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We carried out the analysis of the return current of dc SQUID based on tunnel Josephson junction with un-
conventional current-phase relation. We analyzed two cases of current-phase relation with additional terms to the 
first harmonic sin ϕ: a case of the second harmonic sin 2ϕ and the case of the fractional term sin (ϕ/2). It is 
shown that the changing of the return current of dc SQUID on junctions with unconventional current-phase rela-
tion is determined by the amplitude of the second term in current-phase relation, geometrical inductance, and ex-
ternal magnetic field. 
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Introduction 

It is well known that the dynamics of Josephson junc-
tion for the case of harmonic current-phase relation 

sincI I= ϕ is given by the equation of simple resistive 
model [1, 2] 

sin eiβϕ + ϕ + ϕ =  ,  (1) 

where ie is normalized external current via Josephson junc-
tion in units of critical current Ic, dots over ϕ  corresponds 
to the derivative in respect to dimensionless time 

0 / (2 )c NI RΦ π , 0Φ  is the magnetic flux quantum. In Eq. (1) 
notation β is the McCumber parameter of Josephson junc-
tion 2(2 / ) c Ne I R Cβ =  , which determines the size of hyste-
resis in current-voltage characteristic. It is well known, that 
the case of 1β >>  corresponds to tunnel junction [1, 2]. In 
the case of 1β << , hysteresis on current-voltage character-
istic is absent and in Eq. (1) the first term can be neglected. 

Sinusoidal current-phase relation is fulfilled with high 
accuracy for Josephson junctions based on low-tempera-
ture superconductors [2]. In the limit of tunnel junction 
(high capacitance limit) 1β >> , the numerical solution of 
Eq. (1) shows that the current-voltage characteristic has 

two separate branches: S (superconducting) and R (resis-
tive) branches. The important parameter of the current-volt-
age characteristic is the return current IR, at which switching 
from R-state to S-state arises [1, 2]. Calculation of return 
current IR using the simple resistive model of Josephson 
junction for tunnel case 1β >>  leads to result [1], 

4
R cI I=

π β
 . (2) 

This result is in good agreement for tunnel junction 
based on low-temperature superconductors [1]. The presence 
of return current on current-voltage characteristic leads to 
lowering of the clock frequency in latching logic circuits 
based on tunnel Josephson junctions [1, 2]. 

Very recently in Ref. 3, the analysis of the return cur-
rent was carried out for a single tunnel junction with un-
conventional current-phase relation. Two types on the cur-
rent-phase relation with additional terms to sinusoidal 
current were analyzed: the case of second harmonic sin 2ϕ 
(anharmonic case) and the case of the fractional term 
sin ( / 2)ϕ . It can be stated that the return current of the 
Josephson junction decreased by increasing the amplitude 
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of the second term in the current-phase relation. The case 
of the second harmonic sin 2ϕ in current-phase relation 
was experimentally observed in Josephson junctions based 
on high-temperature superconductors [4, 5]. The amplitude 
of the anharmonic term in current-phase relation α depends 
on the junction preparation technology. In general, anhar-
monicity in the current-phase relation for high temperature 
and Fe-based superconductors based junctions are associ-
ated with the d-wave behavior of the order parameter and 
many band character of superconducting state in new com-
pounds [6–10]. Dynamical properties of single Josephson 
junctions with an anharmonic current-phase relation were 
previously studied in Refs. 11–14. 

The fractional term in current-phase relation sin ( / 2)ϕ  
related with Majorana quasi-particles [15–17] and dynami-
cal detection of these particles seems very challenging in 
condensed matter physics. The discovery of Majorana fer-
mions seems very interesting also from the point of fault-
tolerant quantum computing [18]. There are few papers de-
voted to dynamical properties of single Josephson junctions 
with the fractional term [19, 20]. Study of properties of dc 
SQUID on junctions with unconventional current-phase 
relation presented in Ref. 21. In this paper critical current 
of dc SQUID on junctions with unconventional current-
phase relation is calculated. In this study, we carried out 
the analysis of the return current IR of the dc SQUID on 
tunnel Josephson junctions with unconventional current-
phase relation. 

Basic Equations 

It is well known that [1, 2] in the case of low inductance 
symmetrical dc SQUID 02 ( / ) 1cl LI= π Φ <<  (L is the total 
inductance) on junctions with sinusoidal current-phase re-
lation is equivalent to the single junction with effective 
critical current 1 22 cos [( ) / 2]M cI I= ϕ − ϕ  and with effec-
tive phase 1 2( ) / 2ϕ = ϕ + ϕ  (Fig. 1). The equation for mag-
netic field can be written as 

 1 2 sin cos
2
e

e l
ϕ

ϕ − ϕ = ϕ − ϕ,   
0

2 e
e

πΦ
ϕ =

Φ
. (3) 

Taking into account Eq. (3) leads to relation for exter-
nal current in dc SQUID 

 22cos sin sin sin 2
2 2

e e e
e

c

I
i l

I
ϕ ϕ

= = ϕ + ϕ. (4) 

It means that the inductance of the superconducting loop 
in dc SQUID causes additional electrodynamic anharmoni-
city to the current-phase relation and should be taken into 
account [22, 23]. Use of unconventional current-phase re-
lation with the second term (in the form of sin 2ϕ (anhar-
monic) or sin ( / 2)ϕ  (fractional) leads to corresponding final 
expressions for external current in a symmetric dc SQUID: 

 2cos sin sin cos sin 2
2 2 2 2
e e e

e
i li

ϕ ϕ = = ϕ + + α ϕ ϕ 
 

, (5a) 

 2cos sin sin cos sin
2 2 2 2 4 2
e e e ei li m

ϕ ϕ ϕ ϕ = = ϕ + + 
 

 . (5b) 

For the calculation of return current RI  of dc SQUID 
based on tunnel Josephson junction with unconventional 
current-phase relation, we neglect damping effects in the 
junctions, i.e., 1−β  could be considered as a small parame-
ter [3]. In this approximation the energy of tunnel junction 
with anharmonic current-phase relation (5a), under small 
external current ie << 1, can be written as 

2
(1 cos )cos

2 2
e

cE E
 ϕβϕ

= + − ϕ +




 

 2sin (1 cos 2 )
4 2 2

el ϕ α + + − ϕ  
 

 (6a) 

with Josephson energy 0 / 2c cE I= Φ π. In the case of the 
fractional term sin ( / 2)ϕ , a similar energy can be present-
ed as 

2
(1 cos )cos

2 2
e

cE E
 ϕβϕ

= + − ϕ +




 

 2sin 2 (1 cos )
4 2 2

el m
ϕ ϕ + + −   

. (6b) 

In the general case, the loss of energy by the resistance 
of the junction with unconventional current-phase relation, 
for the period of the phase T , can be calculated as [1, 3] 

 0

0

( )
T

c
i

I
W d

T
Φ

= ϕ ϕ ϕ∫   . (7a) 

The energy, flowing from the current source eW  for 
RI I= , can be written as 

 0e RW I= Φ  . (7b) 

The dependence ( )ϕ ϕ  for different current-phase rela-
tion can be found from (6a) and (6b) correspondingly as Fig. 1. Schematic presentation of dc SQUID. 



I. N. Askerzade and R. Askerbeyli 

426 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 5 

 
1/22( ) (1 cos )cos

2
e

c

E
E

 ϕ 
ϕ ϕ = − − ϕ − β  
   

 
1/2

2sin (1 cos 2 )
4 2 2

el ϕ α − + − ϕ   
, (8a) 

1/22( ) (1 cos )cos
2
e

c

E
E

 ϕ 
ϕ ϕ = − − ϕ − β  
  

 
1/2

2sin 2 (1 cos )
4 2 2

el m
ϕ ϕ − + −   

. (8b) 

As followed from last Eqs. (8a) and (8b), if l = 0, m = 0, 
and α = 0 the infinite motion of Josephson phase ϕ  is pos-
sible for the case / 2cE E = , which corresponds to the re-
turn current RI . 

The expression for the normalized return current Ri  of 
dc SQUID on Josephson junction with unconventional cur-
rent-phase relation taking into account (8a), and (8b) can 
be written as 

 
0

1
( )

T
R

R
c

Ii d
I T

= = ϕ ϕ ϕ∫  , (9) 

similar to results that have been obtained in Ref. 3. In cal-
culations of normalized return current Ri  with anharmonic 
current-phase relation (5a), we use a period of phase 2T = π, 
for the case of fractional term (5b) period will be 4T = π. 

Results and Discussions 

Integral in last Eq. (9) with (8a) and (8b) for low in-
ductance symmetrical dc SQUIDs 1l << , can be calculated 
analytically for small parameters 1α <<  and 1m << . In the 
limit 1α <<  and 1m << , the ratio / cE E  can be considered 
equal to 2, as in the case of harmonic current-phase rela-

tion. Then we obtain final expressions for the normalized 
return current Ri  for small values of the amplitude of addi-
tional term 0.5α <  and 0.5m < . 

 

2sin
cos ( )2cos 1

2 6 3cos cos
2 2

e

e e
R

e e

li

 ϕ  
  ϕ ϕα  = − − ϕ ϕ            

, (10a) 

 

2sin
2cos 1 0.55 cos

2 6 4cos
2

e

e e
R

e

li m

 ϕ  
  ϕ ϕ   = − −  ϕ        

. (10b) 

It is clear that at the fixed external magnetic field, for 
low inductance l and small amplitude of the second term, 
the return current Ri  is decreased. For the high values of 
the amplitude of the second term ( 0.5α >  or 5)0.m > , 
proper of the corrected value for / cE E  are given in the 
following relations [3]: 

 2

11 , anharmonic term, 0.5,
4

2 1 , fractional term, 0.5.
2

c

E
E m m

 + α + α ≥ α= 
  + ≥   

 (11) 

Substitution of (11) in (8a) and (8b) made it possible to 
determine the normalized reverse current Ri  by numerical 
integration in (9) Ri , the results are presented in Figs. 2 and 3. 
In calculations of return current Ri , in addition to the re-
normalized value of threshold energy 0/ cE E , we also take 
into account the increase of the McCumber parameter 

2(2 / ) c se I R Cβ =   with renormalized critical current cI  [24]. 
For the different values of geometrical inductance l and 

the typical amplitude of anharmonicity parameter 0.7α = , 
the results are of numerical calculations of return current Ri  

Fig. 2. Return current of dc SQUID versus external magnetic 
field for different values of inductance l from top to bottom. 
(α = 0.7). 

Fig. 3. Return current of dc SQUID versus external magnetic 
field for different values of inductance l from top to bottom 
(m = 0.7). 
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are presented in Fig. 2. In the case of fractional current-phase 
relation with the amplitude of this term m = 0.7, results of 
the similar calculations are shown in Fig. 3. It is clear that 
for the case of α = 0 and m = 0 we have analytical results 

corresponding to the case cos ( / 2)R ei = ϕ . Also, it is 

useful to note that obtained results are symmetrical with 
respect to axes Ri  and obtained the whole picture is the 
periodical in respect to external the magnetic field eϕ  with 
the period 2π. As follows from Fig. 2, the inclusion of ge-
ometrical inductance to consideration, drastically changes 
behavior Ri . At small inductance l < 1 return current Ri  
reveals monotonically decreasing character in increasing of 
external magnetic field eϕ . At inductance l >1 return cur-
rent Ri  firstly grows with increasing of external magnetic 
field / 2eϕ < π  and monotonically decreases in magnetic 
fields / 2eϕ > π  with no peak. As follows from Fig. 3, 
the inclusion of geometrical inductance l into consideration 
does not change the general decreasing character of return 
current ( )R ei ϕ . It is clear that the return current decreases 
in the whole region of the external magnetic field eϕ . The 
geometrical inductance suppresses the amplitude of chang-
ing of return current. Similar numerical calculations were 
conducted in Ref. 25. 

For the high inductance dc SQUID l >> 1, Josephson in-
ductance of junctions [ 0 1,2/ (2 )cIΦ π ] can be ignored in con-
sideration of dynamical effects [1]. In this limit, the phase of 
Josephson junctions in the superconducting loop (Fig. 1) 
changes independently. If take into account the results of 
Ref. 24, the renormalization of critical current causes de-
creasing of Josephson inductance approximately by two 
times. It means that in dc SQUID with high geometrical in-
ductance l >> 1 the unconventional effects in current-phase 
relations can be neglected. 

In the case of dc SQUID with overdamped Josephson 
junctions ( 1β ≥ ) above presented calculations are not valid. 
In this case, the numerical methods described in [14] is 
applicable. In Ref. 14, the Eq. (1) with unconventional cur-
rent-phase relation was solved numerically, and the return 
current RI  of Josephson junction was calculated as a point 
where an averaged voltage is vanished on the junction. The 
case of junction shunted by different values of shunt in-
ductance sL  and resistance sR were considered. 

In summary, in the present paper, the return current RI  
of dc SQUID having tunnel Josephson junctions ( 1β >> ) 
with unconventional current-phase relation was investigated. 
The changes of the return current of dc SQUID caused by 
the amplitude of the second term in current-phase relation, 
geometrical inductance, and external magnetic field were 
studied.  

Presented work supported by TUBITAK research grant 
118F093. Authors thanks Dr. Ali Bozbey for discussion, 
N. Kartli and H. B. Yildirim for technical assistance. 
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Зворотній струм СКВІДа постійного струму 
на тунельних джозефсонівських переходах 

з нетрадиційним співвідношенням струм–фаза 

I. N. Askerzade, R. Askerbeyli 

Проведено аналіз зворотнього струму СКВІДа постійного 
струму на базі тунельних джозефсонівських переходів з не-
традиційним співвідношенням струм–фаза. Проаналізовано 
два випадки співвідношення струм–фаза при додаванні до 

гармонійного доданка sin ϕ додаткових: з подвоєною sin 2ϕ та 
дробовою sin (ϕ/2) фазою. Показано, що зміна струму вер-
тання СКВІДа постійного струму на переходах з нетрадицій-
ним співвідношенням струм–фаза визначається амплітудою 
доданка в ньому, геометричною індуктивністю та зовнішнім 
магнітним полем. 

Ключові слова: СКВІД постійного струму, співвідношення 
струм–фаза, ток вертання, ангармонічні та 
дробові складові.
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