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Some unique properties of superconducting devices are promising for the development of modern quantum

technologies. Superconducting quantum circuits use large coupling constants and provide good scalability and

controllability due to their macroscopic dimensions. Still, micro-fabrication methods have some hardship with

reproducibility of identical superconducting quantum circuits. The dressed state approach presents some possi-

bility to reduce influence of non-identity of qubits. We study a qubit-resonator system, when the qubit interacts

with three signals. Such system configuration adds additional flexibility for circuit tunability. A particular re-

alization of such a system is a superconducting flux qubit coupled to a transmission-line resonator driven by

three signals. We describe this triply-driven system in terms of the dressed qubit states and conclude that

using several signals can be beneficial for both system spectroscopy and tunability. Such study of a qubit-

based system, coupled to both classical and quantum fields, can be useful for detection of individual itinerant

microwave photons.
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1. Introduction

Superconducting quantum systems have a number of
important advantages that make them a promising platform
for modern quantum technologies [1-3]. Due to their mac-
roscopic size, they provide good scalability as well as con-
trollability. Although the first experiments in circuit electro-
dynamics focused on demonstrating fundamental quantum
effects, the emphasis has now shifted to creating hybrid
structures for modeling quantum information protocols [4].
In addition to decoherence, inaccuracies in manufacturing of
samples and their non-identity remain significant obstacles
in the study of multicomponent schemes. To avoid such side
effects, we suggest one of the tools, which consists of using
the qubit dressed model.

The notion of dressed states is important for various ef-
fects, such as Autler—Townes effect [5, 6], electromagnetical-
ly induced transparency [7], multi-photon transitions [8—11],
cooling [12], Landau—Zener—Stiickelberg—Majorana inter-
ferometry [13-16], lasing [17], Mollow triplet [18]. One
important conclusion, which one can draw from studying
dressed states, is that adding one more signal allows for such
fine tuning which would not be accessible otherwise (with
single dressing field) [19, 20]. A flux qubit was considered

in a qubit-resonator system, and the transmission coeffi-
cient of an electromagnetic wave was obtained [21]. Then,
in Ref. 22, a doubly-driven system was described in terms
of doubly-dressed states of a qubit, which was proposed to
be used to create quantum amplifiers [23-25]. Similar ex-
periments [26] showed amplification and attenuation of the
probe signal for two different types of superconducting
qubits: a flux qubit based on a loop with three Josephson
junctions and a phase-slip qubit.

In our work, we consider a superconducting flux qubit
coupled to a transmission-line resonator, which system is
being driven with three signals. For the experimental for-
mulation of the problem see Ref. 27, while in the theoreti-
cal formulation we are following Ref. 28. In Ref. 27, the
effect of a strong nonresonant control signal on the energy
levels for a flux qubit was considered. The authors ob-
served a change in the energy levels of a qubit by a dynamic
Stark shift caused by a driving signal. A similar work [29]
investigated the response of a qubit and the formation of
dressed states with three states; our model brings more
details to these processes.

The formulation of the problem for a qubit-resonator
system with both classical and quantum signals is important
for detection of itinerant microwave photons [30, 31].
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Indeed, such photons, described by the quantum field, can
route via the transmission line. Then, these meet the qubit-
cavity system, of which the dressed energy levels can be
fine-tuned. Consequently, the observed transmission coef-
ficient provides the tool to probe individual photons. The
aim of our present work is the detailed study of such
dressed states in the triply-driven qubit-resonator system.

The rest of the paper is organised as follows. In Sec. 2
we present our model and introduce the Hamiltonian of the
system. Making use of the rotating-wave approximation
results in the dressed states, as described in Sec. 3 with the
details in the Appendix. In Sec. 4 we discuss the resonant
transmission through the system qubit-resonator and de-
scribe the position of the resonances. The paper ends with
the Conclusions.

2. Hamiltonian

The system which we consider consists of a qubit and a
resonator with three signals. To be more specific, we con-
sider a flux qubit coupled to a transmission-line resonator,
as shown in Fig. 1.

Consider a qubit that interacts with three resonator sig-
nals: two classical (with frequencies o, and ®, and ampli-
tudes 4, and B,) and one quantum (with the frequency ®,
and the amplitude ¢& »)- Amplitudes are related as:
&€, <4, B;. The Hamiltonian of the system has the fol-
lowing form [28]:

H=Hy+H, +H

probe+Hdrive+Hsd+Hint' (1)

Here, the Hamiltonian consists of the following parts. The
qubit is described by

ho
_ qb o (2)

o b

X
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Fig. 1. Schematic diagram of a driven qubit-resonator system.
The qubit is a flux qubit, which is a superconducting ring with
three Josephson junctions; the current in the loop can be in either
direction, which defines the qubit basis; the loop is pierced by the
external magnetic flux, which defines both the energy bias and
the driving. A resonator is based on a transmission line interrupt-
ed by two capacitors. The qubit is coupled to the resonator via
mutual inductance M . The transmission line is excited by two
signals, corresponding to first and third harmonics of the resona-
tor; distribution of the current density is given by the green and
red lines, respectively. The qubit is situated at the maxima of the
current densities, at x=d / 2.

with the energy difference 7oy, = /&5 +A? , the energy bias

€y, which is defined by the external magnetic flux, minimal
energy splitting A, and the Pauli matrices ;. Note that this is

given in the representation of the qubit energy eigenstates.
Next, the resonator is characterized by the resonant fre-

quency ®, and the annihilation/creation operators a / al:
H, =ho,da. 3)

The probe field with the amplitude &, and the frequency
o, is described by

Hpope = T, (aeimpt +afe 7' ) )
The probe field is supplied via the transmission line. In

contrast, the next, driving, signal is supplied through the
magnetic flux [21]

— ~1
H e = Ajcosmyt G,

& =50 5+ B 5 | (5
hog, I,

Note that the former signal is described by the cavity oper-
ators, while the latter is defined by the qubit operators.
Finally, the third (strong) driving signal enters with the
Hamiltonian

H, =B, cosot6,. 6)

So, it is the first (weak) signal which is considered fully
quantum-mechanically, while the second and the third
(strong) signals are considered semiclassically. Finally, the
interaction of the qubit and the resonator (with the cou-
pling constant g) is given by the term

Hiy =g(a+aT)6’z. @)

With the Hamiltonian (1) one can describe both the
eigenstates and dynamics of a qubit coupled to a resonator
with three signals.

3. Dressed and doubly-dressed states

Now, in order to describe our system with three drive sig-
nals, we can make use of the rotating-wave approximations
(RWA) so that to exclude the respective time dependence
from the Hamiltonian. The result is known as dressed states.
Details of using RWA corresponding to the three signals are
given in the Appendix. Essentially, each time excluding the
signal from the Hamiltonian, starting from the bare energy
levels, we obtain dressed and doubly-dressed energy levels
with the respective energy separations:

hog, = A2 +€] ®)

for the bare states, which are controlled by the energy bias ¢;
AE =+A* +§* 9)

for the dressed states, with A=A4,A/ hog, and

€ = N(wy, —®,), which are controlled by the driving signal
with the frequency ®, and amplitude 4,;; and
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Qy, = AT +803, (10)
for the doubly-dressed states, with dwg, = (AE [ h)— o,
and A = B(g, / hog, )(A/AE), which are then controlled
by the signal with the frequency ®, and amplitude B,.
Taking into account the third, probe, signal with the fre-
quency ®,, and amplitude & , brings us to the Hamiltonian in
the form of the well-known Janes—Cummings Hamiltonian:

- 0]
Hppys=h ab G, +h6cora*a+?(a&; +aT6L)+
+he, (a+a"), (11)
where
- - A
qub:qu_wpa YZYQ > Swr:(ﬁr—())p.
qb

Expression (11) coincides exactly with the Hamiltonian of
an effective two-level system interacting with a quantum
field. But now we have the opportunity to influence the
shape of the levels by changing the parameters of the exci-
tation fields. The first term in Eq. (11) gives the energy
levels of the triply-dressed states.

The bare, dressed, and doubly-dressed energy levels are
shown in Fig. 2. For calculations we take the parameters close
to the ones in Ref. 27: A/h=2.97 GHz, ®, /21 =2.59 GHz,

0, =0, 0, =30,, o;/21=2.62-3.25GHz, g/h=3 MHz.
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Fig. 2. (Color online) Energy levels of a triply-driven qubit. The
bare energy levels, E, =+ hing, /2, are shown with the blue lines;
the dressed levels, E, =+ AE /2, are shown with the green line;
the doubly-dressed levels, E, ==+ thb /2, are shown with the
pink lines. The arrows have the length corresponding to the fre-
quencies o, /2n=7.77 GHz, 0, /21=2.59 GHz, o, /2n=3.0 GHz.
Where the energy levels are matched by the photon energy, we
expect the resonant excitation of the qubit-resonator system, re-
sulting in the changes of the transmission coefficient. Position of
the resonances, at g, = ¢;, we further demonstrate in Fig. 3. The
structure of the energy levels and the position of the resonances
are defined by the driving amplitudes; here we take these:
A;/h=3GHzand B,/ h=1MHz.

So, the position of the resonances in the transmission coef-
ficient can be used for defining the dressed-energy spectra
of the system, which can be used for the multi-signal spec-
troscopy [27, 32].

4. Resonant transmission

When a qubit is coupled to a resonator, the state of such
qubit-resonator system is usually probed via either reflec-
tion or transmission of a probe signal [20, 27, 33]. In the
multiple-signal formulation, we expect resonances at posi-
tions where respective energy levels are matched by an exci-
tation-signal frequency. Physically, this is analogous to the
phenomena known as the electromagnetically induced trans-
parency [7, 34]. In particular, we expect the resonances at
where the bare levels are matched by the first driving signal

wqb(go):(’)da (12)

where the dressed energy levels are matched by the second
driving signal
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Fig. 3. Position of the resonances &, as a function of the driving
amplitude 4, (a) and the varying second signal frequency o, (b).
The colours of the lines correspond to their position shown by the
vertical dashed lines in Fig. 2. Also here the vertical gray lines
show the values of 4, and o,, at which Fig. 2 was plotted. For
calculations we took: B, =1GHz, o,/2n=3 GHz in (a) and
A; /' h=3 GHz in (b).
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AE(gy) = ho,, (13)
and where the doubly-dressed states are matched by the
probe signal

Qg (gg) =0, (14)
The position of the respective resonances are shown by the
arrows in Fig. 2. Next, we present the position of the pos-
sible resonances in Fig. 3. There, the lines show the solu-
tion of Egs. (12)—(14). Multiple resonances and there de-
pendence on the driving parameters helps understanding of
resonant transmission in the experiments like Ref. 27.

5. Discussion and conclusions

We have described theoretically the qubit-resonator
system, when a qubit interacts with three signals. We have
shown that a strong excitation signal can be used to control
the energy levels of a qubit-based system by several parame-
ters, such as the amplitudes and frequencies of the signals.
The ability to regulate energy levels in this way stems from
their interaction with the driving fields. We have shown that
a qubit interacting with several signals can still be described
as an effective quantum two-level system, in terms of
dressed states. Importantly, such energy levels are highly
tunable by the dressing signals. Probing the energy levels of
the systems can be useful for the system spectroscopy. On
the other hand, measuring the resonant transmission can be
used for detecting itinerant photons of the probe field.
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Appendix A. Rotating-wave transformations

In this Appendix we consider three times rotating-wave
approximations (RWA) so that to exclude driving and ob-
tain dressed states.

Rotating-wave approximation 1

Consider first the full Hamiltonian A, Eq. (1) and let us
make the unitary transformation

(Al
Then, after simplification we obtain the following expression

H gy =UHU| +inUUT =

U, = exp(io,tc, /2).

-~ - € A - +
=Hy+H() :gcz +50x +hc0raTa+g(a+a' )GZ +

jo t it €
+heg ), (aelm” +afe P )+BS cosu)st—o ., (A2)
®
qb

where

A;A
hooqb ’

~ €p

A= g=g

E=hlog -0, ), (A3)
( d ) o g,

Now we rewrite the Hamiltonian in the eigenbasis of

H, with the unitary transformation S; =exp(itc,/2),

where tant = —A/ &, and obtain

~ AE ~ 80
H, =762 + By coswsth

(A4)

zo

GZ+§(a+aT)G
with AE =A% +&2 and

3 .. . & . A
o, = COS'CGZ +Sll’1‘CGx —EGZ —Eﬁx.

(A5)

Rotating-wave approximation 2

As a following step, we make the unitary transfor-
mation with respect to the signal with the frequency ,:

U, =exp(iogs, /2). (A6)

Then, after applying this transformation, we obtain the
Hamiltonian in the form

- AE-ho, _
= G

H| = Z+BS oy
2

2 og,

ot | —iot) & = A g Qi f ~ -
{(e’ms +e ' )—~c5 ——~(e Os'G, +e0s G+Gx):|+

~ + i~ _A -0l ~ gl ~
+g(a+a ){ =G, AE"(e G, +e c_)}.
(A7)
Then the Hamiltonian of the system takes the form
- IO A . X
Hppin :—qbéz —562 +g(a+a7 )62 +ho.a’a+
+E, (e e ™), (A8)
where
AE g A €
Sogp=—-0, A=B ———, y=g—. (A9
LI Chog AE " SAF (49

In the eigenbasis of the time-independent Hamiltonian,
using the transformation

S, =exp(it, /2), tan{=A/dwy.  (A10)
the expression (AS8) takes the following form
Tt _"%gb ~ ) ~
Hpwan BN G, +y(a+a )cz +
+ho,ata+hg, (aeiw”t +ate ™ ) (A1)
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with
Qg = JA? +3, » (A12)
and
~ ~ . ~ 80)qb ~ ~
G, =c0scG), +sings’, = 6, +—6. (Al3)
qb qb
Rotating-wave approximation 3
Finally, we make the unitary transformation
U =explio,t(a'a+5. /2)). (Al4)

After this, the expression (All) results in the complete
Hamiltonian of the system in the form

~ IO,
Hpyys=n .

&, +7(ad, +a'8" )+ hdw,a’a+

+he, (a+a"), (A15)

where

~ - A

ddg, = (qu —oap), ¥ = yQ—, dw, =w, —0,. (Al6)
qb

We further analyze this Hamiltonian as well as the dressed

states in the main text.
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Multi-signal spectroscopy of qubit-resonator systems

BaraTocurHanbHa cnekTpocKkonist cuctem
KybiT—pe3oHaTop

M. A. Nakonechnyi, D. S. Karpoyv,
A. N. Omelyanchouk, S. N. Shevchenko

Jesixi yHiKaJIbHI BIACTHBOCTI HAJMPOBIAHUX MPUCTPOIB € TIep-
CNIEKTHBHUMHM I PO3BUTKY CYYacHHX KBAHTOBHX TEXHOJOTIMH.
HannpoBinHi KBaHTOBI JTaHIIOTW BHKOPHCTOBYIOTH BEIIMKI KOHC-
TaHTH 3B’3Ky Ta 3abe3neuyioTh A00py MacumTaboBaHICTh Ta
KEpOBaHICTh 3aBISIKK CBOIM MakpocCKoIiuHuM po3mipam. Ilpote,
METO/IM MIKpPOBUPOOHHUIITBA MAIOTh MEBHI TPYAHOILI 3 iICHTHYHI-
CTIO BiITBOPEHHMX HAANPOBIIHAX KBAHTOBUX JAHIOTiB. Ommc
CHCTEMH 4epe3 MiJIXiJ| «OAATHEHOr0» CTaHy Halae NesKy MOXIHU-
BICTh 3MCHIIHWTH BIUIMB HEINCHTHYHOCTI KyOiTiB. BuB4aeThCs

cucTeMa KyOiT-pe3oHaTopa, KOJIM KyOiT B3a€MOJi€ 3 TPhOMa CHT-
Hasmamu. Taka KOHQIrypamis CHCTEMH IOJA€ JIOJATKOBY THYyY-
KICTh [UIsl HanamTyBaHHs cxemu. OcoOIMBOIO peasi3aniero Takoi
CHCTEMH € HAJNPOBITHUN NOTOKOBUH Ky0iT, 3’€IHaHUI 3 pe30Ha-
TOPOM Ha OCHOBI JIiHIi mepeaadi, M0 BU3HAYAETHCS TPhOMA CHI-
Hasamu. OnHcaHo NOTPiiHY CHCTEMY 3 TOUKH 30pY «OASTHCHUX)
KyOITOBUX CTaHiB, 3p00JICHO BHCHOBOK, LI[0 BUKOPHCTAHHS JEKi-
JBKOX CHTHAJIB MOXKE OyTHM KOPHUCHHM SIK IJIS CIIEKTPOCKOIIL
CHCTEMH, TaK i JUIl HaJalITyBaHHsS. Take NOCITIIKEHHS CHCTEMHU
Ha OCHOBI KyOITiB, III0 TI0€{HAHA SIK 3 KJIACHIHIMH, TaK i 3 KBAaHTO-
BUMH IOJISIMH, MOXe OyTH KOPHCHUM JUISi BUSBJICHHS OKPEMHX
MaHJPIBHUX MIKPOXBHJILOBHX (DOTOHIB.

KurouoBi cnoBa: cucrema KyOiT-pe3oHaTop, OJIATHEHI CTaHHU, TPH
CHUTHAJIA, HAJIPOBITHAHN TOTOKOBUH KYOIT.
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