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Some unique properties of superconducting devices are promising for the development of modern quantum 
technologies. Superconducting quantum circuits use large coupling constants and provide good scalability and 
controllability due to their macroscopic dimensions. Still, micro-fabrication methods have some hardship with 
reproducibility of identical superconducting quantum circuits. The dressed state approach presents some possi-
bility to reduce influence of non-identity of qubits. We study a qubit-resonator system, when the qubit interacts 
with three signals. Such system configuration adds additional flexibility for circuit tunability. A particular re-
alization of such a system is a superconducting flux qubit coupled to a transmission-line resonator driven by 
three signals. We describe this triply-driven system in terms of the dressed qubit states and conclude that 
using several signals can be beneficial for both system spectroscopy and tunability. Such study of a qubit-
based system, coupled to both classical and quantum fields, can be useful for detection of individual itinerant 
microwave photons. 
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1. Introduction 

Superconducting quantum systems have a number of 
important advantages that make them a promising platform 
for modern quantum technologies [1–3]. Due to their mac-
roscopic size, they provide good scalability as well as con-
trollability. Although the first experiments in circuit electro-
dynamics focused on demonstrating fundamental quantum 
effects, the emphasis has now shifted to creating hybrid 
structures for modeling quantum information protocols [4]. 
In addition to decoherence, inaccuracies in manufacturing of 
samples and their non-identity remain significant obstacles 
in the study of multicomponent schemes. To avoid such side 
effects, we suggest one of the tools, which consists of using 
the qubit dressed model. 

The notion of dressed states is important for various ef-
fects, such as Autler–Townes effect [5, 6], electromagnetical-
ly induced transparency [7], multi-photon transitions [8–11], 
cooling [12], Landau–Zener–Stückelberg–Majorana inter-
ferometry [13–16], lasing [17], Mollow triplet [18]. One 
important conclusion, which one can draw from studying 
dressed states, is that adding one more signal allows for such 
fine tuning which would not be accessible otherwise (with 
single dressing field) [19, 20]. A flux qubit was considered 

in a qubit-resonator system, and the transmission coeffi-
cient of an electromagnetic wave was obtained [21]. Then, 
in Ref. 22, a doubly-driven system was described in terms 
of doubly-dressed states of a qubit, which was proposed to 
be used to create quantum amplifiers [23–25]. Similar ex-
periments [26] showed amplification and attenuation of the 
probe signal for two different types of superconducting 
qubits: a flux qubit based on a loop with three Josephson 
junctions and a phase-slip qubit. 

In our work, we consider a superconducting flux qubit 
coupled to a transmission-line resonator, which system is 
being driven with three signals. For the experimental for-
mulation of the problem see Ref. 27, while in the theoreti-
cal formulation we are following Ref. 28. In Ref. 27, the 
effect of a strong nonresonant control signal on the energy 
levels for a flux qubit was considered. The authors ob-
served a change in the energy levels of a qubit by a dynamic 
Stark shift caused by a driving signal. A similar work [29] 
investigated the response of a qubit and the formation of 
dressed states with three states; our model brings more 
details to these processes. 

The formulation of the problem for a qubit-resonator 
system with both classical and quantum signals is important 
for detection of itinerant microwave photons [30, 31]. 
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Indeed, such photons, described by the quantum field, can 
route via the transmission line. Then, these meet the qubit-
cavity system, of which the dressed energy levels can be 
fine-tuned. Consequently, the observed transmission coef-
ficient provides the tool to probe individual photons. The 
aim of our present work is the detailed study of such 
dressed states in the triply-driven qubit-resonator system. 

The rest of the paper is organised as follows. In Sec. 2 
we present our model and introduce the Hamiltonian of the 
system. Making use of the rotating-wave approximation 
results in the dressed states, as described in Sec. 3 with the 
details in the Appendix. In Sec. 4 we discuss the resonant 
transmission through the system qubit-resonator and de-
scribe the position of the resonances. The paper ends with 
the Conclusions. 

2. Hamiltonian 

The system which we consider consists of a qubit and a 
resonator with three signals. To be more specific, we con-
sider a flux qubit coupled to a transmission-line resonator, 
as shown in Fig. 1. 

Consider a qubit that interacts with three resonator sig-
nals: two classical (with frequencies dω  and sω  and ampli-
tudes dA  and sB ) and one quantum (with the frequency pω  
and the amplitude pξ ). Amplitudes are related as: 

< ,p d sA Bξ . The Hamiltonian of the system has the fol-
lowing form [28]:  

 qb probe drive int= .r sdH H H H H H H+ + + + +  (1) 

Here, the Hamiltonian consists of the following parts. The 
qubit is described by  

 qb
qb =

2 zH
ω

σ


 (2) 

with the energy difference 2 2
qb 0=ω ε + ∆ , the energy bias 

0ε , which is defined by the external magnetic flux, minimal 
energy splitting ∆, and the Pauli matrices iσ . Note that this is 
given in the representation of the qubit energy eigenstates. 
Next, the resonator is characterized by the resonant fre-
quency rω  and the annihilation/creation operators †/a a :  

 † .r rH a a= ω  (3) 

The probe field with the amplitude pξ  and the frequency 
pω  is described by  

 ( )†
probe = e e .i t i tp p

pH a aω − ω
ξ +  (4) 

The probe field is supplied via the transmission line. In 
contrast, the next, driving, signal is supplied through the 
magnetic flux [21] 

0
drive

qb qb
= cos , = .d d z z z xH A t

 ε ∆′ ′ω σ σ σ + σ  ω ω 
 

 

 (5) 

Note that the former signal is described by the cavity oper-
ators, while the latter is defined by the qubit operators. 
Finally, the third (strong) driving signal enters with the 
Hamiltonian 
 = cos .sd s s zH B t ′ω σ  (6) 

So, it is the first (weak) signal which is considered fully 
quantum-mechanically, while the second and the third 
(strong) signals are considered semiclassically. Finally, the 
interaction of the qubit and the resonator (with the cou-
pling constant g ) is given by the term 

 ( )†
int = .zH g a a ′+ σ  (7) 

With the Hamiltonian (1) one can describe both the 
eigenstates and dynamics of a qubit coupled to a resonator 
with three signals. 

3. Dressed and doubly-dressed states 

Now, in order to describe our system with three drive sig-
nals, we can make use of the rotating-wave approximations 
(RWA) so that to exclude the respective time dependence 
from the Hamiltonian. The result is known as dressed states. 
Details of using RWA corresponding to the three signals are 
given in the Appendix. Essentially, each time excluding the 
signal from the Hamiltonian, starting from the bare energy 
levels, we obtain dressed and doubly-dressed energy levels 
with the respective energy separations: 

 2 2
qb 0=ω ∆ + ε  (8) 

for the bare states, which are controlled by the energy bias 0ε ; 

 2 2=E∆ ∆ + ε 

  (9) 
for the dressed states, with qb= /dA∆ ∆ ω

  and 
qb= ( )dε ω −ω

 , which are controlled by the driving signal 
with the frequency dω  and amplitude dA ; and 

Fig. 1. Schematic diagram of a driven qubit-resonator system. 
The qubit is a flux qubit, which is a superconducting ring with 
three Josephson junctions; the current in the loop can be in either 
direction, which defines the qubit basis; the loop is pierced by the 
external magnetic flux, which defines both the energy bias and 
the driving. A resonator is based on a transmission line interrupt-
ed by two capacitors. The qubit is coupled to the resonator via 
mutual inductance M . The transmission line is excited by two 
signals, corresponding to first and third harmonics of the resona-
tor; distribution of the current density is given by the green and 
red lines, respectively. The qubit is situated at the maxima of the 
current densities, at = / 2x d . 
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 2 2
qb qb= ,Ω Λ + δω  (10) 

for the doubly-dressed states, with qb = ( / ) sEδω ∆ −ω

  
and 0 qb= ( / )( / )sB EΛ ε ω ∆ ∆ 

 , which are then controlled 
by the signal with the frequency sω  and amplitude sB . 

Taking into account the third, probe, signal with the fre-
quency pω  and amplitude pξ  brings us to the Hamiltonian in 
the form of the well-known Janes–Cummings Hamiltonian:  

( )qb † †
-3 –=

2RWA z rH a a a a+
δω

′ ′ ′σ + δω + γ σ + σ +




  
   

 ( )† ,p a a+ ξ +  (11) 

where 

 qb qb
qb

= , = , = .p r r p
∆

δω Ω −ω γ γ δω ω −ω
Ω

   

Expression (11) coincides exactly with the Hamiltonian of 
an effective two-level system interacting with a quantum 
field. But now we have the opportunity to influence the 
shape of the levels by changing the parameters of the exci-
tation fields. The first term in Eq. (11) gives the energy 
levels of the triply-dressed states. 

The bare, dressed, and doubly-dressed energy levels are 
shown in Fig. 2. For calculations we take the parameters close 
to the ones in Ref. 27: / = 2.97h∆  GHz, / 2 = 2.59rω π  GHz, 

p rω = ω , 3d rω = ω , / 2sω π =2.62–3.25 GHz, / = 3g h  MHz. 

So, the position of the resonances in the transmission coef-
ficient can be used for defining the dressed-energy spectra 
of the system, which can be used for the multi-signal spec-
troscopy [27, 32]. 

4. Resonant transmission 

When a qubit is coupled to a resonator, the state of such 
qubit-resonator system is usually probed via either reflec-
tion or transmission of a probe signal [20, 27, 33]. In the 
multiple-signal formulation, we expect resonances at posi-
tions where respective energy levels are matched by an exci-
tation-signal frequency. Physically, this is analogous to the 
phenomena known as the electromagnetically induced trans-
parency [7, 34]. In particular, we expect the resonances at 
where the bare levels are matched by the first driving signal 
 qb 0( ) = ,dω ε ω  (12) 

where the dressed energy levels are matched by the second 
driving signal 

Fig. 2. (Color online) Energy levels of a triply-driven qubit. The 
bare energy levels, 0 qb / 2E = ± ω , are shown with the blue lines; 
the dressed levels, 1 / 2E E= ± ∆  , are shown with the green line; 
the doubly-dressed levels, 2 qb / 2E = ± Ω , are shown with the 
pink lines. The arrows have the length corresponding to the fre-
quencies / 2 7.77dω π =  GHz, / 2 2.59pω π =  GHz, / 2 3.0dω π =  GHz. 
Where the energy levels are matched by the photon energy, we 
expect the resonant excitation of the qubit-resonator system, re-
sulting in the changes of the transmission coefficient. Position of 
the resonances, at 0 0

∗ε = ε , we further demonstrate in Fig. 3. The 
structure of the energy levels and the position of the resonances 
are defined by the driving amplitudes; here we take these: 

/ = 3dA h  GHz and / = 1sB h  MHz. 

Fig. 3. Position of the resonances 0
∗ε  as a function of the driving 

amplitude dA  (a) and the varying second signal frequency sω  (b). 
The colours of the lines correspond to their position shown by the 
vertical dashed lines in Fig. 2. Also here the vertical gray lines 
show the values of dA  and sω , at which Fig. 2 was plotted. For 
calculations we took: s = 1B  GHz, / 2 3sω π =  GHz in (a) and 

/ 3dA h =  GHz in (b). 
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 0( ) = ,sE∆ ε ω

  (13) 
and where the doubly-dressed states are matched by the 
probe signal 
 qb 0( ) = .pΩ ε ω  (14) 

The position of the respective resonances are shown by the 
arrows in Fig. 2. Next, we present the position of the pos-
sible resonances in Fig. 3. There, the lines show the solu-
tion of Eqs. (12) – (14). Multiple resonances and there de-
pendence on the driving parameters helps understanding of 
resonant transmission in the experiments like Ref. 27. 

5. Discussion and conclusions 

We have described theoretically the qubit-resonator 
system, when a qubit interacts with three signals. We have 
shown that a strong excitation signal can be used to control 
the energy levels of a qubit-based system by several parame-
ters, such as the amplitudes and frequencies of the signals. 
The ability to regulate energy levels in this way stems from 
their interaction with the driving fields. We have shown that 
a qubit interacting with several signals can still be described 
as an effective quantum two-level system, in terms of 
dressed states. Importantly, such energy levels are highly 
tunable by the dressing signals. Probing the energy levels of 
the systems can be useful for the system spectroscopy. On 
the other hand, measuring the resonant transmission can be 
used for detecting itinerant photons of the probe field. 
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Appendix A. Rotating-wave transformations 

In this Appendix we consider three times rotating-wave 
approximations (RWA) so that to exclude driving and ob-
tain dressed states. 

Rotating-wave approximation 1 

Consider first the full Hamiltonian ,H  Eq. (1) and let us 
make the unitary transformation  

 ( )1 = exp / 2 .d zU i tω σ  (A1) 
Then, after simplification we obtain the following expression 

† †
1 1 11 1= =RWA-H U HU i U U+ 

  

( )† †
0= ( ) =

2 2z x r zH H t a a g a aε ∆
+ σ + σ + ω + + σ +





 


  

 ( ) 0†

qb
e e cos ,i t i tp p

p s s za a B tω − ω ε
+ ξ + + ω σ

ω
  (A2) 

where 

 ( ) 0
qb

qb qb
= , = , = .d

d
A

g g
∆ ε

∆ ε ω −ω
ω ω



 


 

 (A3) 

Now we rewrite the Hamiltonian in the eigenbasis of 
0H  with the unitary transformation 1 = exp( / 2)yS iτσ , 

where tan = /τ −∆ ε

 , and obtain 

( )0 †
1

qb
= cos ,

2 z s s z z
EH B t g a a

ε∆
σ + ω σ + + σ

ω





 



 (A4) 

with 2 2=E∆ ∆ + ε 

  and 

 = cos sin = .z z x z xE E
ε ∆

σ τσ + τσ σ − σ
∆ ∆





   

 

 (A5) 

Rotating-wave approximation 2 

As a following step, we make the unitary transfor-
mation with respect to the signal with the frequency sω : 

 ( )2 = exp / 2 .s zU i tω σ  (A6) 

Then, after applying this transformation, we obtain the 
Hamiltonian in the form 

0
1

qb
=

2 2
s s

z
E B

H
∆ − ω ε′ σ + ×

ω







  

( ) ( )2 2e e e ei t i t i t i ts s s s
z xE E

ω − ω − ω ω
+ −

 ε ∆
× + σ − σ + σ + σ + ∆ ∆ 





   

 

 

 ( ) ( )† e e .i t i ts s
zg a a

E E
− ω ω

+ −
 ε ∆

+ + σ − σ + σ ∆ ∆ 





   

 

  

  (A7) 

Then the Hamiltonian of the system takes the form 

 ( )qb † †
2 =

2 2RWA- z z z rH g a a a a
δω ∆

σ − σ + + σ + ω +

  
   

 ( )†e e ,i t i tp p
p a aω − ω

+ ξ +  (A8) 

where 

0
qb

qb
= , = , = .s s

E B g
E E

ε∆ ∆ ε
δω −ω Λ γ

ω ∆ ∆

 





 

 

 (A9) 

In the eigenbasis of the time-independent Hamiltonian, 
using the transformation 

 ( )2 qb= exp / 2 , tan = / ,yS iζσ ζ Λ δω  (A10) 

the expression (A8) takes the following form 

 ( )qb †
2 =

2RWA- z zH a a
Ω

′ ′σ + γ + σ +

    

 ( )† †e e ,i t i tp p
r pa a a aω − ω

+ ω + ξ +   (A11) 
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with 
 2 2

qb qb= ,Ω Λ + δω  (A12) 

and 

 qb

qb qb
= cos sin = .z z x z x

δω Λ′ ′ ′ ′σ ςσ + ςσ σ + σ
Ω Ω

      (A13) 

Rotating-wave approximation 3 

Finally, we make the unitary transformation  

 ( )( )†
3 = exp / 2 .p zU i t a a ′ω + σ  (A14) 

After this, the expression (A11) results in the complete 
Hamiltonian of the system in the form  

 ( )qb † †
3 –=

2RWA- z rH a a a a+
δω

′ ′ ′σ + γ σ + σ + δω +




  
    

 ( )† ,p a a+ ξ +  (A15) 

where 

( )qb qb
qb

= , = , = .p r r p
∆

δω Ω −ω γ γ δω ω −ω
Ω

   (A16) 

We further analyze this Hamiltonian as well as the dressed 
states in the main text. 
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Багатосигнальна спектроскопія систем 
кубіт–резонатор 

M. A. Nakonechnyi, D. S. Karpov, 
A. N. Omelyanchouk, S. N. Shevchenko 

Деякі унікальні властивості надпровідних пристроїв є пер-
спективними для розвитку сучасних квантових технологій. 
Надпровідні квантові ланцюги використовують великі конс-
танти зв’язку та забезпечують добру масштабованість та 
керованість завдяки своїм макроскопічним розмірам. Проте, 
методи мікровиробництва мають певні труднощі з ідентичні-
стю відтворених надпровідних квантових ланцюгів. Опис 
системи через підхід «одягненого» стану надає деяку можли-
вість зменшити вплив неідентичності кубітів. Вивчається 

система кубіт-резонатора, коли кубіт взаємодіє з трьома сиг-
налами. Така конфігурація системи додає додаткову гнуч-
кість для налаштування схеми. Особливою реалізацією такої 
системи є надпровідний потоковий кубіт, з’єднаний з резона-
тором на основі лінії передачі, що визначається трьома сиг-
налами. Описано потрійну систему з точки зору «одягнених» 
кубітових станів, зроблено висновок, що використання декі-
лькох сигналів може бути корисним як для спектроскопії 
системи, так і для налаштування. Таке дослідження системи 
на основі кубітів, що поєднана як з класичними, так і з кванто-
вими полями, може бути корисним для виявлення окремих 
мандрівних мікрохвильових фотонів. 

Ключові слова: система кубіт-резонатор, одягнені стани, три 
сигнали, надпровідний потоковий кубіт. 
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