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Influence of the external electric field and the external strain on a quantum paramagnetic insulator is studied. 
It is shown that the external electric field and/or strain can cause drastic changes in the magnetic characteristics 
of the paramagnet. 
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Magneto-electric, piezoelectric, and magneto-elastic ef-
fects are among the most studied effects in modern mag-
netism last years. The interest to these effects is in the po-
tential possibility of using such effects in practice, 
spintronics being the prime example of such application. 
Also, it is possible to use systems, in which such effects 
can be manifested, for the storage, writing and reading of 
information. Mostly, such effects reveal themselves in so-
called multiferroics, where both magnetic and ferroelectric 
ordering take place [1–5]. Mentioned effects are related to 
the manifestation of the strong interaction between the 
spin, orbital, charge, and elastic subsystems. Most of the 
studies were performed on magnetically ordered systems, 
ferro- and antiferromagnets (like ferroborates, [6–14]), see, 
e.g., Refs. 15–18, in which magneto-electric, magneto-elastic, 
and piezomagnetic properties of multiferroics were studied. 

From general grounds it is obvious that similar effects 
can exist in magnetic systems without spin ordering, in 
paramagnets. Recently we have proposed the study, in 
which the renormalization of elastic, piezoelectric, and 
electric characteristics of a quantum paramagnet was theo-
retically calculated [19]. Similar effects were recently ob-
served in the alumoborate of Ho [20]. 

The aim of the present work is to consider the effects 
of the external electric field or the external strain on mag-
netic characteristics of a quantum paramagnet due to the 
coupling between the electric, magnetic, and elastic sub-
systems of the crystal. We suppose that the external elec-
tric field E  and the external strain 0u  can be considered as 
classical variables. Namely, we study the orthorhombic 
paramagnetic crystal with magnetic ions surrounded by 

ligands. The latter determine the crystalline electric field, 
which acts on magnetic ions, and, together with the spin-
orbit interaction, defines the magnetic anisotropy in the 
effective spin model. The external electric field itself can 
change the effective field, which acts on magnetic ions, 
together with the internal crystalline electric field, and, in 
turn, can change the value of the parameters of the magne-
tic anisotropy. On the other hand, the external strain can 
change the positions of ligands, thus changing the value of 
the crystalline electric field, which acts on the magnetic 
ions. As a result, similarly to the above effect of the exter-
nal electric field, it changes the effective values of the pa-
rameters of the magnetic anisotropy of the paramagnet. In 
our study, we calculate how such effects can be observed 
in the magnetic field dependences of the magnetic charac-
teristics of such a crystal. 

Let us first study the effect of the electric field on the 
magnetic characteristics of the paramagnet. Consider the 
Hamiltonian [19, 22] 

2
2 2 2

eff 1 0 2 2 2= ,
8B z
Eg HS B O B O aEO− µ − − − ε +
π

  (1) 

where effg  is the effective g  factor for the magnetic field 
H  (supposed to be directed along the z  axis), Bµ  is the 
Bohr magneton, 2 2

0 = ( 1) / 3zO S S S− +  and 2 2 2
2 = x yO S S−  

are the Stevens operators, see, e.g., [21] (operators of the 
components of the quadrupolar tensor), 1,2B  are the pa-
rameters of the magnetic anisotropy, xE E≡  is the elec-
tric field directed along the x  axis, ε is the electric per-
mittivity, and a is the coefficient of the magneto-electric 
coupling. In Ref. 19 from the equation for the electric 
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induction = 4 /D F E− π∂ ∂  and the definition of the elec-
tric permittivity = /D Eε ∂ ∂  we found the effective elec-
tric permittivity  

 eff = 4 ,Qa
E
∂

ε ε − π
∂

 (2) 

where 2
2=Q O〈 〉 (the brackets denote the averaging with 

the density matrix) is the average value of the component 
of the quadrupole operator. The value of Q  depends on the 
external magnetic field [19], hence changing its value one 
can observe the magneto-electric effect on the quantum 
paramagnet, in which the external magnetic field affects 
the electric characteristic of the studied system. 

Let us consider the opposite effect, how the external elec-
tric field changes the magnetic characteristics of a paramag-
net. We denote eff

2 2=B B aE− . In particular, it follows that 
eff
2= /Q F B−∂ ∂ , and the in-plane component of the tensor 

of the quadrupolar susceptibility is eff
2= /Q Q Bχ ∂ ∂ . 

In the case = 1S , the free energy of the system in the 
magnetic field directed along z  axis can be written as [23]  

 1 12
= ln 1 2exp cosh ,

3 B
B B

B B AF k T
k T k T

    
− +    

     
 (3) 

where Bk  is the Boltzmann constant, T  is the temperature, 

and eff 2 2
2 eff= ( ) ( )BA B g H+ µ . Then we can obtain the 

expressions for the studied component of the magnetic 
moment and the magnetic susceptibility of the paramagnet:  

 

1
eff

1

2 exp sinh
= ,

B
B B

B Ag H
k T k T

M
AZ

   
µ    

     (4) 

where 1 1= 1 2exp( / ) cosh( / )B BZ B k T A k T+ , and  

 

2 1
eff eff 2

2
2

1

2( ) exp
( )

= sinh
B

B

B

Bg
k T B A

A k TA Z

 
µ      χ +  

  
  

 
2

eff 1

1

( )
cosh 2exp .B

B B B

g H BA
k TZ k T k T

    µ + +    
      

 (5) 

At zero magnetic field, = 0H , the magnetic moment is zero, 
naturally, while the magnetic susceptibility is nonzero: 

/2 eff1
eff 2

/ eff1
2

2( ) e sinh( / )
=

[1 2e cosh( / )]

B k TB
B B

B k TB
B

g B k T
B k T

µ
χ

+
. 

In the ground state for eff
2 0B ≠  the magnetic moment is 

= /BM g H Aµ , and the magnetic susceptibility is 
2 eff 2 3

eff 2= ( ) ( ) /Bg B Aχ µ . It is interesting to note that for 
the value of the magnetic field 2> /E B a  the sign of the 
effective parameter of the magnetic anisotropy eff

2B  is 
changed to the opposite one. That behavior is illustrated in 
Figs. 1 and 2, where the magnetic and the electric field 
dependence of the magnetic moment and the magnetic sus-
ceptibility for the quantum orthorhombic paramagnet are 
shown for the easy-axis-like case (notice that we consider 
the bi-axial case, hence, by the “easy-axis-like” and the 
“easy-plane-like” cases we mean the sign of 1B ; the situation 
will be exactly easy-axis or easy-plane for 2= = /cE E B a, 
at which there is only 2

0O  operator of the anisotropy in the 
Hamiltonian) 1 = 3B  (arbitrary units) with 2 = 1B  and 

= 0.1Bk T  (we use the units in which = 1eff Bg µ ). 
Figures 3 and 4 show similar characteristics for the 

easy-plane-like 1 = 3B −  spin = 1S  paramagnet. 
It is seen that really the external magnetic field can 

dramatically change the magnetic field behavior of the 
magnetic moment and the magnetic susceptibility of the 
orthorhombic = 1S  paramagnet. At the critical electric 

Fig. 1. (Color online) Magnetic moment of the easy-axis-like 

1 = 3B  spin = 1S  paramagnet for 2 = 1B  and = 0.1Bk T  as a func-
tion of the external magnetic field H  and electric field E . 

Fig. 2. (Color online) Magnetic susceptibility of the easy-axis-
like 1 = 3B  spin = 1S  paramagnet for 2 = 1B  and = 0.1Bk T  as a 
function of the external magnetic field H  and the electric field E . 



A. A. Zvyagin 

324 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 4 

field = cE E  the paramagnet becomes uniaxial, and there 
exists two crossover values of the magnetic field, = 0H  for 
the ground state easy-axis magnet, and 1 eff= / BH B g− µ  for 
the easy-plane magnet. 

The partition function of the spin = 3 / 2S  orthorhom-
bic quantum paramagnet in the magnetic field directed 
along z  axis can be written as [19, 23]  

 eff= 2 exp cosh
2

B

B B

g H AZ
k T k T

−    µ
− +    

    
  

 effexp cosh ,
2

B

B B

g H A
k T k T

+    µ
+    

   
 (6) 

where 2 eff 2
1 eff 2= ( ) 3( )BA B g H B± ± µ + . The magnetic 

moment is  

 eff eff= exp cosh
2

B B

B B

g g H AM
Z k T k T

+    µ µ ×    
    

  

 eff 12( )
1 tanhB

B

g H B A
A k T

+

+

  µ +
× + −  
   

  

 effexp cosh
2

B

B B

g H A
k T k T

−   µ
− − ×   

   
  

 eff 12( )
1 tanh .B

B

g H B A
A k T

−

−

  µ − × −  
    

 (7) 

The expression for the magnetic susceptibility is very long, 
and this is why we will not present it here. At = 0H , the 
magnetic moment is zero, while the magnetic susceptibility 
is nonzero:  

 
2 2

eff 1
2
0

( ) 41= 1
4

B

B

g B
k T A

  µ
χ + +     

  

 
2

0 1 1
2

0 0

44 tanh 1 ,
B B

A B B
A k T k TA

  
+ − +      

 (8) 

where 2 eff 2
0 1 2= 3( )A B B+ . 

Figures 5 and 6 show the magnetic and the electric field 
dependences of the magnetic moment and the magnetic 
susceptibility for the ease-axis-like ( 1 = 3B ) spin = 3 / 2S  
for 2 = 1B  and = 0.1Bk T . 

Figures 7 and 8 show the magnetic and the electric field 
dependences of the magnetic susceptibility of the ortho-
rhombic easy-plane-like 1 = 3B −  paramagnet for the fixed 
value of the in-plane anisotropy 2 = 1B . 

It is seen that the external electric field for higher-spin 
paramagnet also can drastically change the behavior of 
the magnetic characteristics of the system. At the critical 
value of the electric field cE , the magnetic susceptibility 
manifests crossovers in the ground state. For the easy-
axis paramagnet, the crossover takes place at = 0H , 
while for the easy-plane paramagnet it happens at = 0H  
and 1 eff= / BH B g− µ . 

Unfortunately, it is impossible to obtain analytic results 
for the magnetic field directed along other axes of the crys-
tal for the considered Hamiltonian. However, for a slightly 
modified Hamiltonian it is possible to manage [24]. Name-
ly, consider the Hamiltonian  

 
2

2 2 2
1 2= ,

8b p B x x z x x
Eg H S B S B S aES− µ − − − ε +
π

  (9) 

Fig. 3. (Color online) Magnetic moment of the easy-plane-like 

1 = 3B −  spin = 1S  paramagnet for 2 = 1B  and = 0.1Bk T  as a func-
tion of the external magnetic field H  and the the electric field E . 

Fig. 4. (Color online) Magnetic susceptibility of the easy-plane-
like 1 = 3B −  spin = 1S  paramagnet for 2 = 1B  and = 0.1Bk T  as a 
function of the external magnetic field H  and the electric field E . 
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where pg  is the effective g  factor for the magnetic field xH  
directed along the x  axis. Performing similar calculations, we 
obtain, for example, for the magnetic moment for = 1S   

 

eff
1 2

1

22 exp sinh
2

= ,

p
p B x

B B
x

p p

AB Bg H
k T k T

M
A Z

   − +
µ    

    (10) 

where 
2 2 1/2

1= [(2 ) ] / 2p p B xA g H Bµ + , 

and eff
1 1 2= 1 exp[( 2 ) / 2 ]cosh( / )p B p BZ B B k T A k T+ − + . For 

= 3 / 2S  paramagnet, we get  

 = exp cosh
2

p B p B x p

p B B

g g H A
M

Z k T k T
+µ  µ    ×   

    
  

 
eff
2 1 / 2

1 tanhp B x p

p B

g H B B A
A k T

+

+

 µ + −  
× + −  
   

  

 exp cosh
2
p B x p

B B

g H A
k T k T

−µ   
− − ×   

   
  

 
eff
2 1 / 2

1 tanh ,p B x p

p B

g H B B A
A k T

−

−

 µ − +   × −   
    

 (11) 

Fig. 5. (Color online) Magnetic moment of the easy-axis-like 

1 = 3B  spin = 3 / 2S  paramagnet for 2 = 1B  and = 0.1Bk T  as a 
function of the external magnetic field H  and the electric field E . 

Fig. 6. (Color online) Magnetic susceptibility of the easy-axis-like 

1 = 3B  spin = 3 / 2S  paramagnet for 2 = 1B  and = 0.1Bk T  as a 
function of the external magnetic field H  and the electric field E . 

Fig. 7. (Color online) Magnetic moment of the easy-plane-like 

1 = 3B −  spin = 3 / 2S  paramagnet for 2 = 1B  and = 0.1Bk T  as a 
function of the external magnetic field H  and the electric field E . 

Fig. 8. (Color online) Magnetic susceptibility of the easy-plane-like 

1 = 3B −  spin = 3 / 2S  paramagnet for 2 = 1B  and = 0.1Bk T  as a 
function of the external magnetic field H  and the electric field E . 



A. A. Zvyagin 

326 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 4 

where 2 2 1/2
1 12= [3 (2 2 ) ] / 2eff

p p B xA B B B g H± + − ± µ  and  

 = 2 exp cosh
2
p B x p

p
B B

g H A
Z

k T k T
− µ   

− +    
    

  

 exp cosh .
2
p B x p

B B

g H A
k T k T

+µ    
+    

   
 (12) 

In Figures 9 and 10, the behavior of the magnetic mo-
ment of such a paramagnet as a function of the external 
fields E  and xH  are shown for the more interesting case 

1 > 0B , namely for 1 = 3B , 2 = 1B , = 1a , = 1p Bg µ  and 
= 0.1Bk T  for = 1S  and = 3 / 2S . In fact, it is seen that the 

effect of the external electric field for such a geometry of 
the magnetic field is not dramatic. It only renormalizes the 
effective value of the magnetic anisotropy 2B . On the other 
hand, for the model with the Hamiltonian b , one can also 
calculate the magnetic moment and the magnetic suscepti-
bility for the magnetic field directed along z  axis also [24]. 
The easiest way is to replace eff

1 2B B→  and vice versa, 
with effp B x Bg H g Hµ → µ  in the above expressions. Then 
it is easy to see that the drastic effect of the external elec-
tric field takes place: There is a critical value of the electric 
field cE  at which the system becomes uniaxial, and critical 
crossover phenomena take place as in the studied before 
more realistic system. 

Now let us turn to the study of the effect of the external 
strain on the magnetic characteristics of the paramagnet. 
The Hamiltonian of the considered model can be written 
as [19, 25]  

 
2

2 2
eff 1 0 2 2=

2B z
Cug HS B O B O− µ − − + −   

 
2

2 0 2
2 2( ) ,

8
E eEu aEO b u u O− ε + + + −
π

 (13) 

where e is the piezoelectric modulus, C  is the elastic mod-
ulus, u  is the strain, and b  is the coefficients of the magne-
to-elastic coupling (all issues are connected with the co-
ordinate x). We see that the external strain 0u  plays similar 
to the external electric field E  role: It renormalizes the 
effective parameter of the cristalline electric field 2B . The 
effect of the external strain is similar to the effect of the 
external electric field. However, the realistic values of the 
external electric field can be much larger than the one for 
the external strain, caused by the external pressure. This is 
why, it is possible that for realistic values of the external 
pressure one cannot reach the values of 0u  at which the 
crossover to the uniaxial paramagnet can take place. Notice 
that the following relation for the strain holds:  

 
2

2 = ,
4

u be u b EC e
a x a xt

∂ ∂ ε ∂   − − +   ∂ π ∂∂    
 (14) 

i.e., the dynamics of the strain in the system depends on 
the spatial changes of the external electric field. 

We point out that the effects, discussed above, can be ob-
served easier for rare-earth based paramagnets, rather than 
for transition metal-based, because in the former the crystal-
line electric field is weaker, and the critical values of the 
external electric field and strain can be achieved easier. 

In summary, we have shown that the external electric 
field and the external strain can change the magnetic field 
behavior of magnetic characteristics of a quantum para-
magnet. In particular, we have shown that the most drastic 
changes take place if the electrtic field is directed perpen-
dicular to the direction of the magnetic field. In such a sit-
uation, the external electric field can change drastically 
the magnetic field dependences of the magnetic moment 
and susceptibility. On the other hand, for the parallel ori-
entation of the external electric and magnetic fields, 

Fig. 9. (Color online) Magnetic moment of the 1 = 3B  spin = 1S  
biaxial paramagnet for 2 = 1B  and = 0.1Bk T  as a function of the 
external magnetic field xH  and the electric field E . 

Fig. 10. (Color online) Magnetic moment of the 1 = 3B  spin 
= 3 / 2S  biaxial paramagnet for 2 = 1B  and = 0.1Bk T  as a func-

tion of the external magnetic field xH  and the electric field E . 
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the changes in the behavior also take place, however, they 
are rather quantitative. We suppose that the predicted ef-
fects can be observed in rare-earth based paramagnetic 
insulators, with relatively small orthorhombic anisotropy. 
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 ___________________________ 

Ефекти зовнішнього електричного поля 
та деформації в квантовому парамагнетику 

A. A. Zvyagin 

Вивчено вплив зовнішнього електричного поля та зовніш-
ньої деформації на квантовий парамагнітний діелектрик. 
Показано, що зовнішне електричне поле та/або деформація 
можуть привести до суттєвих змін магнітних характеристик 
парамагнетика в магнітному полі.  

Ключoві слова: магнітна анізотропія, електричне поле, зовнішня 
деформація, магнітний момент.
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