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A quantum description of the surface waves in an isotropic elastic body without the use of the semiclassical 
quantization is proposed. The problem about the surface waves is formulated in the Lagrangian and Hamiltonian 
representations. Within the framework of the generalized Debye model, the contribution of the surface phonons 
(“rayleighons”) to thermodynamic functions is calculated. It is emphasized that the role of the surface phonons 
can be significant and even decisive in low-dimensional systems, granular and porous media, and that their con-
tribution to the total heat capacity increases with decreasing temperature. 
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1. Introduction

Methods of describing spatially homogeneous con-
densed media are fairly well developed, a large number of 
specific problems have been solved. Although here, too, 
there remain many unsolved problems associated mainly 
with the correct accounting of interparticle interactions and 
the description of phase transitions. 

In recent years, more and more attention has been paid 
to both experimental and theoretical study of media where-
in interphase boundaries and surfaces play an important 
role. It is precisely in such essentially inhomogeneous sys-
tems that there is reason to hope for the discovery of new 
physical effects and the production of new materials with 
unique properties on their basis. A simple transfer of the 
methods of theoretical study of homogeneous systems to 
the case of strongly inhomogeneous media is clearly insuf-
ficient, and therefore there is a need for the elaboration and 
development of special approaches. For low temperatures, 
the quantum-mechanical description of such systems, in 
particular of their electronic and phonon properties, has 
acquired a fundamental importance. 

A widespread model of solids, which gives a correct 
description of thermodynamic properties in the limiting 
cases of low and high temperatures, is the well-known 
model proposed by Debye even before the creation of 
modern quantum theory [1]. In the Debye model for an 
elastic isotropic medium, it is assumed that phonons have a 
certain averaged velocity. However, it offers no principal 
difficulty to generalize the Debye model for an isotropic 
solid with taking into account longitudinal and transverse 
phonons propagating with different velocities [2]. As was 
shown by Rayleigh [3], in an isotropic elastic body, to-

gether with longitudinal and transverse waves, along the 
body surface there may propagate surface waves, the am-
plitude of which decreases with distance from the bounda-
ry. The quasiparticles corresponding to these waves, the 
surface phonons, will also give a contribution to the ther-
modynamic functions of a solid which is proportional to 
the area of its surface. This contribution can be significant 
and even decisive for low-dimensional samples, as well as 
bodies having a granular or porous structure. The questions 
of the theory of local and surface vibrations of a crystal 
lattice, as well as the literature on this issue, are considered 
in the book [4]. 

The quantization of the surface waves, that is similar to 
the semiclassical quantization of the photon field by 
Planck, was carried out by Khalatnikov in the study of heat 
transfer between a solid and superfluid helium [5]. Howev-
er, a consistent quantum theory, as is known, was built 
only more than a quarter of a century after the introduction 
of a new world constant by Planck. At the same time, a 
general prescription for the transition from classical to 
quantum description became clear. It consists in the fact 
that within the framework of the classical approach there 
are selected generalized coordinates and canonical momen-
ta, which, upon passing to the quantum description, are 
considered as operators acting in the space of wave func-
tions and obeying the commutation relations which gen-
eralize the classical Poisson brackets. This quantization 
prescription is suitable both for systems of particles inter-
acting by means of a potential [6, 7] and for continuous 
media (fields) [2, 8, 9]. For surface waves at the boundary 
of an isotropic solid, such a quantization method has not 
yet been implemented, which is the main goal of this work. 
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On the basis of the generalized Debye model, taking into 
account the difference in the velocities of longitudinal and 
transverse sound waves [2], we calculate the contribution 
of the surface phonons to thermodynamic functions at arbi-
trary temperatures.  

2. Surface waves in an isotropic elastic medium 

Let us first consider the classical surface wave problem. 
Suppose that an elastic isotropic medium fills the half-
space 0z < . Thus, the surface separating the medium and vac-
uum is 0z = . The deformation vector in an elastic isotropic 
medium ( , , )z tu r  satisfies the equation [10] 

 ( )2 2 2 divt l tc c c= ∆ + − ∇u u u , (1) 

where 

 2,t lc cµ λ + µ
= =

ρ ρ
 (2) 

are the velocities of the transverse and longitudinal waves, 
,µ λ  are the Lame coefficients, ρ is the density.  

Since the system under consideration is spatially homo-
geneous in the xy  plane and inhomogeneous along the 
z axis perpendicular to the surface, we represent the real 
deformation vector in the form of an expansion in two-
dimensional plane waves 

( ) ( ) ( )1, , , , e , , ei iz t z t z t
A

∗ − = + ∑ kr kr

k
u r u k u k , (3) 

A  is the surface area. Here r and k  are the two-
dimensional vectors: ( , )x y≡r , ( , )x yk k≡k . As is known 
[10], the deformation vector of a medium can be represent-
ed as the sum l t= +u u u , where div 0t =u  and rot 0l =u . 
Each of these vectors can be expressed in terms of scalar 
and vector potentials 

 , rotl t= ∇ϕ =u u ψ, (4) 

which satisfy the wave equations 

 2 2,l tc cϕ = ∆ϕ = ∆ψ ψ  . (5) 

The potentials can be represented in a form similar to the 
decomposition (3): 

( ) ( ) ( )

( ) ( ) ( )

1, , , , e , , e ,

1, , , , e , , e .

i i

i i

z t z t z t
A

z t z t z t
A

∗ −

∗ −

 ϕ = ϕ + ϕ 

 = + 

∑

∑

kr kr

k

kr kr

k

r k k

ψ r ψ k ψ k
 (6) 

Applying the Fourier transform in time 

( ) ( ), , , , e ,i tz t z d
+∞

− ω

−∞

ϕ = ϕ ω ω∫k k  

 ( ) ( ), , , , e i tz t z d
+∞

− ω

−∞

= ω ω∫ψ k ψ k , (7) 

from the equations (4) we find the solutions bounded at 
0z <  

 ( ) ( ) ( ), , , exp ,lz A zϕ ω = ω γk k   

 ( ) ( ) ( ), , , exp tz zω = ω γψ k B k , (8) 

where 

 
2 2

2 2
2 2,l t
l t

k k
c c
ω ω

γ = − γ = − . (9) 

If the radicands in (9) are positive, then the waves decay 
exponentially deep into the medium, and if the radicands 
are negative, then the solutions (8) have the form of oscil-
lations. 

The components of the vector of longitudinal defor-
mations, with taking into account the form of the solutions 
(8) and the formula (4), are determined by the relations: 

____________________________________________________ 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, e e , e e ,

, e e , e e ,

1 , e e , e e .

l l

l l

l l

i t i tz z
lx x

i t i tz z
ly y

i t i tz z
lz l l

iu d k A A
A
iu d k A A
A

u d A A
A

∗

∗

∗

−ω − −ωγ γ∗

−ω − −ωγ γ∗

−ω − −ωγ γ∗ ∗

 = ω ω − ω  

 = ω ω − ω  

 = ω γ ω + γ ω  

∑∫

∑∫

∑∫

kr kr

k

kr kr

k

kr kr

k

k k

k k

k k

 (10) 

The components of the vector of transverse deformations, with account of (8) and (4), are given by the formulas: 

 

( ) ( ) ( ){ ( ) ( ) ( )}
( ) ( ) ( ){ ( ) ( ) ( )}
( ) ( )

1 , , e e , , e e ,

1 , , e e , , e e ,

, , e e

t t

t t

t

i t i tz z
tx y z t y y z t y

i t i tz z
ty x z t x x z t x

iz
tz x y y x

u d ik B B ik B B
A

u d ik B B ik B B
A
iu d k B k B
A

∗

∗

−ω − −ωγ γ∗ ∗ ∗

−ω − −ωγ γ∗ ∗ ∗

γ

  = ω ω − γ ω + − ω − γ ω   

 = ω − ω + γ ω + ω + γ ω    

 = ω ω − ω 

∑∫

∑∫

∑∫

kr kr

k

kr kr

k

kr

k

k k k k

k k k k

k k ( ){ ( ) ( ) ( )}, , e e .tt i tz
x y y xk B k B

∗−ω − −ωγ∗ ∗ − ω − ω 
krk k

 (11) 
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The formulas (10), (11) give a general solution for the de-
formation vector under arbitrary boundary conditions, 
which is bounded in the half-space 0z < . 

Let us obtain a particular solution, provided that no ex-
ternal forces act on the surface. The external force acting 
per unit surface area is determined by the expression 

i ik kf n= σ  [10], where n is the outward normal vector to 
the surface, which in the case under consideration is di-
rected along the z  axis, so that (0, 0, 1)=n . Assuming that 
at 0z =  the force is equal to zero, we have the boundary 
conditions 0xz yz zzσ = σ = σ = , which, with taking into 
account the form of the stress tensor for an isotropic elastic 
medium, have the form 

0, 0,yx z zuu u u
z x z y

∂∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
 

 ( )1 0yxz uuu
z x y

∂ ∂∂
−σ + σ + = 

∂ ∂ ∂ 
, (12) 

where σ  is the Poisson coefficient. Using the formulas 
(10), (11), by means of the boundary conditions (12) we 
obtain the algebraic equations for the expansion coeffi-
cients in these formulas 

 

( )
( )

( ) ( ) ( ) ( )

2 2

2 2

2 2 2

2 0,

2 0,

1 1 2 0.

x l x y x t x y y t z

y l t y x x y y x t z

l x y t x y y x

ik A k k B k B ik B

ik A k B k k B ik B

k k A i k B k B

γ + − γ + + γ =

γ + γ + − − γ =

 −σ γ −σ + + − σ γ − = 

  

  (13) 

To shorten the notation we used the designations 
( , )A Aω ≡k , ( , )ω ≡B k B . It is also convenient to introduce 

the designations 

( ) ( )1 1,x x y y x y y xB k k B k B B k k B k B− −
+ −= + = − , (14) 

where 2 2 2
x yk k k= + . Then the system of equations (13) 

takes the form 
 ,z tiB B+= α  (15) 

 
( )

( )

22 1 0,

2 2 0,
l t

t

i A B

y A i B
−

−

α − + α =

− + α =
 (16) 

wherein 

 
2

2 2 , , ,l l t t
t

y k k
c k
ω

≡ γ = α γ = α   

 ( )
( )

2
2 2 1/ 2

1 , 1 , .
1

t
l t

l

c
y y

c
−σ 

α ≡ − ξ α ≡ − ξ = =  −σ 
  

  (17) 

The compatibility condition for a system of linear homo-
geneous equations gives the equation 

 ( )24 2t l yα α = − , (18) 

which, with account of the formulas (17), is reduced to the 
well-known cubic equation [10] 

 ( ) ( )3 2 2 28 8 3 2 16 1 0y y y− + − ξ − − ξ = , (19) 

determining the dispersion law of surface waves. The pa-
rameter y  is a real number less than one, the value of 
which is determined by the ratio of the transverse and lon-
gitudinal wave velocities. Thus, the velocity of surface 
waves 

 s tc yc=  (20) 

is less than the velocity of body waves. The radicands in 
(17) are positive for all values of y  and the quantities lα , 

tα  are real, while l tα > α . In the case when there is a rela-
tionship 0 ( )ω = ω k  between the frequency and the wave 
number, the amplitudes in the formulas (10), (11) should 
be taken in the form 

( ) ( ) ( )( )0, ,A Aω = δ ω−ωk k k  

 ( ) ( ) ( )( )0,ω = δ ω−ωB k B k k , (21) 

where ( ) ( )0 0( ) , ( ) , ( ) , ( )A A≡ ω ≡ ωk k k B k B k k  . In our 

case ( )0 tyc kω =k . In the following we will omit the 
tilde sign. The relations (13)−(16) make it possible to ex-
press the deformation vector only in terms of one ampli-
tude ( )A k : 

____________________________________________________ 

 

( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( ) ( )( ) ( ) ( )( ){ }

0 0

0 0

0 0

1

1

2

( , , ) , e e ,

( , , ) , e e ,

( , , ) , e e .

i t i t
x x

i t i t
y y

i t i tl
z

iu z t k g z k A A
A
iu z t k g z k A A
A

u z t kg z k A A
A

−ω − −ω∗

−ω − −ω∗

−ω − −ω∗

 = −  

 = −  

α  = +  

∑

∑

∑

kr k kr k

k

kr k kr k

k

kr k kr k

k

r k k

r k k

r k k

 (22) 
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Here, the following functions are defined  

( )1 2
2

, e e ,
1

l tkz kzl t

t
g z k α αα α

≡ −
+α

  ( )2 2
2, e e

1
l tkz kz

t
g z k α α≡ −

+α
. 

  (23) 

Having defined the time-dependent amplitudes 

( ) ( ) ( ) ( ) ( ) ( )0 0, e , , e ,i t i tA t A A t A− ω ω∗ ∗= =k kk k k k  (24) 

and introducing the new amplitudes 

 ( ) ( ) ( ) ( ), , , ,X t X t A t A t∗ ∗= − ≡ + −k k k k , (25) 

the components of the deformation vector can be written as 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

2

, , , , e ,

, , , , e ,

, , , , e .

i
x x

i
y y

l i
z

iu z t k g z k X t
A
iu z t k g z k X t
A

u z t k g z k X t
A

=

=

α
=

∑

∑

∑

kr

k

kr

k

kr

k

r k

r k

r k

 (26) 

Before proceeding to quantizing surface excitations, we 
present the Lagrangian and the Hamiltonian formulations 
of the problem. 

3. Lagrangian and Hamiltonian formulations of the 
surface waves problem 

The density of the Lagrangian function, which leads to 
the equations for waves in an isotropic elastic medium (1), 
has the form 

( ) ( ) ( )22, , div
2 2 2 j i i j j i j iz t u u u uρ λ µ

Λ = − − ∇ ∇ +∇ ∇r u u ,  

  (27) 

and to find the complete Lagrangian function one should inte-
grate (27) over the entire volume occupied by the medium 

 ( )
0

,
A

L d dz z
−∞

= Λ∫ ∫r r . (28) 

Using the obtained expressions for the components of the 
deformation vector (26), for which the boundary condi-
tions (12) are fulfilled, and integrating over spatial coordi-
nates, we obtain the Lagrangian function in the form 

 ( ) ( ) ( )2 22 3

4
l

sL y k X c k X
ρα  = Θ −  ∑

k
k k , (29) 

where 

( )
( ) ( )

( )( )
( )
( )

2 4

4

16 1 2 2
2

21 2

y y y
y

yy y

 − + − + Θ ≡ − =
−− −

 

 
( )
( )( )

2 2 3

4

8 16 11 2

1 2

y y y y

y y

− + −
=

− −
. (30) 

Instead of the complex quantities in (29), one should 
pass to the real quantities ( ) ( ) ( )X X iX′ ′′= +k k k  and con-
sider ( ), ( )X X′ ′′k k  as generalized coordinates and 

( ), ( )X X′ ′′k k   as generalized velocities, on which the 
Lagrangian function depends. However, it should be taken 
into account that the Lagrangian must be expressed in 
terms of independent coordinates and velocities. Mean-
while, due to the condition (25), the coordinates at the op-
positely directed wave vectors k  and −k  are linked by the 
relations 

 ( ) ( ) ( ) ( ), , , , ,X t X t X t X t′ ′ ′′ ′′= − = − −k k k k  (31) 

and therefore are not independent. To pass to independent 
variables in the Lagrangian (29), we decompose it into 
two terms, each of which contains a summation over all 
wave vectors except for the oppositely directed ones. Due 
to the conditions (31), the contribution to the Lagrangian 
of each such term will be the same. Therefore, the Lagrangian 
(29) should be multiplied by two, and the summation 
should be carried out only over those wave vectors 
among which there are no the oppositely directed ones. 
For example, we may sum over all wave vectors having 

0zk > . As a result, the Lagrangian, expressed in terms of 
the real independent even and odd (31) coordinates and 
velocities, takes the form 

( ) ( ) ( )2 2 3 2

2
l

s
y

L kX c k X
∩ρα Θ
 ′ ′= − + ∑

k
k k  

 ( ) ( ) ( )2 2 3 2

2
l

s
y

kX c k X
∩ρα Θ
 ′′ ′′+ − ∑

k
k k . (32) 

Here, the symbol ∩ above the sum sign, as explained 
above, means a summation over vectors among which there 
are no the oppositely directed ones. The Euler–Lagrange 
equations give rise to the equations of motion 

( ) ( ) ( ) ( )2 2 2 20, 0s sX c k X X c k X′ ′ ′′ ′′+ = + =k k k k  . (33) 

Let us move on to the Hamiltonian description, defining 
the canonical momenta 

( ) ( ) ( ) ( ) ,l
L y kX

X
∂′ ′Π = = ρα Θ
′∂

k k
k





 

 ( ) ( ) ( ) ( )l
L y kX

X
∂′′ ′′Π = = ρα Θ
′′∂

k k
k





.  (34) 

We introduce the Hamilton function 

( ) ( ) ( ) ( )
L LH X X L H H

X X

∩  ∂ ∂′ ′′ ′ ′′= + − = +  ′ ′′∂ ∂ 
∑
k

k k
k k

 

 

,  

  (35) 

where ,H H′ ′′ are the Hamiltonians expressed in terms of 
the coordinates and momenta with one and two primes: 
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( ) ( )
( )

( )

( ) ( )
( )

( )

2
2 3 2

2 2 2

2
2 3 2

2 2 2

,
2

.
2

l
s

l

l
s

l

y
H c k X

y

y
H c k X

y

∩

∩

 ′ρα Θ Π
′ ′= + 

ρ α Θ  
 ′′ρα Θ Π

′′ ′′= + 
ρ α Θ  

∑

∑

k

k

k
k

k
k

 (36) 

Since these Hamiltonians have the same form, it suffices to 
consider only the Hamiltonian expressed in terms of the 
coordinates and momenta with one prime. From the Hamil-
ton equations 

 ( ) ( ) ( ) ( )
,H HX

X
′ ′∂ ∂′ ′Π = − =

′ ′∂ ∂Π
k k

k k
  (37) 

there follow the equations of motion  

( ) ( ) ( )2 3 ,l sy c k X′ ′Π = −ρα Θk k  

 ( ) ( )
( )l

X
y k

′Π
′ =

ρα Θ
k

k . (38) 

These equations with account of the definition of momen-
ta (34), of course, can also be written in the form of the 
second-order equations for an oscillator (33). 

4. Quantization of surface waves 

Now we pass from the classical to the consistently quan-
tum description of surface excitations without the use of the 
semiclassical approximation [5]. In this case, the coordinates 
and momenta should be considered as operators obeying the 
following well-known commutation relations: 

 ( ) ( ) ( ) ( ),X X′ ′ ′ ′ ′ ′Π ≡ Π −  k k k k   

 ( ) ( ) ( )X i′ ′ ′ ′−Π = ∆ −k k k k   

 ( ) ( ) ( ) ( ), , 0.X X′ ′ ′ ′ ′ ′= Π Π =      k k k k  (39) 

The same commutation relations hold for the coordinates 
and momenta with two primes, and all variables with one 
prime commute with all variables with two primes. It is 
convenient to pass from the Hermitian operators 

( ) ( )X X +′ ′=k k  and ( ) ( )+′ ′Π = Πk k  to the new non-
Hermitian operators ( )a+ k , ( )a k , which, as we will see, 
have the meaning of the operators of creation and annihila-
tion of surface phonons 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

,

,

X C a C a

B a B a

∗ +

∗ +

′ = +

′Π = +

k k k k k

k k k k k
 (40) 

where the coefficients ( )C k , ( )B k  are с-numbers. The 
commutation relations (39) will be satisfied if the follow-
ing well-known commutation relations are required to hold 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

, , 0.

a a a a a a

a a a a

+ + +

+ +

 ′ ′ ′ ′≡ − = ∆ − 
 ′ ′= =    

k k k k k k k k

k k k k
  

  (41) 

In addition, in order for the transformation (40) to be ca-
nonical, the following condition should hold 

 ( ) ( ) ( ) ( )C B C B i∗ ∗− =k k k k  . (42) 

In the Hamilton operators (36), which we write in the form 
(similarly for H ′′) 

 ( ) ( ) ( ) ( )2 2H k k X
∩
 ′ ′ ′= ψ Π +ϕ ∑

k
k k , (43) 

where for brevity the designations ( ) 1/ 2 ( )lk y kψ ≡ ρα Θ , 
2 3( ) ( ) / 2l sk y c kϕ ≡ ρα Θ  are used, it is also necessary to 

pass to the new operators ( )a+ k , ( )a k . When substituting 
the relations (40) into (43) we require that only the opera-
tors of the form ( ) ( )a a+k k  or ( ) ( )a a+ k k  remain in the 
resulting Hamiltonian, while the operators 2 ( )a k  and 

2 ( )a+ k  drop out. This entails the fulfillment of the condition 

 ( ) ( ) ( ) ( )2 2 0k B k Cψ +ϕ =k k . (44) 

The condition (44) will be satisfied if 

 ( ) ( )2 22 ,l sB k y c k= ρα Θ   

 ( ) ( )2 22 l sC k y c k= − ρα Θ . (45) 

When extracting the root the signs can be chosen arbitrari-
ly, since this will not affect the final result. Thus, the ca-
nonical transformation (40) takes the form 

 

( )
( )

( ) ( )

( ) ( ) ( ) ( )

,
2

.
2

l s

l s

X i a a
k y c

y c
k a a

+

+

 ′ = − ρα Θ

ρα Θ
 ′Π = + 

k k k

k k k







 (46) 

As a result, using the commutation relations (41), we find 

 ( ) ( ) 1
2sH c k a a

∩
+ ′ = +  

∑
k

k k . (47) 

The diagonalization of the Hamiltonian H ′′ can be carried 
out in a similar way. When calculating the thermodynamic 
quantities, the Hamiltonians H ′ and H ′′ make the same 
contribution, so that one can use the doubled operator (47) 
and the total Hamiltonian takes the form 

 ( ) ( ) 12
2sH c k a a

∩
+ = +  

∑
k

k k . (48) 

The Hamiltonian (48) differs from the Hamiltonian of 
bulk phonons in the value of the velocity and in that the 
summation is carried out over two-dimensional wave vec-
tors. The surface two-dimensional phonons, having ve-
locity sc , can naturally be called “rayleighons”. Note that 
the quanta of vibrations of the surface of liquid helium are 
called riplons [11, 12]. 
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5. Contribution of “rayleighons” to thermodynamic 
functions 

The average values of the surface thermodynamic func-
tions are calculated by means of the statistical operator 

 ( )exp F Hρ = β − , (49) 

where the Hamiltonian is defined by the formula (48), and 
1/ Tβ =  is the inverse temperature. From the normalization 

condition Sp 1ρ =  we find the surface free energy 

 ( )ln 1 e
2

sc k
sF c k T −β= + −∑ ∑

k k



 . (50) 

Here the summation, as noted above, is carried out over the 
two-dimensional wave vectors ( , )x yk k≡k . The first term 
in (50) determines the contribution of zero oscillations. In 
(50) we pass from summation to integration in which the 
upper limit of integration over the magnitude of the wave 
vector is determined, as in the bulk case, by the Debye 
relation 2 1/3(6 )Dk n= π , /n N V=  is the particle number 
density. As a result, we obtain the surface free energy in 
the form 

 ( ) ( )12
1

2
3 2ln 1 e

12 2
D

s
AkF T D

−−τ −  = Θ + − − τ   π  
, (51) 

where s s Dc kΘ ≡   is the “surface” Debye energy, 
/ sTτ ≡ Θ , and the Debye functions are defined by the 

formula 

 ( ) ( )
0

, 1
e 1

x n

n n z
n z dzD x n
x

= ≥
−∫ . (52) 

The surface entropy ( / )VAS F T= − ∂ ∂  has the form  

 ( ) ( )12
1

23 2ln 1 e
8

DAkS D
−− −τ = τ − −  π

. (53) 

From here we find the heat capacity at a constant volume 
and surface area 

 ( ) 1

2
1

2
23

4 e 1
D

VA
VA

AkSC T D
T −

−
τ

 ∂ = = τ τ −  ∂ πτ  − 
. (54) 

Let us consider the behavior of the surface heat capacity 
(54) in the limit of low and high temperatures. Since 

2
2 ( ) 4 (3)D x x−≈ ζ  at 1x << , we find at 1τ << :  

 ( ) ( )2
2 2

2 2

3 3 3 3
VA D

s s

TC Ak AT
c

ζ ζ 
≈ = π Θ π  

, (55) 

( )sζ  is the Riemann zeta-function. Note that the structure 
of this formula is similar to the structure of the correspond-
ing formula for the bulk case of the usual Debye theory 

 
32 2

3 3
3 3

2 2
5 5V D

D D

TC Vk VT
c

 π π
≈ = Θ  

, (56) 

where Dc  is the average phonon velocity according to Debye 
[13, 14]. In the two-parameter theory [2], the formula for the 
low-temperature bulk heat capacity takes the form 

 ( )
32

32
5V D

TC Vk fπ  ≈ ⋅ χ = Θ 
  

 ( )
3/22

3
3 2 2

2 3
5 2 t l

V f T
c c

 π
= ⋅ χ  + 

, (57) 

where ( )2 2 21 2 , tan 2
3

t
t l

l

Θ
Θ = Θ +Θ χ =

Θ
,  

t t Dc kΘ =  , l l Dc kΘ =  , ( )
5/2

5/2 3 3
1 1 2

3 cos sin
f

 
χ ≡ + 

χ χ 
.  

The calculation of the surface contribution to the pho-
non heat capacity has received a considerable attention. 
The quadratic dependence on temperature was obtained in 
[15], and subsequently the form of the coefficient before 

2T  was refined in other works [4]. In [16–18], there was 
obtained a formula for the surface heat capacity in various 
approaches, which in the notation of (17), (19), (20) can be 
represented in the form [6, 16] 

 
( ) ( )

( )
4 2

2
2 2 2

2 3 33 3
4 1

A
s

C y AT
c

ξ − ξ +ζ
== ⋅

π − ξ

. (58) 

In the formulas (55), (58) the coefficients at 2T  differ in 
value insignificantly. So, for the Poisson coefficient 1/ 2σ =  
and 2 0ξ =  we have / 0.685A VAC C ≈ , and for 0σ =  and 

2 1/ 2ξ =  the ratio / 0.763A VAC C ≈ . The calculation of the 
surface heat capacity according to the formula (55) gives 
a slightly higher value of the heat capacity than the calcula-
tion according to the formula (58). Despite the small quan-
titative difference, the question about the reasons for the 
difference between the early formula (58) and the see-
mingly more natural formula (55) requires an additional 
consideration. 

In the case of high temperatures 1τ >  the surface heat ca-
pacity, like the bulk heat capacity, tends to a constant value: 

 
22 11

4 24
sD

VA
AkC

T

 Θ ≈ −  π    
. (59) 

Let there be a sample in the shape of a cube with the 
edge length L , volume 3V L=  and surface area 2A L≈ . Let 
us estimate the ratio of the surface and bulk heat capacities 
in such a sample. At high temperatures, when 3VC N= , 
we have 

 
2 1

4 3
VA D

V

C Ak la
C N L

≈ ⋅ =
π

, (60) 

where 1/3l n−=  is the average distance between atoms, 
2 1/3(6 ) /12 0.4a = π π ≈ . Thus, at high temperatures for 
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macroscopic samples L l>>  the surface heat capacity is 
small in comparison with the bulk heat capacity. 

Let us consider the case of low temperatures, when for 

the bulk heat capacity the relation 
3412

5V
TC Nπ  ≈  Θ 

 

holds. In this case 

 ( ) 22

4

15 3
12

VA D

V s

C Ak
C N T

ζ  Θ Θ
≈  π Θπ  

. (61) 

With decreasing temperature this ratio increases, and at a 
certain temperature T∗  the surface and bulk heat capacities 
become equal. From (61) it follows that 

 ( ) 2

4

15 3
0.075

s

T l la
L L

∗ ζ  Θ
= ≈ Θ Θπ  

, (62) 

where it is assumed that sΘ ≈ Θ . For samples with sizes of 
the order of a nanometer 710 cmL −≈ , and, taking into ac-
count that 810 cml −≈ , the ratio / 0.01T∗ Θ ≈ . Since the 
Debye energy has the order of magnitude 210 KΘ ≈ , then 
the law for the heat capacity 2

VAC T≈  in samples of such 
size can be observed at helium temperatures. The contribu-
tion of the surface heat capacity can also be the main one 
in porous and granular materials. 

In the bulk case the low-temperature heat capacity, ac-
cording to the Debye theory [1], is proportional to the 
cube of temperature, and in the two-dimensional case, 
when the contribution of the surface phonons is taken 
into account, it is proportional to the square of tempera-
ture. This indicates that the temperature exponent in the 
low-temperature behavior of the heat capacity coincides 
with the dimension of space. In this regard, it is interest-
ing to calculate the entropy and heat capacity of “one-
dimensional” phonons. Such a situation with the quasi-
one-dimensional phonons could be realized in long cylin-
drical filaments of small radius. The propagation of the 
classical surface waves under conditions of cylindrical 
geometry was studied in many works [19]. For a qualita-
tive study of a one-dimensional system of phonons, it is 
sufficient to assume that in the expression for the free 
energy (50) the summation is performed over wave vec-
tors oriented in one direction. In this case, we find  

 ( ) ( ){ }1 1
1 14 ln 1 e

4
DLkF T D

−−τ − = Θ + − − τ  π
, (63) 

where L  is the length of a sample, 1 1 Dc kΘ =  , 1c  is the 
velocity of the “one-dimensional” phonons, and as before 

2 1/3(6 )Dk n= π . From (63) there follow the expressions for 
the “one-dimensional” entropy and heat capacity:  

 ( ) ( )11
12 ln 1 eDLkS D

−− −τ = τ − −  π
, (64) 

 ( ) 1
1

1
12

e 1
D

VL
VL

LkSC T D
T −

−
τ

 ∂ = = τ τ −  ∂ πτ  − 
. (65) 

In the low-temperature limit 1τ << , taking into account 
that 2

1( ) / 6D x x≈ π , from here we get: 

 
13

D
VL

Lk TS C
 π

= ≈  Θ 
. (66) 

As could be expected, the low-temperature entropy and 
heat capacity of a system of “one-dimensional” phonons 
are proportional to temperature. 

6. Conclusion  

A method for quantizing surface elastic waves in an iso-
tropic solid without the use of the semiclassical approxi-
mation is proposed, and in the Debye approach the contri-
bution of the surface phonons (“rayleighons”) to 
thermodynamic functions is calculated. In agreement with 
the previous works [15–18] it is shown that in the limit of 
low temperatures the contribution of the surface phonons is 
proportional to the square of temperature, while the value 
of the proportionality coefficient is somewhat different 
from the earlier results [15–18]. It is also shown that in the 
one-dimensional case at low temperatures the dependence 
of the heat capacity is linear. Thus, the exponent in the 
temperature dependence of the phonon heat capacity in the 
low-temperature limit is determined by the spatial dimen-
sionality of a system.  

There are two extreme points of view on the Debye 
model. Often this model is given an unduly fundamental 
meaning and, when processing experimental data, observ-
able quantities are adjusted to the relations of theory as-
suming that the Debye energy depends on temperature. The 
opposite point of view is that the relations of the Debye the-
ory are considered as rough interpolation formulas [13, 14]. 
The Debye model, of course, is an approximate and rather 
simple (which is its value) model of the solid body, but 
there is reason to assert that its value is not limited only to 
the possibility of constructing a single interpolation formu-
la that would correctly describe the behavior of the solid 
body in the limit of low and high temperatures. This model 
allows further development and generalization, for exam-
ple, accounting for the difference in the velocities of longi-
tudinal and transverse phonons [2], the interaction of pho-
nons [8, 9], and, as shown in this article, can be extended 
to describe surface phenomena in solids.  

When analyzing thermodynamic and kinetic properties 
of crystals whose anisotropy is not large and the conside-
red effects are not associated with the existence of singled-
out directions in crystals, it is possible to use with a good 
accuracy a more simple model of an isotropic medium af-
ter choosing its parameters in an optimal way [20]. It was 
shown in [2] that the previously proposed method of de-
scribing the elastic properties of crystals on the basis of a 
comparison with an isotropic medium [20] follows from 
the requirement of the maximal closeness of the free ener-
gies of a crystal and an isotropic medium. The two-parameter 
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Debye model for an isotropic medium with effective elas-
tic moduli [2] can be a good approximation for describing 
the properties of crystals. All the general remarks made 
above refer, in particular, to the further development of 
the considered in this article Debye model for the surface 
phonons.  

The author is grateful to A. S. Kovalev for helpful 
comments.  
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Модель Дебая для поверхневих фононів 

Yu. M. Poluektov 

Запропоновано квантовий опис поверхневих хвиль в 
ізотропному пружному тілі без використання квазікласич-
ного квантування. Задачу про поверхневі хвилі сформульо-
вано у лагранжевому та гамільтоновому уявленнях. У рамках 
узагальненої моделі Дебая обчислено внесок поверхневих 
фононів «релейонів» у термодинамічні функції. Підкреслено, 
що роль поверхневих фононів може бути істотною та навіть 
визначальною в низьковимірних системах, гранульованих і 
пористих середовищах, причому їхній внесок у загальну 
теплоємність зростає зі зменшенням температури. 

Ключові слова: поверхневі хвилі Релея, фонон, модель Дебая, 
ентропія, теплоємність. 

 

https://doi.org/10.1002/andp.19123441404
https://arxiv.org/abs/2004.06658v1
https://doi.org/10.1112/plms/s1-17.1.4
https://doi.org/10.1063/1.4936228
https://doi.org/10.1063/1.4936228
https://doi.org/10.1007/978-3-662-10639-6
https://doi.org/10.1007/978-3-662-10639-6
https://doi.org/10.1063/1.1731426
https://doi.org/10.1063/1.1733127
https://doi.org/10.1103/PhysRev.148.945

	1. Introduction
	2. Surface waves in an isotropic elastic medium
	3. Lagrangian and Hamiltonian formulations of the surface waves problem
	4. Quantization of surface waves
	5. Contribution of “rayleighons” to thermodynamic functions
	6. Conclusion

