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Analysis of Dirac and Weyl points in topological
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We calculate the extremal cross-sectional areas and cyclotron masses for the Fermi-surface pockets in Dirac
and Weyl topological semimetals. The calculation is carried out for the most general form of the electron energy
bands in the vicinity of the Weyl and Dirac points. Using the obtained formulas, one can find parameters cha-
racterizing the Dirac and Weyl electrons in the topological semimetals from appropriate experimental data.

As an example, we consider the W1 electrons in TaAs.
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The topological Weyl and Dirac semimetals have at-
tracted much attention in recent years; see, e.g., reviews
[1-5] and references therein. In the Weyl semimetals, two
electron bands contact at discrete (Weyl) points of the Bril-
louin zone and disperse linearly in all directions around
these specific points. The same type of the band contact
occurs in the Dirac semimetals, but the bands are double de-
generate in spin. In other words, a Dirac point can be con-
sidered as a superposition of two Weyl points in the quasi-
momentum space. The chemical potential of electrons ¢ in
the Weyl and Dirac semimetals is close to the band-contact
energy &4. A number of the Dirac and Weyl semimetals
were discovered in recent years [1, 2, 6].

Various oscillation effects are widely used in experi-
mental investigations of the topological semimetals. In par-
ticular, measurements of the quantum-oscillations phase
related to the so-called Berry phase [7] were carried out in
a host of works in order to detect the Weyl and Dirac elec-
trons in semimetals, see, e.g., review [5] and references there-
in. Beside this, using the Shubnikov—de Haas and de Haas—
van Alphen effects, the extremal cross-sectional areas of
the Fermi surfaces and the cyclotron masses corresponding
to these cross-sections were measured for a number of the
Weyl [8-15] and Dirac [16-25] semimetals. In this paper
we present formulas for such areas and masses. These for-
mulas will allow one to obtain the parameters characteriz-
ing the Dirac and Weyl points in the topological semimetals
from the experimental data.

The most general electron dispersion relations ., (p)
of the two bands c,v in the vicinity of a Weyl (Dirac)
point look as follows [5, 26, 27]:
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where the quasi-momentum p is measured from this point,
and [E(p)]? is a positively definite quadratic form in the
components of the vector p. Below we shall choose the
coordinate axes along principal directions of this form. In
this case, one has

[E(P)]? = by, pf +byy P5 +bs3p3, )

where by;, b,,, by; are the positive constants. The scaling of
the coordinate axes, p; = pi\/E , transforms Egs. (1), (2)
into the form,

gy =8¢ +A-PE[P],

that depends only on the constant dimensionless vector
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The vector & characterizes a tilt of the bands ¢, (p),
and its length is the most important parameter of dispersion
relation (1). When the length of & is less than unity,
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the dispersion relations ¢, (p) looks like in Fig. 1(a). In
this case, the Fermi surface is either a closed hole pocket if
€ < gy or a closed electron pocket if > ¢€4. When a2 >1,
there is a direction in the p-space along which the dispersion
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Fig. 1. Dispersion relations ¢.(p) and g, (p) of the two contact-
ing bands in the vicinity of a Weyl (Dirac) point in the cases of
%<1 (a) and &2 >1 (b). On the right, the Fermi surfaces at
{—e4 <0 and £—¢g, >0 are shown together with the Weyl
(Dirac) point which is the origin of the coordinate axes. The
shaded and white surfaces correspond to the electron and hole
charge carriers, respectively.

relations ¢, (p) look like in Fig. 1(b), and “open” electron
and hole pockets of the Fermi surface exist both at < g
and £ > g. It is necessary to emphasize that the parameter
a2, which specifies the tilt of the bands, differs from zero
for all the Weyl points and for the Dirac points induced by
the band inversion [1] since all these points do not belong
to the class of highly-symmetric points in the Brillouin
zone of the topological semimetals. If 42 <1, a Weyl (Di-
rac) semimetal falls into the type I, whereas the case 42 >1
corresponds to the so-called type 1l Weyl (Dirac) semimetals
[28]. Below we consider only the type | semimetals which
have the closed Fermi surfaces.

At small |£—¢4 |, the Fermi surfaces near the Weyl
(Dirac) points are ellipsoids, with the center of the ellipsoids
being displaced from these points (i.e., from p = 0) by the
vector that is proportional to ({—¢4). Beside this, if at
least two components of & differ from zero, the axes of the
ellipsoid deviate from the axes of the coordinate system.

The displacement of the Fermi surface leads to the fact that
its maximal cross-section perpendicular to a unit vector n
generally does not pass through the Weyl (Dirac) point
p =0, Fig. 1. Using the dispersion relation (1), (2), one can
calculate both the maximal cross-sectional area S, of the
Fermi surface at an arbitrary direction n of the magnetic
field H and the cyclotron mass m. = (1/2m)(0S, / 0C)
corresponding to this cross-section,

_ m{G-e)
) @
(C—¢q) (4)

My = —F——.
RY?(1-4%)

The angular-dependent factor R, in these expressions has
the form,

3
R, = bybyoby[(1-a2)A% +(@-A)°1 =) «nin;,  (5)
i,j=1

where
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and §; is the Kronecker symbol. It follows from Eqgs. (3)
and (4) that

Spax _ 2ehF
n|m.| c|m.|’

|C—8d | = (6)
where F is the frequency of the quantum oscillations pro-
duced by the cross-sectional area S, in a physical quan-
tity Q [i.e., the first harmonic of Q is proportional to
cos (2nF / H +¢g), where ¢, is some phase]. Therefore, if
the frequency F and the cyclotron mass m. have been
measured at least for one direction of the magnetic field,
formula (6) enables one to find the position of the chemical
potential ¢ relative to the energy g, of the Weyl (Dirac)
point.

The dispersion relations (1), (2) is determined by the six
parameters: by, by, a3, &, 8,, &;. Beside this, the orienta-
tion of the principal axes of the quadratic form [E(p)]?
relative to the crystallographic axes of the semimetal can
be described by three angles, and hence the nine parame-
ters define a Weyl (Dirac) point in the general case. The
angular dependenses of the frequency F are specified by
the factor 1/\/R_n in Eq. (3), and this factor is defined by
the six constants k. Hence, an approximation of experi-
mental angular dependences of this frequency with formu-
las (3), (5) together with Eq. (6) provides possibility to
determine the six combinations of the parameters charac-
terizing the dispersion relation.
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The densities n,, and np of the Weyl and Dirac charge
carriers can be expressed in terms of directly-measurable
frequencies of the quantum oscillations,

Ny, V

_ _2NpV
(2mn)®’

©2m)®’ )

D

where V is the volume of a Weyl or Dirac pocket in the
Brillouin zone,

_AISELSELSOTY2 _ 8V2n(en)®? (RF,F;)"2

v 31_[1/2 3C3/2

(@)

N,y and Ny are the numbers of the equivalent pockets, F
and F; are the maximal and minimal frequencies produced
by the pocket when the magnetic field rotates in various
planes, and F, corresponds to the direction of H perpen-
dicular to the directions at which F, and F, occur. The cross-
sectional areas S{1) correspond to the frequencies F;, and
these cross-sections are mutually orthogonal.
Consider now two special cases in more detail.

1. Dirac point

In the Dirac semimetals induced by the band inversion,
the Dirac points can lie only in symmetry axes of the third,
fourth or sixth order [1]. The well-known Dirac semimetals
Na,Bi and Cd;As, just fall into this class. In this case, one
of the principal axes of [E(p)]* coincides with the sym-
metry axis, which we designate as the axis 3. The symmetry
also imposes the restrictions: by; =b,, =b, (generally
b, #Dbs3), a=(0,0,a;). With these restrictions, formulas (3)
and (5) give the following expressions for S, (0), the
maximal area of the cross-section that is perpendicular to
the magnetic field tilted at the angle 6 to the symmetry axis,

_m(G—gq)®
Smax (0) = b, (1-a2)" 9)
Smax (0 Jcos20+&2sin20

where &? = (1-a8%)b,3 /b, . Thus, if S, (0), m.(0),
Sax (1 2) are measured, one can find | { —¢4 |, b, (1-&2),

and e with formulas (6), (9), (10). Note that dependence (10)
has the standard form typical of an ellipsoidal Fermi sur-
face. However, the anisotropy of the Fermi surface

€= Spax (0)/ Spax (m/ 2) contains the factor 4/1-42 which
is caused by the tilt of the bands ¢, (p). The density ny, of
the Dirac charge carriers can be found with Egs. (7), (8)
where S&) @ SB) =3 (0)[Sax (7 / 2)]? now.

2. Weyl point near a reflection plane

Consider a Weyl point for which the parameters meet
the following restrictions: by;, by, > sy and a; <« &, but

d;=a /\/@ can have any value satisfying the condition
(83)? <1-(&)%—(d,)%. Such a point may appear if it re-
sults from a nodal line that lies in the reflection plane 1-3
of the crystal without the inversion symmetry. This line
exists in neglect of the spin-orbit interaction. In this case,
for any point of the line, the vector a lies in the reflection
plane (i.e., a, = 0), whereas one of the local values of by,
b5 is equal to zero (for definiteness, let by; = 0) [5, 26, 27].
A nonzero strength of spin-orbit interaction lifts the degen-
eracy of the electron bands along the nodal line and can
lead to the appearance of two Weyl points disposed near
the reflection plane (symmetrically relative to it) [11]. If
the spin-orbit interaction does give rise to the Weyl point
slightly displaced from the plane, one may expect that a;,
as, by, by; will experience small changes, and the condi-
tion by;, by, > bss will hold true for the point. The fact of
the appearance of the closed Fermi pocket surrounding the
Weyl point provides the fulfilment of the condition
(d3)? <1-(&)% - (d,)* which means that such a pocket
can occur near the point of the line where a is relatively
small, a, 5\/@<<\/E~ a,. Although one may also
expect that &, =~ 0 for the Weyl point, the closeness of the
two Weyl points to each other may noticeably modify the
values of b,, and &,, and so we do not impose any re-
striction on these parameters.

For the Weyl point that results from the nodal line, the
perpendicular to this line in the reflection plane, the normal
to the plane, and the direction along the line are close to
the directions of the axes 1, 2, and 3, respectively. In Fig. 2
we show the angular dependences of the frequency
F(6) = cSpax (0) / (2nRie), where 6 is the angle between the
magnetic field and the axis 3. This angle changes either in
the 1-3 plane or in the 2-3 plane. Since in a tetragonal crys-
tal like TaAs, the equivalent Weyl pockets exist near the
two perpendicular reflection planes, both the dependences

F(0)/F(0)
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Fig. 2. The frequency of quantum oscillations, F = ¢S, / (2neh),
versus the angle 0 between the direction of the magnetic field and
the axis 3, Egs. (3) and (5). Here & =05, &, =0.47, & =0,
by, /b, =4, by; /b, =0.04 (these values correspond to the first
set of the parameters in Table 1). The angle 0 changes either in
the 1-3 plane (the solid line) or in the 2-3 plane (the dashed line).
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presented in Fig. 2 can be observed for H rotating in each
of the planes. In particular, the dependences shown in Fig. 2
are similar to those found for the so-called W1 electrons in
TaAs (see Fig. 3(a) in Ref. 11). In Fig. 2 we take d; = 0. If
a; # 0, the minimum value of F(0) is reached at the non-
zero angle 6,, in the plane 1-3,

aa b
0. ~— 198 288 11
"“1-az-aZ\b (D

A similar formula describes the position of the minimum
of F(0) in the plane 2-3 (in this case, &, &,, and b;; are
replaced by &,, &, and b,,, respectively). These nonzero
0, are due to the above-mentioned deviation of the Fermi-
surface axes from the coordinate axes.

3. Example: W1 electrons in TaAs

As an example, let us analyze the known experimental
data for the W1 electrons in the Weyl semimetal TaAs [11].
Near the W1 points the appropriate nodal lines are parallel
to the c axis, and therefore it is reasonable to suppose that
the directions of the axes 1, 2, 3 coincide with the direc-
tions of the crystallographic axes a, b, c. Arnold et al. [11]
found that the frequency of quantum oscillations F changes
like in Fig. 2 when the direction of the magnetic field va-
ries in the reflection plane c-a from the ¢ axis (6 = 0) to the
a axis (0=mn/2), and they obtained F(0)~7T,
m.(0)/ m =~ 0.057. At 6 = 0, the frequency F () splits into
the two branches F,(0), F,(0) associated with the ellip-
soids lying near the axes a and b (Fig. 3), and the frequen-
cies F,(n/2) and F,(n/2) take the values 29 and 59 T.
Using formula (6) and the values of F(0) and m.(0), we
arrive at £ —e4 ~ 28.4 meV. This result is close to the value
26 meV obtained in the band-structure calculations [11].
Using Eq. (6), we can also predict the values of the cyclo-
tron masses m..(rn/2)/ m~0.24 and 0.48 which correspond
to the frequencies 29 and 59 T, respectively.

With { -4 ~ 28.4 meV and Egs. (3), we find RY? (1-4&2)
ate =0,

RU2(1-a?) = %620 g5 qq0 ™
¢ 2ehF (0) s?

where R, =R, |g=g- On the other hand, Eq. (5) gives

RV2(1-82) ~ (byby, (1-&7 -83)(1-8%),  (12)

and hence we have found the value of the right hand side
of this expression.

According to Eq. (5), the factor RY? at 8 = 7/ 2 looks
like

ﬁsz22b33(l—é§—é§),
\/R_z\/bllb%(l—éf—ég),

for the W1 ellipsoids lying near the a and b axes, respec-
tively. Since there are no visible displacements of the mi-
nima of F,(0) and F,(6) from the point 6 =0 in Fig 3(a)
of Ref. 11, we conclude that the parameter &; is small for
the W1 electrons, i.e., 8 ~0, and so &% ~ (§,)%+(&,)%
Therefore, the ratios RY2 / RY? and RY2 / RY? reduce to

Jbua—af;za%), me(l—éf;é%)_ 3
by (1-43) bys(1-487)

However, these ratios determine F,(n/2)/F(0),
Fy(n/2)/F(0), and so they are equal to 29/7 and 59/7
(or 59/7 and 29/7). Thus, we have found the values of the
two combinations of the parameters (13).

When the magnetic field rotates in the a-b plane from
the a axis (¢ = 0) to the direction [110] (¢ = 7/ 4), each of
the frequencies F, (¢) and F,(¢) splits into the two branches
Far(9), Fap(9) and Fy(9), Fyp(e) if &, #0, ie, if the
principal axes of the ellipsoids deviate from the a and b
axes. The ¢-dependences of these four branches are deter-
mined by the factors,

Rat.a2 (9) =byybg3 (1 a7)sin? ¢+ byybys(1-45)cos® o+

+ 2,/by1by, b338,8, Sinhcos ¢, (14)
Ro1.p2 (9) = brybag (1 &) c05%¢ +byyhys (1- 5 sin®¢ +
+ 2,/b1by, ba58, &, Sin ¢ CoS §. (15)

At ¢ =0, the two factors R;;(9) and R,,(¢) reduce to R,,
whereas Ry;(0) and R,,(0) coincide with R,. When
o =m/4, the four frequencies partly merge again since
Rai(n/4) =Ry (n/4) and R,,(n/4) = Ry, (n/4). Itis evi-
dent from Egs. (14) and (15) that at any ¢,

Ra1(9) + Ra2 (9) + Ryg (¢) + Ry2 (0) = 2R, + 2R,

This equality leads to the relation between the appropriate
four branches of the frequency,

1 N 1 N 1 N 1 _ 2 N 2
[Fa@OF  [Fa@) [Fu@F [Foo@)® [FF [R]*
(16)
b

O
)

00

Fig. 3. The outline of the cross-sections of the W1 ellipsoids by
the a-b plane in TaAs.
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where F, and F, are equal to 29 and 59 T. According to
Fig. 3(a) in Ref. 11, F,;(n/4) = Ry, (n/4) 33 T. This con-
dition gives the fourth relation on the five parameters &, &,,

byy, by, and by,
[RI? _Fu(n/4) _33
[Ryy (r/ 4)]M2 F(0) 7

17

Table 1. The two possible sets of the parameters specifying
the W1 electrons in TaAs

set | o, | vby | Vs | & a, &
10° m/s | 10° m/s | 10* m/s

1 3.37 6.74 6.7 0.5 0.47 0
2 6.88 3.30 6.7 0.5 0.47 0

The parameter &, can be obtained from the band struc-
ture calculation along the a axis. In particular, Fig. 1 in
Ref. 11 permits one to obtain the following crude estimate:
&, ~0.5. Taking into account the above four relations be-
tween by, by, by, 8, &, we find two possible sets of the
parameters characterizing the W1 points in TaAs, Table 1.
The dependences of the frequencies Fy;, Fy,, Fyy, Fyp 0N ¢
for the first set of the parameters are presented in Fig. 4.

At nonzero values of &; and &,, the principal axes of the
ellipsoid in the a-b plane deviate from the a and b axes
(Fig. 3). A simple analysis leads to the following formula
for the deviation angle y:

[Fao (1) 4] 2 ~[Fos (] 9]
[F12-[R]?

where the value of F,,(n/4) = Fy,(n/4)~423T can be
found from Eq. (16). Using formula (18), we obtain

tan (2| y|) = , (18)

—_
(=]

F(Q)/F (6 =0)
NV W A L N 0 O

—
T

| | | |
0 0.05 0.1 0.15 0.2 0.25
o/

Fig. 4. The frequencies F, ., (the solid lines) and Fy,,
(the dashed lines) versus the angle ¢ between the a axis and the
magnetic field lying in the a-b plane. The parameters are the
same as in Fig. 2 (i.e., they coincide with the first set in Table 1).

|w|=11 or |y|~79°. These two values of |y| corre-
spond to the two sets of the parameters in Table 1. For the
first set, the orientation of the ellipsoids in the a-b plane is
schematically shown in Fig. 3. In this case, the maximal
axis of their cross-sections by the a-b plane is inclined at
the angle of 11° to the a and b axes. For the second set,
this angle is equal to 79°.

Knowing the angle v, the frequencies F; and F, in
formula (8) can be calculated, and we arrive at

-1/2

(Faz_l:bz)2 2
207 tan?(2 . (19
F2F2 @lwl) (19)

FF, = FF [ 1-

Eventually, expressions (7), (8), (19) with F; =F(6=0)=7T
give the density N, ~2.53-10*® cm™ produced by the eight
equivalent pockets of the W1 electrons in TaAs.
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AHani3 Toyok [ipaka Ta Benns B TononorivHmnx
HaniBMeTanax 3a JONOMOro OCUMNALINHUX eDeKTIB

G. P. Mikitik, Yu. V. Sharlai

OO04HCICHO IUIOLII eKCTPEeMalIbHHUX Hepepi3iB Ta UKIOTPOHHI
Macu 1oBepxoHb depmi B AipaKiBCHKHX Ta BEHITIBCHKHX TOIO-
JOTIYHMX HamiBMeTanax. PO3paXxyHOK NMPOBENEHO Ul HaiOiIbII
3araJIbHOr0 BHIIAJIKY EJICKTPOHHHX CHEPreTHYHHX 30H MOOJIU3Y
BCHJIIBCBKHMX Ta JAiPaKiBCbKUX TOYOK. BUKOPHCTOBYIOYH OTpHMa-
Hi GopMyin, MOXHA 3HAWTH HapaMeTpH, IO XapaKTepPU3YKTh
IipaKiBCchKi Ta BEHIIBCHKI €IEKTPOHM B TOIOJIOTIYHUX HaIliBMe-
Tanax. Sk npuxian, po3rasgHyTo enektponu W1 B TaAs.

Ki1r04oBi citoBa: TOMOJIOriYHI HaIliBMETAIU, TOYKHA Beitis, Touku
MHipaxa, TaAs, ocrmwiiiai epexTn y Beimis-
CBKHX HaIliBMETalax.
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