on the Metropolis 
algorithm in combination with the Wolff cluster algorithm 
of the Monte Carlo method [17]. The method of its imple-
mentation is discussed in detail in [18, 19]. In this work, 
this algorithm is used in the following form: 

(i) A node on a lattice is randomly selected. If this site 
contains a nonmagnetic impurity, then again a site is ran-
domly selected, and so on until a site with a magnetic spin 
Si is selected. 

(ii) All nearest neighbors Sj of a given spin Si are con-
sidered. If a neighboring site is occupied by a magnetic 
spin, which is codirectional with the non-inverted spin Si, 
then with probability )  1  ex (p 2р K= − − , where K = J/(kBT), 
this spin is also flipped, and its coordinates are stored in 
the stack. Then the nearest neighbors of the last spin with 
which the connection was established, are viewed. This 
process continues until the system boundaries are reached. 

(iii) All spins, between which the connection is estab-
lished, form a “cluster”. 

(iv) The spins flipped procedure ends when the stack is 
empty. This process is called cluster flipping. 

The calculations were performed for weakly dilute sys-
tems with periodic boundary conditions at a spin concen-
tration p = 0.90. Systems with linear dimensions L×L = N, 
L = 20 and 120 are considered. The initial configurations 
were set in such a way that all spins were ordered along 
one axis. To bring the system to an equilibrium state, the 
relaxation time τ0 was calculated for all considered sys-
tems, and averaging was carried out for different initial 
configurations. For systems with a spin concentration 
p = 0.90, configuration averaging was performed over 
1000 different configurations. 

4. Results of a numerical experiment 

The temperature dependence of the susceptibility was 
calculated according to the fluctuation relation [20] 

 ( )( )22NK m mχ = − , (3) 

where K = J/(kBT), J is the ferromagnetic interaction pa-
rameter (J > 0), N = pL2 is the number of magnetic sites, 
m is the magnetization of the system, angle brackets denote 
thermodynamic averaging, the bar above denotes averag-
ing over the canonical ensemble with the different realiza-
tion of the disorder.  

Fig. 1. Two-dimensional weakly diluted Potts model with the 
number of spin states q = 4. 
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The expression for the magnetization for the two-
dimensional weakly diluted Potts model is defined by the 
following expression [21]: 

 
1/224
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where Nα = {N1, N2, N3, N4}, N1, N2, N3, and N4 are the num-
bers of spins in the states with q = 1, 2, 3, and 4, respectively. 

The critical temperatures and the order of the phase 
transition (PT) were determined using the method of 
fourth-order Binder cumulants [22]. The technique for de-
termining the PT temperature by this method is considered 
in [23–26]. The critical temperature for the two-
dimensional impurity Potts model with the number of spin 
states q = 4 at the spin concentration p = 0.90 was deter-
mined in [26], Tc(p) = 0.777(2). 

Figures 2 show the values of susceptibility χj, magneti-
zation mj, and heat capacity Cj, respectively, for various 
impurity configurations j of the three-dimensional Potts 
model in a weakly diluted mode at p = 0.90, T = Tc(p), 
0 ,sj N≤ ≤  Ns is the total number of impurity configura-
tions. Here also presented the averaged values [ ]jX , [ ]jm , 
and [ ]jС  over the corresponding canonical ensemble with 
the different distribution of nonmagnetic impurities for 
systems with a linear size L = 20. As can be seen, the num-
ber of impurity configurations Ns used for averaging makes 
it possible to achieve an asymptotic critical regime for all 
the considered thermodynamic parameters in a weakly 
diluted region. This behavior is due to the fact that, in con-
trast to works [1, 2], in which the quenched-in disorder is 
realized in a large canonical way, nonmagnetic impurities 
in our work were distributed over the system in a canonical 
way, i.e., by fixing the fraction of magnetic nodes in each 
disordered configuration with a different realization of 
disorder, in which fluctuations in the impurity distribution 
are much smaller than in the case of the grand canonical 
type. 

To calculate the relative dispersion (squares of the coef-
ficients of variation) of the magnetization Rm, susceptibility 
Rχ, and the heat capacity RC depending on the linear dimen-
sions L of the system under study, we used the expressions 
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The data calculated by expressions (5) – (7) make it pos-
sible to judge the self-averaging of thermodynamic quanti-
ties and the errors associated with the sizes of the studied 
systems. The corresponding values of Rm, Rχ, and RС 

for systems with L = 20 and 120 at the spin concentrations 
p = 0.90 are presented in Table 1. As can be seen, the 
introduction of weak disorder into the Potts model with 
q = 4 leads to nonzero values of Rm, Rχ, and RC. Moreover, 

Fig. 2. Distributions of susceptibility (a), magnetization (b), and 
heat capacity (c) over a canonical ensemble with different distri-
bution of nonmagnetic impurities for a system with p = 0.90, 
T = Tc(p) and linear size L = 20. 

Table 1. Values of relative dispersions of susceptibility, mag-
netization, and heat capacity for a weakly diluted Potts model 
with q = 4 

L Rχ Rm RC 

20 0.021 0.011 0.012 
120 0.018 0.010 0.009 
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with an increase in the linear size of the system, these data 
noticeably decrease. This behavior, when the relative vari-
ances of Rm, Rχ, and RС decrease with increasing L corre-
sponds to the case of weak self-averaging (see [2]). Analy-
sis of these data and their scaling in a wide range of 
dilutions p for spin systems with different L will be the 
goal of a separate work. 

5. Conclusion 

First the relative dispersion of the magnetization Rm, 
susceptibility Rχ, and heat capacity RС have been calculated 
for a weakly diluted impurity Potts model with the number 
of spin states q = 4. The calculations were performed for 
spin systems with linear dimensions L = 20 and 120 at a 
spin concentration p = 0.90. It is shown that the introduc-
tion of a weak frozen-in disorder in the form of nonmag-
netic impurities into the pure Potts model with q = 4 on a 
square lattice leads to nonzero values of Rm, Rχ, and RС. 
The obtained data decrease with an increase in the linear 
size L, which is due to the weak self-averaging of thermo-
dynamic parameters in the considered disordered model. 
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Розрахунок відносних дисперсій намагніченості, 
сприйнятливості та теплоємності у двовимірній 

слабкорозбавленій моделі Поттса на основі 
методів комп’ютерного моделювання 

A. K. Murtazaev, A. B. Babaev, G. Ya. Ataeva, 
A. A. Murtazaeva 

Методом Монте-Карло розраховано відносні дисперсії 
намагніченості Rm, сприйнятливості Rχ та теплоємності RС 
для слабкорозбавленої домішкової моделі Поттса з числом 
станів спіна q = 4. Показано, що внесення безладу у вигляді 
немагнітних домішок в двовимірну модель Поттса з q = 4 на 
квадратній гратці призводить до відмінних від нуля значень 
Rm, Rχ та RС в критичній точці. 

Ключові слова: метод Монте-Карло, модель Поттса, диспер-
сія намагніченості, сприйнятливості та тепло-
ємності. 
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