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The Coulombic effect on microwave-induced electron heating in a 2D electron gas on liquid helium under 
quantizing magnetic field is theoretically studied. An extension of the linewidth of the intersubband resonance 
which takes into account squeezing of the electron density of states into Landau levels and strong internal elec-
tric fields of fluctuational origin is proposed. This approximation results in two-hump peaks of electron tempera-
ture and power absorption near certain values of the magnetic field. For low electron densities, the asymmetry of 
the two-hump peaks of power absorption is shown to be opposite to the asymmetry of electron temperature 
peaks, which explains experimental observations. The importance of two-ripplon emission processes for the de-
scription of subband occupancies and the energy relaxation rate was demonstrated. 
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1. Introduction 

The discovery of microwave-induced resistance oscilla-
tions (MIRO) and zero-resistance states (ZRS) in a high-
mobility two-dimensional (2D) electron gas of semicon-
ductor devices subjected to a perpendicular magnetic field 
[1–4] had inspired a large body of experimental and theo-
retical studies in various electron systems [5–7]. The effect 
of MIRO is caused by the microwave (MW) electric field 
whose polarization vector is directed along the plane of the 
2D electron system (intrasubband excitation), though the 
actual mechanism responsible for this effect is still under 
debate (different theoretical mechanisms are reviewed in 
Ref. 8). In this case, resistance oscillations are observed for 
a quite arbitrary MW frequency > cω ω  (here cω  is the 
cyclotron frequency), and ZRS appear in regions of oscilla-
tory minima if MW power is high enough. 

Similar MIRO and ZRS of different origin were observed 
in a nondegenerate 2D electron gas formed on the free sur-
face of liquid helium [9, 10] when the two lowest subbands 
were tuned to the resonance with the MW frequency: 

2,1 2 1( ) /ω ≡ ∆ −∆ →ω , where l∆  (with = 1, 2, ...l ) is the 
position of an energy level of an electron in the 1D poten-
tial well formed near the interface. The period of DC mag-
netoconductivity ( xxσ ) oscillations is controlled only by 
the ratio 2,1 / cω ω , and strong variations of xxσ  occur in the 

vicinity of magnetic field values mB  defined by the condi-
tion 2,1 / ( ) =c B mω ω  (here = 1, 2, ...m ). The theoretical 
explanation of this kind of MIRO is based on nonequilib-
rium electron population of the excited subband [11, 12] 
which triggers quasi-elastic intersubband scattering of 
electrons at helium vapor atoms and capillary-wave excita-
tions (ripplons). Therefore, the presence of the vertical 
(out-of-plane) component of the MW electric field is im-
portant for observation of this effect. A remarkable proper-
ty of the intersubband scattering is that it results in sign-
changing corrections into electron magnetoconductivity xxσ  
and even ZRS if the fractional occupancy of the excited 
subband 2n  exceeds 1 2,1exp ( / )en T⋅ −∆ , where 1n  is the 
fractional occupancy of the ground subband, 2,1 2 1=∆ ∆ −∆ , 
and eT  is the electron temperature. Therefore, an extra 
population of the second subband 2n  caused by trivial heat-
ing of an electron gas cannot lead to sign-changing terms 
of the DC magnetoconductivity and ZRS. In order to ob-
serve this kind of MIRO in a degenerate electron system, 
the displacement from equilibrium should be such that 
electron distributions in two subbands can no longer be 
described by a single Fermi level [13]. 

Usually, quasi-elastic electron decay from the excited 
subband to the ground subband strongly heats the electron 
system because the energy 2,1∆  is transferred into the ki-
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netic energy of electrons. In the absence of the magnetic 
field, the interplay between the MW excitation and the 
electron scattering by vapor atoms can heat electrons [14] 
up to about 10 K long before the quantum saturation is 
reached. If a perpendicular magnetic field is applied, the 
in-plane electron density of states is squeezed into a stair-
case of Landau levels which are broadened due to interac-
tion with scatterers. In this case, quasi-elastic decay can be 
strongly suppressed if the staircases of Landau levels be-
longing to different subbands are not aligned, and the 
quantum saturation 2 1n n→  can be reached at rather low 
excitation rates. In the opposite regime, when the staircases 
of Landau levels are aligned ( 2,1 / c mω ω → ) electron sys-
tem is heated due to quasi-elastic decay of electrons excit-
ed to the second subband by the MW. In other words, the 
electron temperature should also oscillate when varying 
1/B with the period governed by the ratio 2,1 / cω ω . The 
magnetooscillations of electron temperature were de-
scribed previously [12] by a simple method which neglects 
electron-electron correlations and inelastic decay proces-
ses. At the same time, under experimental conditions the 
many-electron effect on intersubband MIRO was shown to 
be important even at rather low electron densities en  on the 
order of 6 210 cm− . 

The many-electron theory of intersubband MIRO had 
explained [15, 16] a number of remarkable experimental 
observations (for a review, see Ref. 17). In spite of the 
good agreement between experimental data for conductivi-
ty extrema [18] and the respective theoretical predictions 
[15] formulated under the assumption =eT T , there are 
some interesting effects observed which require further 
developments of the theory. For example, the first meas-
urements [19] of intersubband absorption of MWs in sur-
face electrons on liquid helium subjected to perpendicular 
magnetic field had revealed an unexpected feature: the 
strong suppression of absorption at magnetic fields mB  
where the intersubband energy splitting 2,1∆  is a multiple 
number of the cyclotron energy cω . This effect was not 
explained by the existing theories and requires additional 
studies. The same is valid for the hysteresis observed [20] 
in the dependence ( )xx Bσ  near the conductivity minimum 
which is close to 5B . Electron heating and Coulombic ef-
fects are expected to be responsible for this feature. 

There is another important point of the theory describ-
ing magnetooscillations induced by resonant intersubband 
excitation in a highly correlated 2D electron system. At 
low temperatures ( 0.4 KT ≤ ), the average kinetic energy 
of surface electrons eT  is much smaller than the average 
potential energy due to Coulomb interaction, and the con-
ventional plasma parameter 2

pl = /e ee n Tπ  is much 
larger than unity even for rather small electron densities 

6 210 cmen − . Therefore, in a wide range of this parame-
ter, pl10 < < 131 , surface electrons on liquid helium rep-
resent a highly correlated Coulomb liquid. Under equilib-

rium conditions ( =eT T ) this problem was successfully 
solved employing the concept of quasi-uniform internal 
electric field fE  of fluctuational origin [21]. The typical 

value of the fluctuational electric field (0) 3/43 e efE T n  de-

pends on electron density and temperature eT . In the pres-
ence of such a field, the dynamic structure factor (DSF) of 
the 2D electron liquid acquires an additional broadening 
of its maxima [22, 23] proportional to (0)= 2f BfeEΓ   

(here = /B c eB   is the magnetic length) which affects 
strongly relaxation processes of electrons. The concept of 
quasi-uniform fluctuational electric field is valid if the 
plasma parameter pl > 10 . With an increase of electron 
temperature induced by quasi-elastic electron decay pro-
cesses the many-electron effect on relaxation rates increa-
ses ( f eTΓ ∝ ), but at the same time 1

pl eT −∝  decreases 
and soon it can become smaller than 10. Actually it can even 
reach values on the order of unity, where the model of 
noninteracting electrons works quite well. Therefore, the 
many-electron theory of magnetooscillations should take 
this effect into account. 

In this work, we present the theory of magnetooscillations 
of temperature and MW absorption of surface electrons on 
liquid helium which takes into account changes in the 
many-electron effect caused by electron heating as well as 
the specific nature of inelastic relaxation processes [24, 25] 
in this system. We shall modify the model describing the 
linewidth of the intersubband resonance, for it to be appli-
cable for highly correlated electrons under a quantizing 
magnetic field. This modification and the internal forces 
affect strongly the shape of magnetooscillations. We shall 
demonstrate that intersubband MW absorption generally is 
not an increasing function of the electron temperature, as it 
is in usual intrasubband experiments, and, therefore, the 
asymmetry of electron temperature peaks in most cases is 
not the same as the asymmetry of power absorption peaks 
which explains experimental observations. 

2. Intersubband transition rates under magnetic field 

Consider a 2D electron gas formed on a flat substrate of 
liquid helium. In a 2D system, an electron subjected to a 
moderately-strong perpendicular magnetic field has a dis-
crete energy spectrum called the staircase of Landau levels: 

 ( )= 1/ 2 , = 0, 1, 2, ...n c n nε ω +  (1) 

Each Landau level is degenerate ( nε  is independent of the 
center coordinate quantum number X ); the degeneracy of 
a level is given by 2/ 2A BS π , where AS  is the surface area. 
Therefore, interaction with scatterers broadens Landau 
levels. For short-range scatterers, like helium vapor atoms, 
the collision broadening [26]  

 2
0

2=n cΓ ≡ Γ ω ν
π
  (2) 
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is independent of the level number n; here 0ν  is the mo-
mentum relaxation rate for = 0B . This property is very 
convenient for studying nonequilibrium phenomena with 

e cT ω . 
In the self-consistent Born approximation [26] (SCBA), 

the density of states of Landau levels has the semi-elliptical 
shape. The cumulant approach gives the Gaussian shape [27]  

 ( ) ( )2

2

22Im = exp n
n

n n
G

 ε − επ  − ε −
Γ Γ  

   

[here ( )nG ε  is the single-electron Green’s function] which 
is more suitable for lower levels, and more convenient for 
analytical evaluations. Therefore, it also is often employed 
for calculation various relaxation rates caused by scatterers 
in the way the semi-elliptical shape is used in the SCBA 
theory: effects of scattering are described in the lowest 
Born approximation, while the effect of broadening of the 
density of states is considered using the Green’s-function 
formalism. 

When describing properties of a photo-excited 2D elec-
tron gas, the excited subbands should be included in the 
consideration. In this case, the electron energy spectrum is 
given by , =l n l n∆ + ε , and the collision broadening of 
Landau levels becomes dependent on the subband number: 

,l nΓ . If electron heating is not too strong ( 3 KeT  ), one 
can restrict the consideration by two subbands: the ground 
( = 1l ) and the first excited ( = 2l ). At stronger heating, the 
population of higher subbands should be taken into ac-
count. In this paper, we shall mostly consider the two-
subband model described by fractional occupancies 

= /l l en N N , where eN  is the total number of surface elec-
trons. The subband occupancies are determined by the rate 
equation which includes the stimulated absorption (emis-
sion) rate mwr  and the transition rates between the subbands 

l l′→ν  caused by scattering at vapor atoms and ripplons. 
The interaction Hamiltonian describing electron scatter-

ing by vapor atoms usually has a very simple form 

 ( ) ( ) ( ) ( )
2

int
2

= , = ,a a a s
e a

ea
H V V

m
π ζ

δ −∑ R R


 (3) 

where sζ  is the effective scattering length, eR  and aR  are 
the 3D radius-vectors describing positions of an electron 
and a vapor atom respectively. This point together with the 
result of Eq. (2) makes it attractive to study electron heat-
ing and the many-electron effect in the vapor atom scatter-
ing regime, when quasi-elastic electron scattering by 
ripplons can be neglected. For liquid 3 He, this condition is 
realized at 0.4 KT ≥ . Then, the pure ripplon scattering 
regime ( 0.2 KT  ) can be modeled by choosing the proper 
values for Γ  and mwr . It should be noted that even in the 
vapor atom scattering regime one cannot neglect inelastic 
electron scattering by pairs of energetic ripplons caused by 
nonlinear terms in the interaction Hamiltonian [24, 25]. 

For the highly correlated multisubband 2D electron sys-
tem, it is very useful to describe [12, 15] electron scatter-
ing in terms of the dynamic structure factor (DSF) of the 
electron liquid , ( , )l lS q′ ω . This allows us to collect correct-
ly contributions from different scattering processes using 
the basic property of the DSF as a function of the frequen-
cy argument. In this method, following the ideas of the 
SCBA, difficulties of divergence caused by the singular 
nature of the density of states in 2D electron systems can 
be avoided by the replacement 

( ) ( ),
1 Imn l nGδ ε − ε → − ε
π

 

which takes into account the broadening of Landau levels 
at each subband. In these terms, the intersubband transition 
rate can be found as [12, 15] 

 ( )
( )

( )0
, , ,= , ,

a
a

l l l l l ll l
e A

p S q
m S ′ ′ ′′→
ν

ν ω∑
q



 (4) 

where , = ( ) /l l l l′ ′ω ∆ − ∆  ,  

 ( )
( ) ( )3D 2

1,1
,0 3

,1,1

( )
= , = ,

a
a e a

l l
l l

Bm n V
p

BB ′
′

ν


 (5) 

 ( )
2

,,

1 1= e ,ik zz
l ll l z kz

B L ′′
∑  (6) 

(3D)
an  is the density of vapor atoms, ( , )zk≡Q q  is the mo-

mentum exchange at a collision, and zL  is the “box” size in 
z-direction. The subscript indexes l  and l′ in the DSF of 
the multisubband 2D electron system ( ,l lS ′) indicate that 
the level broadening depends on l . For vapor atom scatter-
ing described by Eq. (3), we have , 1=l l lpΓ Γ , where 1Γ  
is given by Eq. (2). 

For noninteracting electrons, the DSF of the multi-
subband nondegenerate system is defined as [12] 

 ( ) / 2
, ,

,

2, = e ( )Te
l l n n q

n n
S q d I x

Z
−ε

′ ′
′

Ω ε ×
π ∑∫




  

 ( ) ( ), ,Im Im ,l n l nG G ′ ′× ε ε + Ω  (7) 

where ( )= exp /n en
Z T−ε∑

,  

 
2| |2 | |

, min( , )
[min( , )]!( ) = e ( ) ,
[max( , )]!

n nn n x
n n n n

n nI x x L x
n n

′−′− −
′ ′

′  
 ′

 (8) 

2 2= / 2q Bx q  , and ( )m
nL x  are the associated Laguerre poly-

nomials. The frequency argument of the DSF is denoted here 
by the capital letter Ω  to avoid confusing it with the MW 
frequency ω. The detailed balance of intersubband transition 
rates given by Eq. (4), ,= exp ( / )l l l l e l lT′ ′ ′→ →ν −∆ ν , follows 
directly from the basic property of the equilibrium DSF: 

 ( ) ( ), ,, = exp , .l l l l
e

S q S q
T′ ′

 Ω
−Ω − Ω 

 

  (9) 
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For degenerate electron system, the definition of the DSF 
and its basic property was given in Ref. 13. 

From Eqs. (4) and (7) it is quite clear that the decay rate 
( )
2 1
a
→ν  should have sharp maxima when 2,1( ) cn n′ − ω → ω . 

Under usual conditions, the system of surface electrons on 
liquid helium is characterized by extremely narrow Landau 
levels: , ,l n cTΓ ω . Therefore, the decay rate caused by 
quasi-elastic scattering is exponentially small if Landau 
levels of the two subbands are out of alignment (B  sub-
stantially differs from mB ). 

For highly correlated electrons, the many-electron 
theory of intersubband scattering is based on employment 
of the DSF of the Coulomb liquid which can be found by 
proper averaging over the quasi-uniform fluctuational 
electric field fE  and comparing the final result with the 
DSF of the 2D Wigner solid [23]. The outcome is that in-
stead of Eq. (7) one should use the following many-
electron form of the DSF 

 ( ) ( )
2
,ME /

, 2 2, , ; ,

( )2, = en n q Tn e
l l

n n l n l n q C

I x
S q

Z x
′ −ε

′
′ ′ ′

π
Ω ×

Γ + Γ
∑



 

 

22 2
,

2 2
, ; ,

( ) / 4
exp ,c l n q C e

l n l n q C

m x T

x′ ′

  Ω − ω − Γ + Γ  × − 
Γ + Γ  

 

 (10) 

where =m n n′ − , 2 2 2
, ; , , ,= ( ) / 2l n l n l n l n′ ′ ′ ′Γ Γ + Γ  is the average 

broadening, (0)= 2C f BfeEΓ Γ ≡   and we had neglected a 

small term 2 2
, / 8l n eTΓ  in the argument of the exponential 

function. Thus, strong quasi-uniform internal forces can 
induce a substantial broadening of the DSF and the peaks 
of the decay rate ( )

2 1( )a B→ν . It should be noted that the cor-

rection 2
q Cx Γ  in the Gaussian form of Eq. (10) cannot be 

attributed to the broadening of Landau levels, because a 
quasi-uniform electric field can be eliminated by a proper 
choice of the reference frame [22, 23] and the correction 
depends on the momentum exchange at a collision q enter-
ing the dimensionless parameter qx . In the following, we 

shall omit the superscript (ME) of the DSF of the multi-
subband 2D Coulomb liquid remembering that the single-
electron form can be obtained by fixing CΓ  to zero. 

As noted in the Introduction, the concept of quasi-
uniform fluctuational electric field and the relationship 

C fΓ = Γ  are valid only for large values of the plasma pa-
rameter pl 10≥ , and they fail if electron heating makes 

pl  smaller than 10. At present, there are no a many-
electron theory describing the electron system in the range 

pl1 < < 10 , therefore we shall construct a simple interpo-
lation model. First, we note that in ordinary metals, where 
the average Coulomb interaction energy and quantum kinet-
ic energy are on the same order of magnitude, the model of 
free quasiparticles well describes major transport properties. 

Therefore, it is reasonable to assume that the Coulomb 
broadening CΓ  should vanish at pl 1→  which would 
transform the DSF of Eq. (10) into the result of the single-
electron theory. Then, we can assume that the effect of the 
Coulomb broadening as a function of pl  gradually reduces 
in the region pl1 < < 10  and approximate this reduction 
by a simple interpolation form 

 ( )pl
pl

1
tanh 1 ,

5C f
− 

Γ = Γ θ − 
 


  (11) 

where ( ) = 1xθ  if 0x ≥  and ( ) = 0xθ  otherwise (the Heavi-
side step function). For this approximation, CΓ  is only 5 % 
smaller than fΓ  at pl = 10 , and, as a function of eT , it 

smoothly vanishes when pl ( ) 1eT → . We expect that at 

low electron densities 6 210 cmen −
  the approximation of 

Eq. (11) will describe the effect of electron heating much 
better than the assumption =C fΓ Γ  and a rough step-

function approximation: pl( 10)C fΓ Γ ×θ −  . 

Beyond the regions of ( )
2 1
a
→ν  peaks, the decay rate 

caused by inelastic two-ripplon (2R) scattering processes 
[25] becomes larger than ( )

2 1
a
→ν . Therefore, these processes 

should be included into the rate equation for fractional oc-
cupancies ln . The 2R scattering originates from nonlinear 
terms in the electron-ripplon interaction Hamiltonian 

 ( ) ( ) ( )2R
,int

,

1= exp ,
A

H W z i
S ′ ′

′

′ξ ξ + ⋅  ∑ q q q q
q q

q q r  (12) 

here †= ( )qQ b b−ξ +q q q , = / 2q qQ q ρω , 3/2/q qω α ρ  
is the spectrum of capillary waves, α and ρ are the surface 

tension and mass density of liquid helium, respectively, †b−q  

and bq are the creation and destruction operators of ripplons. 

The coupling function , ( )W z′q q  generally has a very compli-
cated form. It can be simplified by taking into account that 
the matrix elements of , exp[ ( ) ] ,n X i n X′ ′ ′+ ⋅q q r  are 

proportional to the factor 2 2exp[ ( ) / 4]B′− +q q   which means 
that inelastic 2R scattering by short-wavelength excitations 
( 1

Bq −
 ) is possible only if ′ ≈ −q q. In this case, one can 

replace , ( )W z′q q  with a new function ( )qW z  depending only 
on the absolute value q and on the parameters of the 1D po-
tential well near the interface: 0( ) = v( )eU z V z+ , where 
v( ) = /z z eE z⊥−Λ + , the potential barrier at the liquid sur-
face 0 1 eVV ≈ , the parameter of the image potential Λ  de-
pends on the dielectric constant of liquid helium in the usual 
way, and E⊥ is the pressing electric field. 

The matrix elements ,( )q l lW ′  were found only for two 
limiting cases >q q∗ and <q q∗, where 02q∗ γ ≈   

7 11.5 10 cm−≈ ⋅ , the parameter 1 100 Å−γ ≈  describes elec-
tron localization length in the 1D potential well above the 
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surface, and 1
0 0= / 2 2 Åem V− ≈  is the penetration 

length of the electron wavefunction into the liquid phase. 
In the intermediate case, an interpolation based on the sim-
ple joining of the asymptotes was used [25]. In this work, 
we shall use a smooth interpolation which does not use the 
parameter q∗:  

 ( ) ( )
( )

22
sh

, sh,
,,

= tanh ,
2

z
q l ll l

e l ll l

pqW W
mW

′′
′′

    
   

 (13) 

where zp  is the electron momentum, and ( )sh
,l lW ′  is the 

short-wavelength asymptote independent of q:  

 ( )sh
0,

, ,

v v=l l
l l l l

W
z z′

′ ′

∂ ∂   
   ∂ ∂   

 . (14) 

The interpolation of Eq. (13) as a function of q  is shown 
in Fig. 1 by solid lines. The previously used interpolation 
[25] is shown by dashed lines. Obviously, the smooth form 
of Eq. (13) will reduce a little bit the contribution of 2R 
scattering into the decay rate and energy relaxation rate as 
compared to the simple combined form based on joining of 
the asymptotes. In our numerical evaluations, here and 
below we consider liquid 3 He  as a substrate for surface 
electrons. 

The 2R scattering is substantially inelastic. Therefore, 
the broadening of Landau levels is unimportant for calcula-
tion of scattering probabilities. The many-electron effect 
can also be neglected if C cΓ ω . Assuming that the 
capillary wave spectrum 3/2

q qω ∝  remains to be valid in 
the short-wavelength range as well, and using the lowest 
Born approximation, one can find the decay rate caused by 
2R emission processes 

 
/

(2R,em)
2 1 3/2 1/2 2

1 e=
12

Tn e

B n Z

−ε

→ν ×
πα ρ ∑





  

 
2

2
2,1 1/2

(em)=

( 1)
( ) ,q

q
n q qm

W
q′

 + ×  
  

∑


 (15) 

where =m n n′ − , q  is the distribution function of 
ripplons, and  

 ( ) ( )
1/3

2/3(em)
2,1 2,1= .

4m c cq m mρ  ω − ω θ ω − ω α 
 (16) 

In the sum of Eq. (15), the actual number m is restricted by 
the condition 2,1< / cm ω ω . As compared to the previously 
found result [25], here we include higher Landau levels of 
the excited subband because of electron heating. Accord-
ing to Eqs. (15) and (16), the decay rate (2R,em)

2 1→ν  oscillates 
with 1/ B, but in contrast with elastic decay it has small 
minima at the level alignment condition 2,1 = 0cmω − ω . 

The more important point is that (2R,em)
2 1→ν  slowly varies in 

between the characteristic values mB  remaining to be about 
6 11.6 10 s−⋅ . It should be noted that recent experimental 

studies [28] of electron decay are in good (even numerical) 
agreement with the result of the theory based on 2R emis-
sion processes [25]. 

Electron scattering down to the ground subband can be al-
so caused by absorption 2R processes. In this case, the energy 
conservation yields the following wave-vectors of ripplons  

 ( ) ( ) ( )
1/3

2/3ab
2,1 2,1= ,

4m c cq m mρ  ω −ω θ ω −ω α 
 (17) 

where = 'm n n−  should be positive and large enough. The 
corresponding contribution into the decay rate is found as  

 
/

(2R,ab)
2 1 3/2 1/2 2

1 e=
12

Tn e

B n Z

−ε

→ν ×
πα ρ ∑





  

 
2

2
2,1 1/2

(ab)=

( )
( ) .q

q
n q qm

W
q′

  ×  
  

∑


 (18) 

Since the lowest value of m in (ab)
mq  is independent of n, 

the contribution (2R,ab)
2 1→ν  is independent of eT . The full de-

cay rate (2R) (2R,em) (2R,ab)
2 1 2 1 2 1=→ → →ν ν + ν  is shown in Fig. 2 by the 

solid line calculated for the fixed electron temperature 
= = 0.4 KeT T . The dashed line indicates the contribution 

from emission processes only (2R,em)
2 1→ν . 

The reverse transition rate (2R,ab)
1 2→ν  caused by 2R absorp-

tion processes depends strongly on the electron tempera-
ture. It has the form given in the right side of Eq. (18) 
where (ab)

mq  should be substituted with (em)
mq−  which take 

into account that absorption 2R scattering occurs from a 

Fig. 1. (Color online) Illustration of two interpolations used for 
describing matrix elements of the two-ripplon coupling function 

,( )q l lW ′: the smooth form of Eq. (13) (solid lines), the simple join-
ing of the asymptotes used previously [25] (dashed lines).  
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state ( = 1,l n ) to a state ( = 2,l n′ ′) and in Eq. (16) the sign 
of m should be changed to the opposite. In this case, the 
lowest value of m depends on n and can be negative. It is 
quite obvious that at equilibrium, when =eT T , the contribu-
tions (2R,ab)

1 2→ν  and (2R,em)
2 1→ν  satisfy the detail balance condi-

tion. For heated electrons, this relationship is not valid. 
In a similar way, one can consider reverse transitions 

caused by 2R emission (2R,em)
1 2→ν  which become substantial 

only at strong electron heating 3 KeT  . Obviously, 
(2R,em)
1 2→ν  has the form given in the right side of Eq. (15) 

where (em)
mq  should be substituted with (ab)

mq−  which take 
into account that emission 2R scattering occurs from a 
state ( = 1,l n) to a state ( = 2,l n′ ′) and in Eq. (17) the sign 
of m should be changed to the opposite. At equilibrium 
( = )eT T , the contributions (2R,em)

1 2→ν  and (2R,ab)
2 1→ν  satisfy the 

detail balance condition which fails if >eT T . The contri-
butions (2R,ab)

1 2→ν  and (2R,em)
1 2→ν  calculated for = 3 KeT  are 

shown in Fig. 2 by the red dash-dotted and dash-dot-dotted 
line respectively. The full rate of the reverse scattering 

(2R) (2R,ab) (2R,em)
1 2 1 2 1 2=→ → →ν ν + ν  will be included in the rate equa-

tion for fractional occupancies of two lowest subbands. 
It should be emphasized that for numerical calculations 

the sums over n and n′ entering Eqs. (15) and (18) can be 
changed into more convenient sums over n and m which 
greatly reduces the evaluation time in spite of their cum-
bersome analytical expressions. 

3. Subband occupancies 

In this work, we shall assume that the MW stimulated 
absorption (emission) rate mwr  and the electron temperature 
are not too high ( 3 KeT  ), so that we can neglect electron 
population of higher subbands with > 2l . In this case, the 
two-subband model can be considered as a good approxima-

tion for obtaining fractional occupancies 1n  and 2n . Using 
definitions given in the previous Section, the rate equation 
can be written as 

 ( ) ( )/( ) 2,1
mw 1 2 2 12 1= e Ta er n n n n−∆

→− ν − +  

 (2R) (2R)
2 12 1 1 2 ,n n→ →+ ν − ν  (19) 

and the relative occupancy 

 
/( ) (2R)2,1

mw 2 1 1 22
( ) (2R)

1 mw 2 1 2 1

e
=

Ta e

a
rn

n r

−∆
→ →

→ →

+ ν + ν
η ≡

+ ν + ν
 (20) 

saturates ( 1η→ , 2 1n n→ ) when ( ) (2R)
mw 2 1 2 1

ar → →ν + ν . At 
small excitation rates, when mwr  can be neglected in Eq. (20), 
η is equal to the usual Boltzmann factor. The fractional occu-
pancies are found as 1

1 = (1 )n −+ η  and 2 1= 1n n− . 
A very important point concerns the dependence of mwr  

on the magnetic field. The MW excitation rate has the usu-
al resonant form  

 
( )

2
opt

mw 2 2
2,1 opt

1= ,
2

Rr
Ω γ

ω−ω + γ
 (21) 

where optγ  is the linewidth, RΩ  is the Rabi frequency given 
by mw= 2 1R eE zΩ , and mwE  is the MW field. Scatte-
rers and the inhomogeneous pressing electric field contri-
bute into optγ . In experiments [10], the inhomogeneous 
broadening 8 1

inh 9.4 10 s−γ ⋅ . The contribution of vapor 
atom scattering into the linewidth ( )

opt
aγ  was calculated pre-

viously [29] only for the case of zero magnetic field. Under 
these conditions, inhγ  is substantially larger than ( )

opt
aγ  in the 

low temperature regime ( 0.4 KT  ). In the presence of a 
quantizing magnetic filed, an enhancement factor 

,/c l nω πΓ  should increase the contribution of electron 
scattering into the linewidth [12]. It should be noted that 
we can neglect the contribution of 2R scattering into optγ  
because inhγ  and ( )

opt
aγ  (at 0.4 KT ≥ ) are about three orders 

of magnitude larger. At the same time, one should keep 
(2R)
2 1→ν  in the rate equation and in Eq. (20) because (2R)

2 1→ν  can 
be on the same order of magnitude as mwr . 

The effect of a perpendicular magnetic field and the in-
ternal fluctuational electric field on ( )

opt
aγ  can be taken into 

account is a quite simple way because it consists of intra-
subband and intersubband terms which have clear physical 
meanings [29] 

 ( )
opt intra inter= ,aγ γ + γ  (22) 

where inter 2 1= / 2→γ ν ,  

 ( ) ( )coh
intra 1 1 2 2 1,2

1= ,
2 ↔ ↔γ ν + ν − ν  (23) 

1 1↔ν  and 2 2↔ν  represent usual intrasubband relaxation 
rates, and 2 1→ν  is the intersubband relaxation rate. The last 
term in Eq. (23), (coh)

1,2ν , has an unusual structure [29] 

Fig. 2. (Color online) Two-ripplon scattering transition rates versus 
the ratio 2,1 / ( )c Bω ω : the decay rate 2 1→  at = = 0.4 KeT T  (blue 
lines: emission — dashed, full contribution — solid), the rate of 
reverse scattering 1 2→  at = 3 KeT  (red lines: absorption — dash-
dotted line, emission — dash-dot-dotted line).  



Magnetooscillations of temperature and microwave absorption in a highly correlated 2D electron gas on liquid helium 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 4 301 

(coh)
int 2, ;2 int 1, ;1,1,2

2= ( ) ( ) ( )s s s s s s
s

H H′ ′ ′
′

π
ν δ ε − ε∑



 (24) 

which guarantees the physical requirement that intra-
subband linewidth contribution intraγ  should vanish in the 
case that the effective potentials of scatterers are the same 
for the both subbands = 2l  and = 1l  (the coherence of the 
initial superposition of two states is not perturbed by inter-
action with a scatterer [30]). Here ...  means averaging 
over scatterers and sε  represents the in-plane energy spec-
trum; in Ref. 29 the multi-component index s is just the 
2D wave-vector k . It should be noted that (coh)

1,2ν  has no 
relation to intersubband scattering because the energy con-
servation δ-function does not contain the intersubband 
excitation energy 2,1∆ , and the matrix elements 

int , ;( )l s l sH ′ ′ ≡  int, ,l s H l s′ ′≡  of different subbands enter 
Eq. (24) in an unusual way. 

In order to find ( )
opt
aγ  for a quantizing magnetic field, we 

shall set = ( , )s n X  and evaluate quantities 1 1↔ν  and 2 2↔ν  
(averaged using the Boltzmann distribution) in the way 
used above for finding ( )a

'l l→
ν  of Eq. (4). Then, the proper 

expression for (coh)
1,2ν  will be found from the condition of 

vanishing intraγ  if 2,2 1,1 2,1= =p p p . This procedure yields  

 ( )
( )

( )0
, ,

A
= ,0 .

a
a

l l l ll l
e

p S q
m S↔
ν

ν ∑
q



 (25) 

We use the superscript ( )a  for quantities induced by vapor 
atoms. Equation (25) can also be found formally from Eq. (4) 
by fixing =l l′ . The averaged value of ( )

2 1
a
→ν  coincides ob-

viously with ( )
2 1
a
→ν  defined by Eq. (4). 

The averaged value of the specific term (coh)
1,2ν  can be 

represented as  

 
( )

(coh) 0
1,2 2,11,2

A
= ( ,0).

a

e
p S q

m S
ν

ν ∑
q



 (26) 

Then, intraγ  vanishes if 1,2 2,2 1,1= =p p p . It should be noted 
that for = 0B  and short-range scatterers, the unusual term 

(coh)
1,2ν  remarkably coincides with ( )

2 1
a
→ν , and, therefore, it is 

partly compensated by ( )
inter 2 1= / 2a

→γ ν . In the presence of 

the magnetic field, (coh)
1,2ν  and ( )

2 1
a
→ν  are completely diffe-

rent. The negative term (coh)
1,2−ν  has smooth dependence on 

B , while ( )
2 1
a
→ν  has sharp maxima at = mB B  due to the 

presence of 2,1ω  in the frequency argument of the DSF 
entering Eq. (4). 

For highly correlated 2D electron liquid, one should 
keep the Coulomb broadening of the DSF, as described in 
Eqs. (10) and (11). This yields  

( ) ( ) ( )2/
,

,0 2 2
0

e= .
Tn e n n qa ac

l l ql l
n l q C

I x
p dx

Z x

∞−ε

↔
ω

ν ν
π Γ + Γ

∑ ∫




 (27) 

In the limiting case 0CΓ → , we can use the relationship 

2
,0

( ) = 1n n q qI x dx
∞

∫  and find that under a quantizing magnet-

ic field ( )a
l l↔γ  is increased by /c lω πΓ  as compared to the 

result found for = 0B . In a similar way, we can represent 

( ) ( )
2/
,coh

1,21,2 0 2 2
0 2,1

( )e= ,
Tn e n n qac

q
n q C

I x
p dx

Z x

∞−εω
ν ν

π Γ + Γ
∑ ∫





 (28) 

where 2 2
, = ( ) / 2l l l l′ ′Γ Γ + Γ . It is quite obvious that Eqs. 

(27) and (28) satisfy the condition of vanishing intraγ  for 
the same scattering amplitudes at the two subbands. Alter-
natively, in Eq. (28) instead of 2 2

2,1 q CxΓ + Γ  one can use a 

harmonic mean of 2 2
1 q CxΓ + Γ  and 2 2

2 q CxΓ + Γ . Numeri-
cal calculations indicate that this change induces a reduc-
tion in intraγ  which is less than 1 %. 

The dependence of MW excitation rate mwr  on the ratio 
2,1 / ( )c Bω ω  at the resonance ( 2,1=ω ω ) is shown in Fig. 3 

near 5=B B  for different conditions. The result of the sin-
gle-electron (SE) theory which takes into account the in-
homogeneous broadening ( ( )

opt inh opt= aγ γ + γ ) is shown by 
the blue solid line. It has a minimum at 5=B B  caused by 
the intersubband component inter 2 1= / 2→γ ν . In the many-
electron (ME) treatment with =eT T  (blue dashed line), 
correlations move the whole line mwr  up because the Cou-

Fig. 3. (Color online) The excitation rate mwr  versus the ratio 

2,1 / ( )c Bω ω  calculated for 6 2= 2 10 cmen −⋅ , 8 1= 10 sR
−Ω , and 

three fixed eT : the single-electron theory (SE, blue solid), the 
many-electron theory (ME): =eT T  (blue dashed), = 1 KeT  (olive 
dash-doted), = 3 KeT  (orange dash-dot-doted). The red dotted 
line was calculated for 6 2= 3 10 cmen −⋅  and the solution ( )eT B  
found below.  



Yu. P. Monarkha 

302 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 4 

lomb broadening CΓ  reduces ( )a
l l↔ν , ( )

1,2
aν  and interγ  entering 

the denominator of Eq. (21). Medium heating up to 
= 1 KeT  increases the ME effect ( (0)

efE T∝ ) as indicated 
by the olive dash-dotted line. Still, substantially stronger 
heating up to = 3 KeT  (orange dash-dot-doted) moves the 
line down closer to the result of the SE theory because of 
the reduction in CΓ  described by Eq. (11) when the plasma 
parameter pl  becomes close to unity. In Fig. 3, we consi-
dered electron heating independent of B . In a real case, eT  
is substantially higher at the vicinity of mB  than in regions 
where the staircases of Landau levels are out of alignment. 
This effect will be discussed in more details below, when 
considering resonant MW absorption. For other values of 
m, the MW excitation rate, as the function of 2,1 / ( )c Bω ω , 
has similar shapes. 

4. Energy relaxation 

Energy dissipation in the multi-subband 2D electron 
system on liquid helium was described previously [12] 
only for noninteracting electrons. This method can be ap-
plied also to highly correlated electrons if we replace 

, ( , )l lS q′ Ω  with the ME form given in Eq. (10), and take 
into account some additional terms which become im-
portant for heated electrons. Therefore, for electron scatter-
ing by vapor atoms, we can find the normal contribution 
into energy dissipation of an electron per unit time propor-
tional to eT T− :  

 ( ) ( ) ( )= ,a a
eN NP T T− − ν

  (29) 

where 

 ( ) ( ), ,= ,0a R
l l l l lN

e e A l
n S q

m T S
ε

ν β +∑ ∑
q



   

 ( )/,
, , ,

>
e ( , )TR l l e

l l l l l l l l
e e A l l

n n S q
m T S

−∆ ′
′ ′ ′ ′

′

ε
+ + β ω∑∑

q



 (30) 

is the normal energy relaxation rate of an electron caused 
by intrasubband (the first term) and intersubband (the 
second term) scattering, 2 2= / 2R emε Λ   is the typical 
energy parameter of Rydberg states on liquid helium, 

( )
, ,0= ( ) /a

l l l l ex m M′ ′β ν λ ,  

 ( ), , ,= c
l l l l l l

R
x u x p′ ′ ′

ω
λ +

ε


, (31) 

 
21,1 2

, ,2= (e ) ,ik zz
l l z l l

z z kz

B
u k

L′ ′
γ ∑  (32) 

1 2= /z em−γ Λ  is the localization length of an electron in 
the ground Rydberg state, and M  is the mass of a vapor 
atom. As expected, the energy relaxation rate ( )a

Nν  is re-
duces as compared to the momentum relaxation rate by the 
mass ratio /em M  which enters the parameter ,l l′β . 

According to Eq. (30), ( )a
Nν  is the sum of contributions 

from intrasubband and intersubband scattering: ( )
,intra

a
Nν  and 

( )
,inter

a
Nν . Using the ME form of the DSF, one can find  

 ( ) ( ) ( ) ( )1
0,intra

1
= ,a a Ne c R

lN l
lle

m
n F B

M T
ω ε Γ

ν ν
ΓπΓ

∑

  (33) 

where we introduced the dimensionless function  

 ( ) ( )
/

,2
, 2 2

0

( )e= ( ) .
Tn eN l l l

n nl
n l C

x
F B dxI x

Z x

∞−ε λ Γ

Γ + Γ
∑ ∫



 (34) 

Obviously, ( ) ( )N
lF B  is a smooth function. It should be noted 

here the presence of the enhancement factor 1/cω πΓ  
mentioned above. 

In a similar way, the contribution ( )
,inter

a
Nν  can be found as 

( ) ( ) ( ) ( )/2,1
2 10 2,1,inter

2;1
= e ,Ta a Ne c R e

N
e

m
n n F

M T
−∆ω ε

ν ν +
π Γ



  (35) 

where 

 ( ) ( ) ( )
/

2,1
=0 =1

!=
!

Tn eN

n m

e nF B
Z n m

−ε∞ ∞

×
+∑ ∑



  

 ( ) ( )
2

2;1
2,1 2 2

0 2;1

e ( )
,

m x m
n

m
C

x L x
dx x x

x

−∞  Γ  × λ
Γ + Γ

∫   (36) 

and  

( )
22 2

2,1 2
2 2
2;1

( ) / 4
= exp c C e

m
C

m x T
x

x

  ∆ − ω − Γ + Γ  − 
Γ + Γ  



  (37) 

is the Gaussian factor entering the DSF. Thus, the normal 
contribution from intersubband scattering as a function of B  
represents rather sharp peaks placed at = mB B  whose 
broadening is affected by the Coulombic effect due to 2

CxΓ . 
In addition to the normal terms ( ( )a

NP ) which vanish at 
eT T→ , the average energy dissipated by an electron per 

unit time has the anomalous terms ( )a
AP  which originate 

from the expansion of , , ,( , )l l l lS q′ ′ ′ω − χK K  in , ′χK K , where 
, ′χK K  is the energy exchange at a collision. The anoma-

lous terms can be represented as 

 ( ) ( )/,
,

>

2
= e Ta R l l e

l l l lA
e A l l

TP n n
m S

−∆ ′
′ ′

′

ε
− β ×∑ ∑

q

   

 , , , ,( , ) ( , ) ,
2l l l l l l l l

e
S q S q

T′ ′ ′ ′
 
′× ω − ω 

 

  (38) 

where the prime superscript of ,l lS ′′  means the derivative 
with respect to the frequency argument. Using the ME 
form of the DSF one can find 
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( ) ( ) ( ) ( )/2,1
2 10 2,12

2;1

4
= e ,Ta a Ae c Re

A
m T

P n n F
M

−∆ ω ε
−ν −

πΓ



  (39) 

where we introduced a new dimensionless function  

 ( )
( ) ( )

/

2,12,1
=0 =1 0

e != e
!

Tn eA m x

n m

nF dx x x
Z n m

∞−ε∞ ∞
−λ ×

+∑ ∑ ∫


  

 
2 2,12

2;1 2 2 3/2
2;1

( )
( ) ( ).

( )
cm

n m
C

m
L x x

x
ω − ω

 × Γ  Γ + Γ

 

  (40) 

In the round brackets of the integrand of Eq. (40) we have 
neglected the quantity 2 2

1 2( ) / 8 eTΓ −Γ  which is more than 
two orders of magnitude smaller than 1Γ . 

As compared to the normal contribution from 
intersubband scattering, ( )a

AP  contains an additional large 
parameter 2;14 /T Γ  which compensates a possible small-

ness of /2,1
2 1e

Ten n −∆− . The anomalous function ( )
2,1 ( )AF B  

has a sign-changing shape which resembles the derivative 
of series of maxima. Its difference from ( )

2,1 ( )NF B   is illus-
trated in Fig. 4. Under certain conditions the energy dissi-
pation caused by electron interaction with medium can be 
negative which leads to additional heating of electrons. In 
contrast to the momentum relaxation rate [12, 15], the min-
ima of AP  occur at the opposite side with respect to the 
points = mB B  where 2,1 / cω ω  is a bit less than m. 

At low temperatures 0.4 KT  , one cannot disregard en-
ergy relaxation caused by 2R processes because the energy 
exchange 2 qω  can be rather high for short-wavelength 
ripplons. The contribution of these processes into the energy 
dissipation per unit time can be calculated in a direct way 
using the lowest Born approximation for the interaction Ham-
iltonian given in Eq. (12). For example, 2R emission leads to  

 ( ) ( )
/2 22em

2R 2 2 ,
, ,

e=
Tn e

l q l l
qB A l l n n

qP n W
ZS

−ε

′
′ ′

− ×
ωρ ∑ ∑ ∑

q









 

 ( ) ( )2
,1 2 .q n n l l qN ′ ′× + δ ε − ε − ∆ + ω  (41) 

The contribution from 2R absorption (ab)
2RP  has a similar 

form: one have to replace 1q +  with q , change 2 q+ ω  
to 2 q− ω  and change the sign of the whole expression. 

By interchanging the summation indexes, the full con-
tribution of 2R processes (em) (ab)

2R 2R 2R=P P P+    can be repre-
sented as  

 ( ){ }
/

( , )2R ,2 2 =
, ,

e= ,
4

Tn e
l ll l q qmB n n l l

P Y q
Z

−ε

′′
′ ′

−
πρ ∑ ∑







 (42) 

where =m n n′ − ,  

 ( ) ( )
1/3

2/3( , )
, ,= ,

4
l l

m l l c l l cq m m′
′ ′

ρ  ω − ω θ ω − ω α 
 (43) 

 ( ) ( ) ( )
32 2

, ,
= 1l l q ql l

q q

qY q W′ ′
+ ×

′ω ω
   

 /, ( )
e exp 2 ,T el l e

l l q
e

T T
n n

T T
−∆ ′

′
  − × − − ω  
   

  (44) 

and q′ω  is the derivative of the ripplon spectrum. In con-
trast to the decay rate, Eq. (42) contains also the contribu-
tion from intrasubband scattering ( =l l′). In the limiting 
case eT T→ , it is proportional to eT T− . At medium heat-
ing, the parameter entering the exponential function of Eq. 
(44) is not small and the dependence on eT  complicates. 
From Eq. (44) one can see that at equilibrium ( =eT T , and 

/,= e Tl l e
l ln n −∆ ′

′ ) the dissipation 2R = 0P . It should be noted 
also that for nonequilibrium population of the excited 

subband /2,1
2 1e > 0Ten n −∆− , the contribution 2R 0P ≠  

even if =eT T . 
Electron temperature is obtained by balancing the power 

taken from the field mw 1 2 2,1 mw= ( )P n n r− ∆  and the power 
transferred to vapor atoms and ripplons  

 ( ) ( )
mw 2R = 0.a a

N AP P P P+ + +     (45) 

Solutions of Eq. (45) are shown in Fig. 5 as functions of B  
near the point 5B  for different physical models. The single-
electron (SE) approximation for ( )eT B  which does not in-
clude 2R processes (dotted black line 1) represents an 
asymmetric two-hump peak. The local minimum is placed 
very close to 5B . In regions < 0.77 TB  and > 0.81 TB  the 
electron temperature practically coincides with T . For the 
SE theory which takes into account the 2R processes, the 
two-hump peak is substantially lower and there is electron 
heating in regions where B  differs strongly from 5B . In 
spite of a rather low electron density chosen for these cal-

Fig. 4. (Color online) Two functions ( )
2,1

NF  and ( )
2,1

AF  describing 
energy relaxation for intersubband scattering versus the ratio 

2,1 / ( )c Bω ω .  
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culations ( 6 2= 2 10 cmen −⋅ ), the ME treatment given in this 
work changes the two-hump peak of ( )eT B  strongly, as 
indicated by the solid red line. The peak becomes broader 
especially in regions of tails, and the asymmetry of two 
humps is reduced. 

The dependence of the electron temperature peak on en  
caused by the ME effect with CΓ  defined by Eq. (11) is il-
lustrated in Fig. 6. The lowest line [black (1)] represents the 
result of the SE theory. Other lines were calculated using the 
ME theory with electron density gradually increased from 

6 2= 2 10 cmen −⋅  [blue line (2)] up to 6 2= 5 10 cmen −⋅  [red 

line (5)]. One can see that the ME effect increases electron 
temperature because main relaxation rates are reduced by 
the Coulomb broadening CΓ  while the MW excitation rate 

mw opt1/r ∝ γ  rises. Another important point is that electron 
Coulomb interaction changes the asymmetry of the two-hump 
peak of ( )eT B  to the opposite [red (5) and orange (4)] as 
compared to the result of the SE theory [12]. The right 
maximum with 2,1 / > 5cω ω  becomes higher that the left 
maximum ( 2,1 / < 5cω ω ). Thus, the asymmetry of the eT  
peaks becomes the same as the asymmetry of power ab-
sorption [19]. The difference in asymmetries of electron 
temperature peaks in the SE theory [12] and MW absorp-
tion peaks observed was stated [19] to be an important 
point in discussions about the origin of the effect. Actually, 
as we shall see below, the correct asymmetry of the MW 
absorption ( mwP ) peaks appears already in the SE treat-
ment and it does not correlate with the asymmetry of the 
electron temperature peaks. 

It is interesting to compare the results of the new ME 
electron treatment given above with the approximation 

=C fΓ Γ  which does not take into account the reduction of 
the Coulomb broadening at pl < 10  described by Eq. (11). 
The qualitative differences appear in regions of peak tails 
especially when temperature peaks of different mB  start 
overlapping. This situation is illustrated in Fig. 7 where 
the ME effect on electron heating near 5B  mixes with the 
same effect near 6B . The results of the theory based on 
the approximation =C fΓ Γ  are shown by dashed lines 
calculated for medium excitation ( 7 1= 6.25 10 sR

−Ω ⋅ ) and 
two electron densities: 6 2= 5 10 cmen −⋅  [black (1′)] and 

Fig. 5. (Color online) The electron temperature versus B  in the 
vicinity of 5B  calculated using different approximations: the SE 
theory disregarding 2R scattering [black doted (1)], the SE theory 
taking into account 2R scattering [blue dashed (2)], the ME theo-
ry for 6 2= 2 10 cmen −⋅  [red (3)]. The Rabi frequency RΩ  is given 
in units of 8 110 s− . 

Fig. 6. (Color online) Electron temperature versus the ratio 

2,1 / ( )c Bω ω  for different en  shown in the figure legend in units of 
6 210 cm− . The Rabi frequency 8 1= 10 sR

−Ω  and T = 0.4 K.  

Fig. 7. (Color online) Electron temperature versus B  for diffe-
rent models of the ME effect in the region where the 5B  peak 
mixes with the 6B  peak: the approximation =C fΓ Γ  (dashed 
lines), the interpolation of Eq. (11) (solid lines). Calculations 
are performed for different densities (given in units of 6 210 cm− ): 

= 5en  [black lines (1) and (1′)], 6 [blue lines (2) and (2′)], 7 [olive 
(3)], 7.5 [purple (4)], 8 [orange (5)] and 10 [red (6)].  
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6 2= 6 10 cmen −⋅  [blue (2′)]. One can see that the blue 
dashed line has two regions of temperature bistability 
which would lead to specific hysteresis phenomena. For 
example, at higher densities (not shown in this figure) the 
high-temperature branches touch each other and merge be-
coming a single branch, while the low temperature branch 
remains and it becomes a non-reentrant branch: the system 
can jump vertically to the high-temperature branch, but can-
not return back to the low-temperature branch. The theory 
which takes into account the reduction of CΓ  caused by elec-
tron heating (solid lines) eliminates this puzzling effect: the 
overlapping of two temperature peaks is continuous, and the 
non-reentrant branch does not appear. 

5. MW absorption 

Experimental study [19] of intersubband absorption in 
electrons on liquid helium under quantizing magnetic 
fields revealed an unexpected feature: the strong suppres-
sion of absorption at magnetic fields where mB B→ . It is 
tempting to attribute this effect to electron temperature 
minima caused by the correction ( )

inter 2 1= / 2a
→γ ν  to the 

linewidth optγ . Still, as noted in Ref. 19, the asymmetry of 
the two-hump peaks of intersubband absorption observed 
was opposite to the asymmetry of electron temperature 
peaks obtained in the SE theory [12]. This seeming dis-
crepancy between the theory and experiment is caused by 
the assumption that MW power absorption is an increasing 
function of electron temperature, as it is for usual 
intrasubband absorption, and a higher electron temperature 
should correspond to higher MW absorption. We would 
like to emphasize here that for intersubband excitation this 
is not true because intersubband MW absorption mostly 
increases the potential energy of electrons and have no 
direct relation to an increase in the in-plane kinetic energy. 
The kinetic energy of electrons increases due to decay scat-
tering process, and, therefore, the relationship between eT  
and intersubband MW absorption can be even opposite. In 
order to eliminate this seeming discrepancy consider MW 
absorption per an electron mwP  in more details. 

It is instructive to plot ( )mw 1 2 2,1 mw=P n n r− ∆  versus 
the electron temperature, as shown in Fig. 8. Calculations 
were performed using the ME theory (solid lines) and the 
SE approximation (dashed lines) for three characteristic 
values of the magnetic field: 5 = 0.79 TB , = 0.78 TLB , 
and = 0.802 TRB , where LB  and RB  correspond to the 
local maxima of ( )eT B . In the SE theory, the decay rate 

2 1( )→ν , linewidth ( optγ ) and MW excitation rate ( mwr ) are 
independent of the electron temperature. Therefore, the 
dependence mw ( )eP T  is caused only by the respective de-
pendence of 1 2n n− . In the vicinity of mB , 2R decay pro-
cesses can be disregarded even in the expression for the 
relative occupancy 2 1= /n nη  defined by Eq. (20). As a 
result, the electron temperature enters η and the difference 

1 2n n−  only by means of the reverse scattering term 
/( ) 2,1

2 1e
Ta e−∆

→ν . At low eT , it is exponentially small, and, 
therefore, mwP  is practically independent of the electron 
temperature, as illustrated in Fig. 8. Even in this regime, 
where mw ( ) consteP T ≈ , MW absorption is proportional to 

mwr  which has a sharp dip at = mB B  shown in Fig. 3. 
Therefore, the two-hump shape of mw ( )P B  appears inde-
pendently of eT : according to Fig. 8, intersubband absorp-
tion at 5B  (red dashed) is substantially lower than at LB  
and RB . Moreover, the higher dashed line corresponds to 
the lower field LB  which is in contrast with the two-hump 
line of ( )eT B , and in accordance with the experimental 
observations [19]. 

Further increase in eT  (above 1 K) obviously depletes 
the population of the ground subband (the relative 
ocupancy η increases) and reduces mwP . Numerical calcu-
lations shown in Fig. 8 confirm this conclusion. Thus, in 
the SE theory the intersubband absorption decreases with 

eT  which is in contrast with the usual picture of 
intrasubband absorption. The solid lines calculated using 
the ME theory show a small maximum at 0.73 KeT  , 
nevertheless, this effect does not change the vertical order 
of these lines: it remains the same as for the dashed lines. 

The dependence mw 2,1( / )cP ω ω  near the point = 5m  is 
illustrates in Fig. 9 for five densities: the lowest solid line 
represents the SE theory ( 0en → ), and for other lines elec-
tron density shown in units of 6 210 cm−  gradually changes 
from = 2en  [olive line (3)] to = 5en  [red line (5)]. Even 
though the positions of mw 2,1( / )cP ω ω  maxima and 

Fig. 8. (Color online) MW power absorbtion mwP  versus eT  calcu-
lated for three characteristic values of the magnetic field: 

5 = 0.79 TB  [red lines (1) and (1′)], = 0.78 TLB  [blue lines (2) 
and (2′)], and = 0.802 TRB  [olive lines (3) and (3′)]. The single-
electron approximation is shown by dashed lines, the ME theory 
( 6 2= 2 10 cmen −⋅ ) — solid lines. RΩ  is given in units of 8 110 s− . 
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2,1( / )e cT ω ω  maxima are remarkably very close, the asym-
metry of the two-hump line mw 2,1( / )cP ω ω  calculated for 

0en →  (SE) is opposite to the asymmetry of the respective 
line of 2,1( / )e cT ω ω  shown in Fig. 6. It should be noted 
also that the ME effect does not change the asymmetry of 
power absorption peaks which is in contrast with electron 
temperature peaks. 

The suppression of mwP  at 2,1 / =c mω ω  becomes 
stronger for lower excitation rates (or lower RΩ ), as illus-
trated in Fig. 10 and in its insert. Here, the solid lines rep-
resent the SE theory and the dotted line represents the ME 
theory for 6 2= 3 10 cmen −⋅ . Remarkably, at low RΩ  the 

minimum of the SE line can be even deeper than the tails 
of mw 2,1( / )cP ω ω . 

The factor 1 2( )n n−  entering the definition of 
mw 2,1( / )cP ω ω  has a form of a single maximum positioned 

at 2,1 / =c mω ω . Therefore, the two-hump structure of 
mw 2,1( / )cP ω ω  originates from the dependence 
mw 2,1( / )cr ω ω  illustrated in Fig. 3. In this figure, the result 

of the ME theory evaluated for 6 2= 3 10 cmen −⋅  and for 
actual dependence ( )eT B  is shown by the red dotted line. 
Besides the minimum caused by ( )

inter 2 1= / 2a
→γ ν , this line 

has also two-hump maxima originated from inter ( )eTγ  
which has a non-monotonic dependence on electron tem-
perature. It decreases strongly at first due to the Coulomb 
broadening ( )C eTΓ , then attains a minimum at 1 KeT ≈ , 
and then starts increasing because electron heating reduces 
the plasma parameter pl  entering Eq. (11) and increases 
population of higher Landau levels. 

6. Discussion and conclusion 

The theoretical analysis presented here indicates that in 
a nonequilibrium multisubband 2D electron system under a 
quantizing magnetic field, even without a well defined 
Fermi level (nondegenerate gas), nearly all its basis quanti-
ties should have 1/ B-periodic oscillations caused by 
squeezing of the density of states into sharp Landau levels. 
We have shown that, besides the DC magnetoconductivity, 
such oscillatory features are present in the energy relaxa-
tion rate, the intersubband-resonance linewidth, electron 
temperature, subband occupancies, and MW power absorp-
tion. These kind of oscillations obtain an unusual shape 
when the displacement from equilibrium distribution can-
not be reduced to trivial heating. Such a condition is real-
ized when the electron system is tuned into the resonance 
with the MW field whose polarization vector has a perpen-
dicular component. For example, in this case the energy 
relaxation rate as a function of B  has asymmetrical sign-
changing corrections which leads to a distinctive asym-
metry of electron temperature peaks with respect to special 
points mB , where the staircases of Landau levels of the 
ground subband and an excited subband become aligned. 

Strong heating of surface electrons on liquid helium oc-
curs in the vicinity of the special points mB  because of the 
interplay of MW resonance absorption ( 2,1= /ω ∆  ) and 
the quasi-elastic electron decay to the ground subband. 
This kind of scattering cannot transfer the intersubband 
excitation energy 2,1∆  directly to a vapor atom or to a 
ripplon because of momentum conservation, but it can 
transfer it to the kinetic energy of electrons which heats the 
system. At the same time, inelastic emission of a par of 
energetic ripplons with a small total momentum which 
occurs at any magnetic field leads to small or medium 
heating of electrons even if the staircases of Landau levels 
are out of alinement. The two-hump shape of the electron 
peak near mB  appears because of magnetooscillations of 
the linewidth of the intersubband resonance ( )

opt
aγ . The 

Fig. 9. (Color online) MW power absorbtion mwP  versus the ratio 

2,1 / cω ω  calculated for different en  shown in the figure legend in 
units of 6 210 cm− . The black dotted line represents the SE theory 
which disregards the 2R scattering.  

Fig. 10. (Color online) The MW absorption two-hump peak cal-
culated for two Rabi frequencies RΩ  shown in units of 8 110 s− . 
Solid lines represent the single-electron theory. The dashed line is 
calculated for 6 2= 3 10 cmen −⋅  using the ME theory described in 
the text.  
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linewidth has sharp maxima at the points = mB B  which is 
the reason for deep minima of the MW excitation rate 

( )
mw opt1/ ar ∝ γ  under the resonant condition. 

As noted above, a two-hump peak of electron tempera-
ture have the distinctive asymmetry with respect to the 
point mB  shown in Fig. 5: at low electron densities, the 
maximum which is placed at > mB B  is higher than another 
one placed at < mB B . Previously, it was assumed [19] that 
the asymmetry of the power absorption peaks should be the 
same as the asymmetry of electron temperature peaks, and 
the different asymmetry observed for intersubband absorp-
tion was a main reason for the conclusion that the 
linewidth maxima are not responsible for this effect. In this 
work, we have demonstrated that MW power absorption 
has a complicated and nontrivial dependence on electron 
temperature indicated in Fig. 8, which differs qualitatively 
from the respective dependence of intrasubband absorp-
tion. For example, at low en  and eT , intersubband absorp-
tion is nearly independent of eT , while at higher electron 
temperatures > 1 KeT  it even decreases. Nevertheless, as a 
function of B  it has two-hump peaks with an asymmetry 
which is opposite to the asymmetry of electron temperature 
peaks which agrees with experimental observations. The 
depth of the power absorption dip at = mB B  depends on 
the Rabi frequency RΩ . As indicated in Fig. 10, a moder-
ate reduction in RΩ  can make the minimum deeper with 
regard to the region of tails. 

The many-electron effect is shown to play an important 
role in a 2D electron system subjected to a perpendicular 
magnetic field. It increases the Coulomb broadening CΓ  of 
the DSF of the electron liquid and, therefore, reduces elec-
tron relaxation rates. This leads to heating of the electron 
system. In turn, heating influences the ME effect in a non-
trivial way. First, it increases the ME effect because the 
internal electric field fE  of fluctuational origin is propor-
tional to 1/2

eT . Then, at higher eT  and a fixed electron den-
sity, the kinetic energy of electrons increases and the sys-
tem approaches the regime where it can be described as 
noninteracting particles. In present work, this influence is 
taken into account by employing an interpolation form for 

CΓ  as a function of the plasma parameter. Remarkably, the 
Coulombic effect is shown to invert eventually the asym-
metry of electron temperature peaks, but it does not affect 
the asymmetry of power absorption peaks. An increase in 
electron density en  broadens the mwP  peaks due to the ME 
effect and reduces the dips at = mB B  which also agrees 
with observations [19]. 

At high enough electron densities, the model based on 
the approximation 1/2=C f eTΓ Γ ∝  leads to existence of 
bistability regions placed at tails of a temperature peak. In 
this case, overlapping of electron temperature peaks which 
belong to nearest mB  becomes discontinuous and can cause 
puzzling non-reentrant states. The new model taking into 
account the reduction of CΓ  induced by strong heating of 
electrons eliminates the bistability regions at least for the 

vapor atom scattering regime. For the ripplon scattering 
regime which is not considered in this work, the ambient 
temperature is substantially lower 0.2 KT ≤  and the ap-
proximation 1/2=C f eTΓ Γ ∝  can be valid in a broader 
range of eT . Therefore, there is a chance that the hysteresis 
observed [20] for ( )xx Bσ  is caused by the electron temper-
ature bistability. 

In this work, we had restricted our consideration mostly 
to the vapor atom scattering regime, though electron scat-
tering with pairs of energetic ripplons was also taken into 
account. The numerical calculations were performed for 
liquid 3 He with the fixed temperature = 0.4 KT  which 
was quite close to the temperature used in the ripplon dom-
inated experiment ( = 0.2 KT ). Since the electron interac-
tion with long-wavelength ripplons is not that simple as the 
electron-atom interaction, and it leads to certain complica-
tions in numerical evaluations, the theory presented here 
can be considered also as a model for qualitative under-
standing of the effects observed in the ripplon dominated 
regime. 

The most important difference which appears at 
= 0.2 KT  is that the inhomogeneous broadening inhγ  in the 

experiments [10, 19] is about one order of magnitude larg-
er than intraγ  defined by one-ripplon scattering and five 
times larger than the maximum value of interγ . It was as-
sumed [19] that such a large value of inhγ  was caused by 
inhomogeneity of E⊥ along the surface, and only a small 
part of electrons (about 10 %) was under condition of real 
intersubband resonance with optγ  defined by electron-
ripplon scattering. If this picture is true, then only a small 
part of electrons is strongly excited by the MW, but a large 
fraction of detuned electrons (about 90 %) contributes to 
energy relaxation because of electron correlations. This 
explains why electron temperature is not very high in these 
experiments (it is estimated to be about 1 K) in spite of 
strong excitation. On the other hand, the contribution into 
power absorbtion, which is proportional to mw opt1/r ∝ γ , 
from electrons with small opt intraγ γ  can obviously be 
comparable or even larger than contribution from other 
electrons. Therefore, the reduction of mwr  caused by the 
sharp increase in ( )

inter 2 1= / 2a
→γ ν  can be the reason for the 

dips observed at = mB B  when the staircases of Landau 
levels belonging to the ground subband and the excited 
subband become aligned. The detailed analysis of the 
ripplon dominated regime will be given elsewhere. 
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Магнетоосциляції температури та поглинання 
мікрохвильового випромінювання в сильно 

корельованому двовимірному електронному газі 
над рідким гелієм 

Yu. P. Monarkha 

Теоретично досліджується вплив кулонівської взаємодії у 
двовимірному електронному газі над рідким гелієм на розіг-
рівання електронів, що індукується мікрохвильовим випро-
мінюванням за наявності квантуючого магнітного поля. За-
пропоновано узагальнення теорії ширини міжпідзонного 
резонансу, яке враховує як стискування щільності станів 
електронів у рівнях Ландау, так і наявність сильного внутрі-
шнього електричного поля флуктуаційної природи. Ця теорія 
описує появу двогорбих піків електронної температури та 
поглинання мікрохвиль при певних значеннях напруженості 
магнітного поля. Показано, що при низьких концентраціях 
електронів асиметрія двогорбих піків мікрохвильового пог-
линання протилежна до асиметрії температурних піків, що 
пояснює результати експериментальних спостережень. Про-
демонстрована важливість процесів випромінювання пар 
короткохвильових ріплонов для опису заселеності електрон-
них підзон та швидкості енергетичної релаксації.  

Ключові слова: двовимірний електронний газ, магнетоосци-
ляції, явища нерівноваги, міжпіддіапазонне 
мікрохвильове поглинання.
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