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Heavy doped organic crystals ordering
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The simple model that can describe structure and charge ordering in complex doped organic crystals is pro-
posed. We consider the quasione-dimensional model of a crystal with chains (stacks) of flat BEDT-TTF mole-
cules. In a chain of large molecules, small molecules fill every space between large molecules. The interaction
between all molecules is described by the Lennard-Jones potential. It is shown that the small dopant molecules
are in the double-well potential. It is shown that in case of the electrically neutral molecules at low temperatures
there is a fluctuating structural ordering: the small molecules group in pairs near a large molecule, the lattice pe-
riod in the fluctuation domain doubles. The structure of the boundary between the fluctuation domains is de-
fined. In case of the charged molecules, correction to electric dipole interaction makes the system essentially
three-dimensional, there is ferroelectric ordering in a chain and antiferroelectric one between the chains. Struc-
ture of the charge domains and domain boundaries are described.
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1. Introduction

In organic crystals, charge ordering phase transitions
occur in a limited temperature range below some critical
temperature [1]. This kind of crystals has a complex char-
acter of internal interactions (see [2], Chap. 3). The most
frequently studied organic crystals are BEDT-TTF (bis-ethy-
lenedithio-tetrathiafulvalene). In such crystals, the charge
ordering is possible by doping small molecules [3].

The BEDT-TTF molecules have shape of plate and in-
teract mainly by wide molecular planes in the crystal [3].
The molecular planes are parallel to each other, and the
molecules themselves form stacks with an axis perpendicu-
lar to the planes. It is easy to note that the system under
consideration is similar to a strongly anisotropic layered
crystal, in which the interactions inside the plane signifi-
cantly exceed the interaction between the planes, which is
described as a quasi-two-dimensional model [4]. The op-
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posite case is also possible when the interaction within a
chain of atoms (molecules) significantly exceeds the inter-
action between chains (quasi-one-dimensional model), like
in liquid nematic crystals. Therefore, we will describe the
BEDT-TTF crystal as a chain along the direction of mo-
lecular stacks. In this zero approximation we neglect the
weak interaction between adjacent stacks (chains). In the
first approximation we consider the interaction between the
adjacent stacks (chains) that provides the crystal stability
and 3D behavior in the phase transition description.

2. Quasi-1D model of organic crystal

We introduce a quai-1D model of the BEDT-TTF crys-
tal, in which the chain consists of one molecular stack
(Fig. 1) and the planes of the molecules are perpendicular
to the direction of the one-dimensional chain. This assump-
tion is consistent with the structural data of a real crystal [5].
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The interactions between atoms can be clearly describ-
ed by the Lennard-Jones potential expression [6], which
has the following form:

-] o

where o is the finite distance at which the inter-particle
potential is zero, € is the depth of the potential well, and
ris the distance between two particles. These parameters
depend on the material. There is also another form of nota-

tion:
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where 1, is the distance where the potential reaches its
minimal value, i.e., an equilibrium distance. The interac-
tion between the planes of large molecules (along the axis
of the chain, Fig. 1) has a complex form like the Girifalco
potential [7]. The formula for the Girifalco potential is
similar to the Lennard-Jones one and includes sum of in-
teractions between different atoms in neighboring mole-
cules. We take a simplified averaged relation and use the
formula (2) for intermolecular interaction along the chain.
In order to give conductive, super-conducting, magnetic,
etc. properties to BEDT-TTF crystal and, thereby, expand
its practical application, the small molecules are doped into
the crystal. The role of the small molecules can play metal
atoms or small organic molecules. We assume that these
small molecules are located on the axis of the chain (stack).
The interaction potential between large and small mole-
cules (and small ones) can be written in a similar form:

r 12 r 6
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r r
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where g, (g) and r, (ry) are the depth of the potential
well and the equilibrium distance large-small (small-small)
molecules. The interactions of a small molecule with large
one or two large molecules are shown in Fig. 2. We intro-
duce the dimensionless variables:
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Fig. 1. Quasione-dimensional (chain) model of the BEDT-TTF
crystal. Bold vertical segments show projections along the large
BEDT-TTF molecules.

—1+

Fig. 2. Lennard-Jones potentials (2), (3) of interaction for the
large (minimum in 1) and small (minimum in s) molecules,
g, =0.8¢, s=0.45. Axes are displayed with non-dimensional
units (4).

When r <1, /2, a small molecule can be placed in a
space between two large ones. For small molecules located
between large molecules, the parameter s belongs to the
range 0 <s<0.5. Otherwisg, it is attracted to large mole-
cules, but it cannot fill the space between them.

3. The double-well potential for a small dopant

The expression for the interaction potential of a small
molecule with two large ones can be represented as the
sum of interactions with each of two large molecules:

12 6 12 6
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r r r-r, r—r,

Here it is assumed that the large molecules are located
in the points “0” and r, along the chain axes. In non-
dimensional variables we obtain:
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The final form of the expression with a symmetric ar-

rangement of large molecules relative to the w axis:

s 12 s 6 S 12 S 6
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Here we assume that the plain molecules are fixed in
the points x = £0.5. In the Fig. 3 (top panel) change in the
space dependence of the potential (7) is shown for different
values of the parameter s. The parameter s equals to the
ratio of the equilibrium distances “large-small” and “large-
large” molecules (3). For s < 0.45, the small molecule has
the double-well potential [Figs. 3(a) and 3(b) (top panel)].
As the parameter S increases, the barrier width between
wells for the small molecule decreases first [Fig. 3(b)],
while the height of the barrier remains constant. Starting
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Fig. 3. For a small molecule the non-dimensional potential energy
w(x) (top) and it’s space derivation w'(x) (bottom) dependences
are shown for different values of the parameter s. The small mo-
lecule is located between two large molecules that are in points
x =% 0.5. The bifurcation point (disappearance of the potential
barrier in the well) is clearly observed at s =0.45 in w'(x) graph.

with s = 0.25 [Fig. 3(b)], a decrease in the barrier height is
observed, and with s =0.45 Fig. 3(c), the double well po-
tential becomes a single well one (bifurcation point). Fur-
thermore, we differentiate the expression (7) to obtain the
function w'(r), zeros of which correspond to the following
extrema of w(r): the middle extremum corresponds to the
maximum, and two side ones correspond to the minima.
Far from the bifurcation point, the side extrema are well
described by the approximation r =r, and r =r, —r,, but
this statement is not valid near the bifurcation point of the
potential. The graph of the derivative w'(r) in Fig. 3 (bottom
panel) allows us to clearly see the bifurcation point.

The height of the potential barrier in the double-well
potential plays important role for the system behavior. The
potential barrier height (see Fig. 4) can be found from ex-
pression:

rmax -U rmin (8)

where U, ., is the potential in the minimum point and
U, max Shows a potential value in the highest point [see
Figs. 3(a) and 3(b)]. For small molecules, while 0 <s<0.25,
the barrier height h is maximum and equals 1 when nor-
malized to €. If s exceeds 0.45, the small molecule has one
minimum of potential energy. If s exceeds 0.5, the small
molecule cannot fill the space between large ones.

The following consideration we will start from the fact
that each small dopant is in the double-well potential be-
tween the large molecules. Without any interaction be-
tween the small dopants, their potential energy is described
by the formula (5) and energies in two wells of the double-
well potential are equal. The set of the small dopants and
the double-well potentials are shown in Fig. 5. Therefore,
there is no ordering state of the small molecules. The aver-
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Fig. 4. The barrier height h/¢ of the double-well potential in
dependence on the parameter s. The maximum of the barrier
decreases starting from s ~ 0.25 and disappears at s =0.45.

age potentials of small molecules in disordered state have
the same form in a high temperature phase.

The presence of the double-well potential consequently
leads to an “order-disorder” phase transition [8, 9]. How-
ever the phase transition is impossible in one-dimension
(chain) systems [8].

The average kinetic energy E,;, =3kT /2 of a small
molecule is proportional to the temperature of the material.
The ratio of this energy to the barrier height E;, / h is the
main parameter that determines the temperature Ty when
of the “order-disorder” phase transition can occur [1]. Due
to the magnitude of E,;, /h = 1, the height of the barrier
and Tpy are related:

_ 3KTpr
)

h ©)

At high temperatures T >Tpp, the small dopants move
over the double-well potential barrier or easily jump be-
tween the wells. At low temperatures T < Ty, the small
molecules remain still in one of the two wells.

At low cooling rate, the system exists at T ~Tpy for
quite a long time, and the small dopants achieve the or-
dered state (see below). At high cooling rate, the system
quickly passes the Tp; vicinity, and the relative weak in-
teraction between the small molecules does not have time
to arrange them.

We emphasize once again that relation (9) determines
only the temperature below which the small molecules

|| | ] | | || | |
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Fig. 5. Potentials of the small dopants without mutual interaction

or in the high temperature disordered state. The large molecules
are highlighted with bold vertical lines. s = 0.3.
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remain in one of the two wells of the double-well potential.
Then the “order-disorder” phase transition can occur only
due to interaction between the small molecules. The phase
transition is impossible and one-dimension systems are still
disordered down to the temperature T = 0 [8]. It is another
matter that correlations grow with decreasing temperature,
and the system is divided into domains, which the sizes
grow with T decreasing.

Only accounting of interaction between the adjacent
stacks (chains) provides the 3D behavior and correct the
phase transition description.

4. Interaction of neutral dopants and fluctuating
domains

Let us consider two adjacent small unchanged dopant
molecules, see Fig. 5, and fix position of one molecule.
The distance r; = 2r, = 2sr, < r, corresponds to the nearest
adjacent minima position of the small dopant molecules.
The distance r, = r, corresponds to periodic translation in
the crystal. Therefore, in addition to the field of two neigh-
boring large molecules (double-well potential for small do-
pant molecule) we will get the following interaction energy
from the neighboring dopant:

12 6
r r € 1
U () =eg || = 2= :ﬁ[——z}, r, = 2r,,
SS(l) 5 [rl\] [rlj 26 26 1 S

12 6
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2 P}
(10)

With any value of s < 0.5 we obtain the following ine-
quality

U (r) <Ug(rp) <0. (11)

These values correspond to the minimum [U(r;)] and
maximum [U  (r,)] of the sloped double-well potential. In
other words, two adjacent small dopant molecules attract
and form pairs, the lattice period is doubled. The final local
ordering of the neutral small molecules in a fluctuating
domain is shown in Fig. 6(a). Due to the interaction of
small molecules, every second large molecule attracts two
nearest dopants. The model proposed here is a variation of
the fully integrable one-dimensional Ising model, the com-
plete solution of which was obtained by Ernst Ising [10].
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Fig. 6. (a) The potentials and arrangement of the small neutral
molecules in a fluctuating domain. (b) The fluctuating domain
boundary is shown as dashed line.

The proposed model is kind of the Ising model, in which
the position of the dopant in the left and right wells corre-
sponds to the up and down states. The considered interac-
tion of the uncharged small dopants corresponds to the
“antiferromagnetic” Ising chain.

A break of translational symmetry in the ordered state
leads to the domain structure occurrence. Two adjacent do-
mains display different positions of the small molecules
and they are shifted at the lattice period, see Fig. 6(b). In
the domain itself, the period is doubled. Approaching to
the disordered state can be described as diminishing of the
domains to a minimal size (a few periods).

It is obviously that the small dopant molecules interact
very weakly between neighbor chains because of consider-
ably long distances. So, 3D ordering of the small dopant
molecules occurs at very low temperatures and by fluctuat-
ing way.

5. The charge ordering and domains

In the case of different electronegativity of the small
dopant molecule (may be metal atoms) and the large organic
molecule, a charge transfer occurs. Then the molecules ex-
perience an electrostatic interaction. The Coulomb poten-
tial describes interaction of the small dopant molecules
since their small size. The interaction between neighboring
small molecules occurs in accordance with formula (6),
taking into account the Coulomb potential. We introduce
the notation for the electrostatic interaction of two large W,
molecules and small and large Wg, molecules:

_ 9 _ o4
Wi so We, __BT’ a,p>0, 12)
where a and  describe dependences on the large mole-
cules shape, and r is distance between the molecules. Here,
the different sign of the charges of the large and small mole-
cules is taken into account. Let us find the change in the
equilibrium distance between the large and small mole-
cules introduced in (3), taking into account the electrostatic

interaction Wy, in (12) as perturbation:

2
gq:ga+m,b:—£§—<a (13)

el

Qualitatively similar result (shortening) can be obtained
for another neighbor: distance small-large molecules in-
creases. Therefore, the lattice period decreases, since the
attraction of large and small molecules prevails over the
repulsion of the charged molecules with the same charge.
For the charged molecules we can obtain energies in the
right and left well in dependence on position of neighbor-
ing charged small dopants [analogue of formula (10)]. We
need to account that electrostatic interaction (~1/R) is
long-range in comparison with Lennard-Jones attraction
(~1/R®). So, electrostatic interaction needs summation all
over crystal and finding the Madelung sum (see [2], Chap. 3).
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Different configurations of the small dopants are possible,
but the most stable their arrangement (ordering) is shown
in Fig. 7(a). This arrangement requires the most possible
distance between the small dopants. All dopants are locat-
ed in the left (or right) wells of the double-well potentials.
The Madelung sum calculation is necessary to find exact
values of the lattice period.

The proposed model is kind of the one-dimensional
Ising model [10]. Here the position of the dopant in the left
and right wells corresponds to the up and down states. The
Coulomb interaction of the charged small dopants corre-
sponds to the case of “ferromagnetic” Ising chain. Above
we discussed that 1D systems can have only fluctuating
ordering down to T =0. The electrostatic potential pro-
vides enough strong interaction between the molecular
chains (stacks) in the doped crystal. In this case the pairs of
the oppositely charged molecules we can consider as electric
dipoles with easy axis along a chain. Inside a chain the pa-
rallel arrangement of dipoles provides minimal energy [11].
In [Fig. 7(2)] all dopants can also be located in the right
wells of the double-well potential, and then there is another
domain in the charge ordered structure in the chain. The
crystal with charged molecules can has a polycrystalline
structure. In a chain the domain boundaries between charged
ordered domains are shown in [Figs. 7(b) and 7(c)]. All do-
pants can be shifted away from the boundary [Fig. 7(b)],
but they can approach to the boundary [Fig. 7(c)]. Electro-
static energies of these domain boundaries are different.
Thus, in the chain we have different electrostatic interac-
tion energies per one pair of neighboring dopant atoms:

Here W,,W,,W, are the interaction energies per one pair
inside a domain [Fig.7(a)], and in the boundaries
[Figs. 7(b) and 7(c)] correspondingly. Despite the fact that
the energy W, in the domain boundary [Fig. 7(b)] is the
lowest, the number of such boundaries n, is determined
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Fig. 7. (a) Charge ordering state in a chain. One (left) of possible
two domains is shown. (b), (c) Domains and domain boundaries
in the crystal with the charge-ordered small dopant molecules.
(b) The left-right boundary; (c) the right-left boundary, the arrows
show the electric dipoles orientations in the domains.
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Fig. 8. (a) Transverse cross-section (chess packaging) of the pa-
rallel chains (stacks) in the charge ordered crystal. The rectangles
correspond to the BEDT-TTF molecules with real size proportion [3].
The dipoles orientation is shown by up (®) and down (@) vec-
tors. (b), (c) The domain boundaries in the chess packaging.

only together with the number of the boundaries [Fig. 7(c)]
due to their topological nature n, = n, 1. Evaluations (14)
seem to be more correct in comparison with dipole-dipole
interaction because of small distances between dipoles in a
boundary along a chain.

In the nearest neighboring chains, the axes of dipoles are
perpendicular to the dipole-dipole line. In this case the di-
poles arrangement is antiparallel [11]. Therefore, the chess
packaging [Fig. 8(a)] of the dipoles in parallel chains (stacks)
provide stability to the 3D charge ordering under “order-
disorder” phase transition [8, 9]. The lattice period is doubled
in both directions perpendicular to the chains. This perfect
chess packaging structure [Fig. 8(a)] can be formed at slow
cooling. Nucleation of the domains is independent that
causes wrong in the chess packaging translation. Two kinds
of the formed domain walls in the chess packaging struc-
ture are shown in Figs. 8(b) and 8(c).

Considered above the perfect chess packaging domain
structure is formed at relatively slow crystal cooling. At
high cooling rate multiple domain nucleations leads to the
very short charge domains in the chains and very small
chess-packaging domains. Annealing causes to coagulation
of the domains in the chains and in the chess packaging
simultaneously.

6. Conclusion

The organic crystals of TTF type exhibit various specific
behaviors due to their structure and physical properties in
dependence of the temperature. To provide new properties
of organic crystals and, therefore, expand their practical
application, dopants are inserted into the structure of the
TTF crystal. In this paper, we considered the case of the
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small dopants as interstitial impurity. Initially a model of
a homogeneous quasi-one-dimensional crystal (chain) was
considered; next, the same model, but with dopant mole-
cules was described. We represented the interaction of the
molecules by the Lennard-Jones potential. The existence of
interstitial dopants is possible only when the dopant radius
is much smaller than the TTF large molecule. In any other
conditions, the dopant cannot fit between large molecules
and should be located between TTF stacks. To describe the
possibilities of doping the crystal, we introduced the pa-
rameter s = r, /1, for the ratio of the equilibrium distance
between large and small molecules to the equilibrium dis-
tance between large molecules. It was shown that arrange-
ment of a dopant inside the chain is possible only with the
values of the parameter s <0.5. In the chains for s <0.45,
the potential of a small dopant molecule becomes double-
well (bifurcation). For the small dopants the condition of
the double-well potential existence was considered. It was
found that for the small dopant molecules the potential
barrier increases with decreasing of the parameter s. For a
more accurate and visual analysis, we use the potential’s
derivative which is more sensitive to the confluence of the
potential extremes. It is shown that the small dopants or-
dering in the double-well potentials is possible only by
taking into account interactions with neighboring dopants
second neighbors.

In the case of the small neutral dopant molecules attrac-
tion, the double-well potentials become asymmetric, the
small dopants are located in pairs, and the lattice period
doubles. Because of very weak interaction of the dopant,
the chain (stack) system is essentially one-dimensional.
Consequently, phase transition and ordering have fluctuat-
ing character till T = 0.

In the case of different electronegativity of the large and
small molecules, the charge transfer takes place between
the molecules. Electrostatic interaction becomes the mo-
lecular chains into essentially three-dimensional system;
therefore, the charge ordering phase transition is possible.
It is shown that inside the molecular chain the ferroelectric
ordering of the molecular dipoles has minimal energy and
two possible domain boundaries structure in the chains is
pointed out. It is shown that the antiferroelectric chess
packaging ordering of the molecular chains dipoles exists
in the plane perpendicular to the chains. Two domain
boundaries can exist in chess packaging.
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BrnopsakyBaHHS CUITbHO NIeroBaHMX OpraHivyHuX
KpucTanis

V. A. Lykah, E. S. Syrkin, E. N. TrotskKii

3ampornoHOBaHO IPOCTY MOJENb, KA MOXE OIHCATH CTPYK-
TYpy Ta 3apsi0oBe BHOPSIKYBAHHS y CKJIaJHUX JONOBaHUX Opra-
HIYHUX KpucTaiax. PO3IISHYTO KBa3iOJHOBHMIPHY MOJIEIb KpH-
CTaJa 3 JJAaHIIOXKKaMH (CcTONKaMHu) Iockux Monexyn BEDT-TTF.
VY JIaHLIOKKY BEJIMKHX MOJIEKYJ Malli MOJIKYJH 3allOBHIOIOTH
KOJKeH NMPOMDKOK MK BEJIMKMMH MOJIEKyJlaMu. B3aemopmist Beix
MOJIEKYJI BH3Ha4aeThcs noteHmiagoMm Jlennapa-/[xonca. Iloka-
3aHO, 110 MaJli MOJIEKYJIM JIOTIAHTa PO3MIlIeH] y ABOSMHOMY HO-
TeHUiam. Y BUIAAKY eJEKTPOHEHTPAIbHUX MOJICKYJ, IIPH HU3b-
KHX TeMIeparypax BinOyBaeTbcs (UIyKTyamiiHe CTpPYKTypHE
BIIOPSIIKYBaHHS: MaJli MOJICKYJIM TPYIYIOTbCS B apu Oijs Besu-
KHX MOJIEKYJI, Iepiof IPaTKH y (QIIyKTyaliifHOMy IOMEHI ITOJBO-
I0€ThCS. BU3HAUEHO CTPYKTYpy IpaHHLi MK (QayKTyauifHUMN
JOMEHaMH. Y BHIAJKY 3apsUKEHHX MOJIEKYJ KOPEKIis Ha eJeK-
TPUYHY B3aEMOJIIIO TUIOJIB POOUTH CHCTEMY CYTTEBO TPUBHMIp-
HOIO, BiJJOyBa€ThCSl CETHETOENEKTPUYHE BIIOPSAKYBAHHS B JIaH-
II0XKKY 1 aHTHUCETHETOCNIEKTPUYHE MK JaHItoKKaMu. OnucaHo
CTPYKTYPY MO>JIMBHX 3apsOBHX JOMCHIB TA IPAaHUIIb.

Kutr04oBi cj10Ba: MOJIEKYIIIPHUIA KPHCTAl, KBa3i0AHOBUMipHA MO-
JIeTIb, JTOMAHTH, 3aps/0Be BIOPSIKYBAaHHS, JO-
MEHHI I'paHULi.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 5 445


https://doi.org/10.1002/adma.201601979
https://doi.org/10.1088/1468-6996/10/2/024301
https://doi.org/10.1103/physrev.184.151
https://doi.org/10.1103/physrevb.62.13104
https://doi.org/10.1007/BF02980577

	1. Introduction
	2. Quasi-1D model of organic crystal
	3. The double-well potential for a small dopant
	4. Interaction of neutral dopants and fluctuating domains
	5. The charge ordering and domains
	6. Conclusion

