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The simple model that can describe structure and charge ordering in complex doped organic crystals is pro-
posed. We consider the quasione-dimensional model of a crystal with chains (stacks) of flat BEDT-TTF mole-
cules. In a chain of large molecules, small molecules fill every space between large molecules. The interaction 
between all molecules is described by the Lennard-Jones potential. It is shown that the small dopant molecules 
are in the double-well potential. It is shown that in case of the electrically neutral molecules at low temperatures 
there is a fluctuating structural ordering: the small molecules group in pairs near a large molecule, the lattice pe-
riod in the fluctuation domain doubles. The structure of the boundary between the fluctuation domains is de-
fined. In case of the charged molecules, correction to electric dipole interaction makes the system essentially 
three-dimensional, there is ferroelectric ordering in a chain and antiferroelectric one between the chains. Struc-
ture of the charge domains and domain boundaries are described. 
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1. Introduction 

In organic crystals, charge ordering phase transitions 
occur in a limited temperature range below some critical 
temperature [1]. This kind of crystals has a complex char-
acter of internal interactions (see [2], Chap. 3). The most 
frequently studied organic crystals are BEDT-TTF (bis-ethy-
lenedithio-tetrathiafulvalene). In such crystals, the charge 
ordering is possible by doping small molecules [3]. 

The BEDT-TTF molecules have shape of plate and in-
teract mainly by wide molecular planes in the crystal [3]. 
The molecular planes are parallel to each other, and the 
molecules themselves form stacks with an axis perpendicu-
lar to the planes. It is easy to note that the system under 
consideration is similar to a strongly anisotropic layered 
crystal, in which the interactions inside the plane signifi-
cantly exceed the interaction between the planes, which is 
described as a quasi-two-dimensional model [4]. The op-

posite case is also possible when the interaction within a 
chain of atoms (molecules) significantly exceeds the inter-
action between chains (quasi-one-dimensional model), like 
in liquid nematic crystals. Therefore, we will describe the 
BEDT-TTF crystal as a chain along the direction of mo-
lecular stacks. In this zero approximation we neglect the 
weak interaction between adjacent stacks (chains). In the 
first approximation we consider the interaction between the 
adjacent stacks (chains) that provides the crystal stability 
and 3D behavior in the phase transition description. 

2. Quasi-1D model of organic crystal 

We introduce a quai-1D model of the BEDT-TTF crys-
tal, in which the chain consists of one molecular stack 
(Fig. 1) and the planes of the molecules are perpendicular 
to the direction of the one-dimensional chain. This assump-
tion is consistent with the structural data of a real crystal [5]. 
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The interactions between atoms can be clearly describ-
ed by the Lennard-Jones potential expression [6], which 
has the following form: 

 
12 6

( ) = 4U r
r r

 σ σ   ε −    
     

, (1) 

where σ  is the finite distance at which the inter-particle 
potential is zero, ε is the depth of the potential well, and 
r is the distance between two particles. These parameters 
depend on the material. There is also another form of nota-
tion: 
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where 0r  is the distance where the potential reaches its 
minimal value, i.e., an equilibrium distance. The interac-
tion between the planes of large molecules (along the axis 
of the chain, Fig. 1) has a complex form like the Girifalco 
potential [7]. The formula for the Girifalco potential is 
similar to the Lennard-Jones one and includes sum of in-
teractions between different atoms in neighboring mole-
cules. We take a simplified averaged relation and use the 
formula (2) for intermolecular interaction along the chain. 

In order to give conductive, super-conducting, magnetic, 
etc. properties to BEDT-TTF crystal and, thereby, expand 
its practical application, the small molecules are doped into 
the crystal. The role of the small molecules can play metal 
atoms or small organic molecules. We assume that these 
small molecules are located on the axis of the chain (stack). 
The interaction potential between large and small mole-
cules (and small ones) can be written in a similar form: 
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where sε  ( ssε ) and sr  ( ssr ) are the depth of the potential 
well and the equilibrium distance large-small (small-small) 
molecules. The interactions of a small molecule with large 
one or two large molecules are shown in Fig. 2. We intro-
duce the dimensionless variables: 

 
0 0 0

= ,   = ,   = ,   = .s ss
s

r rr Ux w s s
r r rε

 (4) 

When 0 /< 2r r , a small molecule can be placed in a 
space between two large ones. For small molecules located 
between large molecules, the parameter s belongs to the 
range 0 < < 0.5s . Otherwise, it is attracted to large mole-
cules, but it cannot fill the space between them. 

3. The double-well potential for a small dopant 

The expression for the interaction potential of a small 
molecule with two large ones can be represented as the 
sum of interactions with each of two large molecules: 

12 612 6
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Here it is assumed that the large molecules are located 
in the points “0” and 0r  along the chain axes. In non-
dimensional variables we obtain: 

12 6 12 6

( ) = 2 2 .
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s s s sU r
x x x x
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The final form of the expression with a symmetric ar-
rangement of large molecules relative to the w  axis: 
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( ) = 2 2 .
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s s s sU r
x x x x

        ε − + −        + + − −         
  (7) 

Here we assume that the plain molecules are fixed in 
the points .= 0 5x ± . In the Fig. 3 (top panel) change in the 
space dependence of the potential (7) is shown for different 
values of the parameter s. The parameter s equals to the 
ratio of the equilibrium distances “large-small” and “large-
large” molecules (3). For < 0.45s , the small molecule has 
the double-well potential [Figs. 3(a) and 3(b) (top panel)]. 
As the parameter s increases, the barrier width between 
wells for the small molecule decreases first [Fig. 3(b)], 
while the height of the barrier remains constant. Starting 

Fig. 1. Quasione-dimensional (chain) model of the BEDT-TTF 
crystal. Bold vertical segments show projections along the large 
BEDT-TTF molecules. 

Fig. 2. Lennard-Jones potentials (2), (3) of interaction for the 
large (minimum in 1) and small (minimum in s ) molecules, 

= 0.8sε ε, = 0.45s . Axes are displayed with non-dimensional 
units (4). 
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with 0.25s ≈  [Fig. 3(b)], a decrease in the barrier height is 
observed, and with = 0.45s  Fig. 3(c), the double well po-
tential becomes a single well one (bifurcation point). Fur-
thermore, we differentiate the expression (7) to obtain the 
function ( )w r′ , zeros of which correspond to the following 
extrema of ( )w r : the middle extremum corresponds to the 
maximum, and two side ones correspond to the minima. 
Far from the bifurcation point, the side extrema are well 
described by the approximation = sr r  and 0= sr r r− , but 
this statement is not valid near the bifurcation point of the 
potential. The graph of the derivative ( )w r′  in Fig. 3 (bottom 
panel) allows us to clearly see the bifurcation point. 

The height of the potential barrier in the double-well 
potential plays important role for the system behavior. The 
potential barrier height (see Fig. 4) can be found from ex-
pression: 

 max min= r rh U U− , (8) 

where minrU  is the potential in the minimum point and 
maxrU  shows a potential value in the highest point [see 

Figs. 3(a) and 3(b)]. For small molecules, while 0 0.25s≤ ≤ , 
the barrier height h is maximum and equals 1 when nor-
malized to ε. If s exceeds 0.45, the small molecule has one 
minimum of potential energy. If s exceeds 0.5, the small 
molecule cannot fill the space between large ones. 

The following consideration we will start from the fact 
that each small dopant is in the double-well potential be-
tween the large molecules. Without any interaction be-
tween the small dopants, their potential energy is described 
by the formula (5) and energies in two wells of the double-
well potential are equal. The set of the small dopants and 
the double-well potentials are shown in Fig. 5. Therefore, 
there is no ordering state of the small molecules. The aver-

age potentials of small molecules in disordered state have 
the same form in a high temperature phase. 

The presence of the double-well potential consequently 
leads to an “order-disorder” phase transition [8, 9]. How-
ever the phase transition is impossible in one-dimension 
(chain) systems [8]. 

The average kinetic energy kin 3 / 2kTE =  of a small 
molecule is proportional to the temperature of the material. 
The ratio of this energy to the barrier height kin /E h  is the 
main parameter that determines the temperature PTT  when 
of the “order-disorder” phase transition can occur [1]. Due 
to the magnitude of kin /E h  = 1, the height of the barrier 
and PTT  are related: 

 
3

= .
2

PTkTh  (9) 

At high temperatures > PTT T , the small dopants move 
over the double-well potential barrier or easily jump be-
tween the wells. At low temperatures < PTT T , the small 
molecules remain still in one of the two wells. 

At low cooling rate, the system exists at PTT T≈  for 
quite a long time, and the small dopants achieve the or-
dered state (see below). At high cooling rate, the system 
quickly passes the PTT  vicinity, and the relative weak in-
teraction between the small molecules does not have time 
to arrange them. 

We emphasize once again that relation (9) determines 
only the temperature below which the small molecules 

Fig. 3. For a small molecule the non-dimensional potential energy 
( )w x  (top) and it’s space derivation ( )w x′  (bottom) dependences 

are shown for different values of the parameter s . The small mo-
lecule is located between two large molecules that are in points 

.= 0 5x ± . The bifurcation point (disappearance of the potential 
barrier in the well) is clearly observed at 0.45s =  in ( )w x′  graph. 

Fig. 4. The barrier height /h ε  of the double-well potential in 
dependence on the parameter s . The maximum of the barrier 
decreases starting from 0.25s ≈  and disappears at 0.45s = . 

Fig. 5. Potentials of the small dopants without mutual interaction 
or in the high temperature disordered state. The large molecules 
are highlighted with bold vertical lines. 3= 0.s . 
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remain in one of the two wells of the double-well potential. 
Then the “order-disorder” phase transition can occur only 
due to interaction between the small molecules. The phase 
transition is impossible and one-dimension systems are still 
disordered down to the temperature = 0T  [8]. It is another 
matter that correlations grow with decreasing temperature, 
and the system is divided into domains, which the sizes 
grow with T  decreasing. 

Only accounting of interaction between the adjacent 
stacks (chains) provides the 3D behavior and correct the 
phase transition description. 

4. Interaction of neutral dopants and fluctuating 
domains 

Let us consider two adjacent small unchanged dopant 
molecules, see Fig. 5, and fix position of one molecule. 
The distance 1 0 0= 2 = 2 <sr r sr r  corresponds to the nearest 
adjacent minima position of the small dopant molecules. 
The distance 2 0=r r  corresponds to periodic translation in 
the crystal. Therefore, in addition to the field of two neigh-
boring large molecules (double-well potential for small do-
pant molecule) we will get the following interaction energy 
from the neighboring dopant: 

12 6

1 16 6
1 1

12 6
6 6

2 2 0
2 2

1( ) = 2 = 2 ,   = 2 ,
2 2

( ) = 2 = [ 2],   = .

ss ss ss
ss ss s

ss ss
ss ss ss s s

r r
U r r r

r r

r r
U r s s r r

r r

     ε   ε − −            
     ε − ε −   
     

 

  (10) 

With any value of < 0.5s  we obtain the following ine-
quality 

 1 2( ) < ( ) < 0.ss ssU r U r  (11) 

These values correspond to the minimum [ 1( )ssU r ] and 
maximum [ 2( )ssU r ] of the sloped double-well potential. In 
other words, two adjacent small dopant molecules attract 
and form pairs, the lattice period is doubled. The final local 
ordering of the neutral small molecules in a fluctuating 
domain is shown in Fig. 6(a). Due to the interaction of 
small molecules, every second large molecule attracts two 
nearest dopants. The model proposed here is a variation of 
the fully integrable one-dimensional Ising model, the com-
plete solution of which was obtained by Ernst Ising [10]. 

The proposed model is kind of the Ising model, in which 
the position of the dopant in the left and right wells corre-
sponds to the up and down states. The considered interac-
tion of the uncharged small dopants corresponds to the 
“antiferromagnetic” Ising chain. 

A break of translational symmetry in the ordered state 
leads to the domain structure occurrence. Two adjacent do-
mains display different positions of the small molecules 
and they are shifted at the lattice period, see Fig. 6(b). In 
the domain itself, the period is doubled. Approaching to 
the disordered state can be described as diminishing of the 
domains to a minimal size (a few periods). 

It is obviously that the small dopant molecules interact 
very weakly between neighbor chains because of consider-
ably long distances. So, 3D ordering of the small dopant 
molecules occurs at very low temperatures and by fluctuat-
ing way. 

5. The charge ordering and domains 

In the case of different electronegativity of the small 
dopant molecule (may be metal atoms) and the large organic 
molecule, a charge transfer occurs. Then the molecules ex-
perience an electrostatic interaction. The Coulomb poten-
tial describes interaction of the small dopant molecules 
since their small size. The interaction between neighboring 
small molecules occurs in accordance with formula (6), 
taking into account the Coulomb potential. We introduce 
the notation for the electrostatic interaction of two large LLW  
molecules and small and large SLW  molecules: 

 
2 2

= ,   = ,   , > 0,LL SL
q qW W
r r

α −β α β  (12) 

where α and β describe dependences on the large mole-
cules shape, and r  is distance between the molecules. Here, 
the different sign of the charges of the large and small mole-
cules is taken into account. Let us find the change in the 
equilibrium distance between the large and small mole-
cules introduced in (3), taking into account the electrostatic 
interaction SLW  in (12) as perturbation: 

 
2

= (1 ),   = < 0.
72sq s

s

qr r b b
r

β
+ −

ε
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Qualitatively similar result (shortening) can be obtained 
for another neighbor: distance small-large molecules in-
creases. Therefore, the lattice period decreases, since the 
attraction of large and small molecules prevails over the 
repulsion of the charged molecules with the same charge. 
For the charged molecules we can obtain energies in the 
right and left well in dependence on position of neighbor-
ing charged small dopants [analogue of formula (10)]. We 
need to account that electrostatic interaction ( 1/ R ) is 
long-range in comparison with Lennard-Jones attraction 

6( 1/ R ). So, electrostatic interaction needs summation all 
over crystal and finding the Madelung sum (see [2], Chap. 3). 

Fig. 6. (a) The potentials and arrangement of the small neutral 
molecules in a fluctuating domain. (b) The fluctuating domain 
boundary is shown as dashed line. 
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Different configurations of the small dopants are possible, 
but the most stable their arrangement (ordering) is shown 
in Fig. 7(a). This arrangement requires the most possible 
distance between the small dopants. All dopants are locat-
ed in the left (or right) wells of the double-well potentials. 
The Madelung sum calculation is necessary to find exact 
values of the lattice period. 

The proposed model is kind of the one-dimensional 
Ising model [10]. Here the position of the dopant in the left 
and right wells corresponds to the up and down states. The 
Coulomb interaction of the charged small dopants corre-
sponds to the case of “ferromagnetic” Ising chain. Above 
we discussed that 1D systems can have only fluctuating 
ordering down to = 0T . The electrostatic potential pro-
vides enough strong interaction between the molecular 
chains (stacks) in the doped crystal. In this case the pairs of 
the oppositely charged molecules we can consider as electric 
dipoles with easy axis along a chain. Inside a chain the pa-
rallel arrangement of dipoles provides minimal energy [11]. 
In [Fig. 7(a)] all dopants can also be located in the right 
wells of the double-well potential, and then there is another 
domain in the charge ordered structure in the chain. The 
crystal with charged molecules can has a polycrystalline 
structure. In a chain the domain boundaries between charged 
ordered domains are shown in [Figs. 7(b) and 7(c)]. All do-
pants can be shifted away from the boundary [Fig. 7(b)], 
but they can approach to the boundary [Fig. 7(c)]. Electro-
static energies of these domain boundaries are different. 
Thus, in the chain we have different electrostatic interac-
tion energies per one pair of neighboring dopant atoms: 

 

2 2 2

0 0 0
= ,  = ,   = ,

2 (1 ) 2
> > .

a b c

c a b

q q qW W W
r r s r s

W W W
−  (14) 

Here , , a b cW W W  are the interaction energies per one pair 
inside a domain [Fig. 7(a)], and in the boundaries 
[Figs. 7(b) and 7(c)] correspondingly. Despite the fact that 
the energy bW  in the domain boundary [Fig. 7(b)] is the 
lowest, the number of such boundaries bn  is determined 

only together with the number of the boundaries [Fig. 7(c)] 
due to their topological nature = 1b cn n ± . Evaluations (14) 
seem to be more correct in comparison with dipole-dipole 
interaction because of small distances between dipoles in a 
boundary along a chain. 

In the nearest neighboring chains, the axes of dipoles are 
perpendicular to the dipole-dipole line. In this case the di-
poles arrangement is antiparallel [11]. Therefore, the chess 
packaging [Fig. 8(a)] of the dipoles in parallel chains (stacks) 
provide stability to the 3D charge ordering under “order-
disorder” phase transition [8, 9]. The lattice period is doubled 
in both directions perpendicular to the chains. This perfect 
chess packaging structure [Fig. 8(a)] can be formed at slow 
cooling. Nucleation of the domains is independent that 
causes wrong in the chess packaging translation. Two kinds 
of the formed domain walls in the chess packaging struc-
ture are shown in Figs. 8(b) and 8(c). 

Considered above the perfect chess packaging domain 
structure is formed at relatively slow crystal cooling. At 
high cooling rate multiple domain nucleations leads to the 
very short charge domains in the chains and very small 
chess-packaging domains. Annealing causes to coagulation 
of the domains in the chains and in the chess packaging 
simultaneously. 

6. Conclusion 

The organic crystals of TTF type exhibit various specific 
behaviors due to their structure and physical properties in 
dependence of the temperature. To provide new properties 
of organic crystals and, therefore, expand their practical 
application, dopants are inserted into the structure of the 
TTF crystal. In this paper, we considered the case of the 

Fig. 8. (a) Transverse cross-section (chess packaging) of the pa-
rallel chains (stacks) in the charge ordered crystal. The rectangles 
correspond to the BEDT-TTF molecules with real size proportion [3]. 
The dipoles orientation is shown by up ( ) and down (⊕) vec-
tors. (b), (c) The domain boundaries in the chess packaging. 

Fig. 7. (a) Charge ordering state in a chain. One (left) of possible 
two domains is shown. (b), (c) Domains and domain boundaries 
in the crystal with the charge-ordered small dopant molecules. 
(b) The left-right boundary; (c) the right-left boundary, the arrows 
show the electric dipoles orientations in the domains. 
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small dopants as interstitial impurity. Initially a model of 
a homogeneous quasi-one-dimensional crystal (chain) was 
considered; next, the same model, but with dopant mole-
cules was described. We represented the interaction of the 
molecules by the Lennard-Jones potential. The existence of 
interstitial dopants is possible only when the dopant radius 
is much smaller than the TTF large molecule. In any other 
conditions, the dopant cannot fit between large molecules 
and should be located between TTF stacks. To describe the 
possibilities of doping the crystal, we introduced the pa-
rameter 0= /ss r r  for the ratio of the equilibrium distance 
between large and small molecules to the equilibrium dis-
tance between large molecules. It was shown that arrange-
ment of a dopant inside the chain is possible only with the 
values of the parameter 0.5s < . In the chains for 0.45s < , 
the potential of a small dopant molecule becomes double-
well (bifurcation). For the small dopants the condition of 
the double-well potential existence was considered. It was 
found that for the small dopant molecules the potential 
barrier increases with decreasing of the parameter s. For a 
more accurate and visual analysis, we use the potential’s 
derivative which is more sensitive to the confluence of the 
potential extremes. It is shown that the small dopants or-
dering in the double-well potentials is possible only by 
taking into account interactions with neighboring dopants 
second neighbors. 

In the case of the small neutral dopant molecules attrac-
tion, the double-well potentials become asymmetric, the 
small dopants are located in pairs, and the lattice period 
doubles. Because of very weak interaction of the dopant, 
the chain (stack) system is essentially one-dimensional. 
Consequently, phase transition and ordering have fluctuat-
ing character till = 0T . 

In the case of different electronegativity of the large and 
small molecules, the charge transfer takes place between 
the molecules. Electrostatic interaction becomes the mo-
lecular chains into essentially three-dimensional system; 
therefore, the charge ordering phase transition is possible. 
It is shown that inside the molecular chain the ferroelectric 
ordering of the molecular dipoles has minimal energy and 
two possible domain boundaries structure in the chains is 
pointed out. It is shown that the antiferroelectric chess 
packaging ordering of the molecular chains dipoles exists 
in the plane perpendicular to the chains. Two domain 
boundaries can exist in chess packaging. 

This research was supported by the National Academy 
of Sciences of Ukraine (grant 4/18-H) and the Ministry of 
Education and Science of Ukraine (project M05486). 
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Впорядкування сильно легованих органічних 
кристалів 

V. A. Lykah, E. S. Syrkin, E. N. Trotskii 

Запропоновано просту модель, яка може описати струк-
туру та зарядове впорядкування у складних допованих орга-
нічних кристалах. Розглянуто квазіодновимірну модель кри-
стала з ланцюжками (стопками) плоских молекул BEDT-TTF. 
У ланцюжку великих молекул малі молекули заповнюють 
кожен проміжок між великими молекулами. Взаємодія всіх 
молекул визначається потенціалом Леннард-Джонса. Пока-
зано, що малі молекули допанта розміщені у двоямному по-
тенціалі. У випадку електронейтральних молекул, при низь-
ких температурах відбувається флуктуаційне структурне 
впорядкування: малі молекули групуються в пари біля вели-
ких молекул, період ґратки у флуктуаційному домені подво-
юється. Визначено структуру границі між флуктуаційними 
доменами. У випадку заряджених молекул корекція на елек-
тричну взаємодію диполів робить систему суттєво тривимір-
ною, відбувається сегнетоелектричне впорядкування в лан-
цюжку і антисегнетоелектричне між ланцюжками. Описано 
структуру можливих зарядових доменів та границь. 

Ключові слова: молекулярний кристал, квазіодновимірна мо-
дель, допанти, зарядове впорядкування, до-
менні границі.
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