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The magnetic structures of the ground state, phase transitions, and the thermodynamic properties of a two-di-
mensional ferromagnetic Potts model with the number of spin states q = 4 on a kagome lattice are studied using 
the Wang–Landau algorithm of the Monte Carlo method, taking into account the interactions of the nearest and 
the next-nearest neighbors. The studies were carried out for the value of the interaction of the next-nearest 
neighbors in the range 0 ≤ r ≤ 1.0. It is shown that taking into account the antiferromagnetic interactions 
of the next-nearest neighbor leads to a violation of the magnetic ordering. A phase diagram of the dependence 
of the critical temperature on the value of the interaction of the next-nearest neighbor is constructed. The analysis 
of the character of phase transitions is carried out. It was found that in the ranges 0 ≤ r < 0.5 and 0.5 < r ≤ 1.0, a 
first-order phase transition is observed, and for r = 0.5, frustrations are observed in the system. 
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1. Introduction 

Recently, the study of phase transitions (PT) and low-
temperature properties of compounds with a kagome lattice 
has attracted much attention. This is due to the fact that in 
such substances, due to the special geometry of the lattice, 
frustrations can arise. In antiferromagnetic compounds with 
a kagome lattice, frustrations are observed when the ex-
change interactions of the nearest neighbors are taken into 
account. In ferromagnetic compounds, frustration can ap-
pear due to antiferromagnetic interactions of the next-nearest 
neighbors, which compete with exchange interactions be-
tween the nearest and neighbors. Frustration effects play an 
important role in magnetic systems. Frustrated spin sys-
tems exhibit properties that differ from the corresponding 
non-frustrated systems, which arouses increased interest in 
the study of the phenomena of frustration in magnetic sys-
tems [1–3]. 

This interest is due to the fact that frustrated magnets 
have broad prospects for practical application [1, 4, 5]. The 
models of Ising, Heisenberg, Potts, and others are widely 
used to study the physical properties of such magnets. The-
se models also describe a large class of real physical sys-
tems: layered magnets, liquid helium films, superconduct-
ing films, adsorbed films, etc. [1, 6, 7]. 

To date, the classical Ising and Heisenberg models are 
well studied and many of their properties are known [8–12]. 
The situation is different with the Potts model. In recent 
years, a significant number of works [6, 13–17] have been 
devoted to the study of spin systems described by the Potts 
model, in which many questions have been answered. In 
[13–20], the results obtained for the two-dimensional Potts 
model with the number of spin states q = 2, q = 3, and 
q = 4 on different types of lattices are presented. The re-
sults presented in these papers show that many of the phy-
sical properties of the Potts model depend on the value of 
the interaction of the next-nearest neighbors, the number of 
spin states q, and on the geometry of the lattice. 

In this work, we investigate the two-dimensional ferro-
magnetic Potts model with the number of spin states q = 4 
on the kagome lattice, taking into account the antiferro-
magnetic exchange interactions of the next-nearest neigh-
bors. 

The interest in this model is due to the following main 
reasons: 

First, the question related to the type of PT for the Potts 
model with q = 4 is still controversial, since the value q = 4 
is the boundary value of the range 2 ≤ q ≤ 4, where a se-
cond-order PT is observed in the range q > 4, in which the 
PT occurs as a first-order phase transition [16]. 
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Second, the nature of the PT and the thermodynamic 
properties for the Potts model with q = 4 at various values 
of the interaction between next-nearest neighbors have not 
yet been studied. 

Third, taking into account the antiferromagnetic exchange 
interactions of the next-nearest neighbors in the model under 
study can lead to frustrations. 

In this regard, in this work, we study this model in a wide 
range of values of the interaction of next-nearest neighbors. 
The study of this model on the base of modern methods 
and ideas will allow one to obtain the answer to a number 
of questions related to PTs and the thermodynamic proper-
ties of frustrated spin systems and systems with competing 
exchange interactions. 

2. Model and the method of studies 

The Hamiltonian of the Potts model with the number 
of spin states q = 4 which takes into account interactions 
of the nearest and next-nearest neighbors can be represent-
ed as [21, 22] 
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where J1 and J2 are the parameters of exchange ferro- 
(J1 > 0) and antiferromagnetic (J2 < 0) interaction of the 
nearest and next-nearest neighbors, θi,j, θi,k are the angles 
between interacting spins Si – Sj and Si – Sk. 

The model description is shown in the inset of Fig. 1. 
The each spin has a four nearest (solid bold lines) and four 
next-nearest (dashed lines) neighbors. The four possible 
directions of the spins and its symbol representation also 
showed in the Fig. 1. The spin directions specified in such 
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Let's introduce r = |J2/J1| the absolute values of ratio of the 
nearest and of the next-nearest neighbors interactions. In 
this work, we consider the range of values 0 ≤ r ≤ 1.0. 

At the present time, these systems based on microscopic 
Hamiltonians are successfully studied basing on the Monte 
Carlo (MC) method [23–26]. In recent time, many new 
variants of algorithms of the MC methods have been de-
veloped. The Wang–Landau algorithm of the MC method 
is one of most efficient for studying similar systems [27], 
in particular, at low temperatures. Thus, we used this algo-
rithm in this study. 

The Wang–Landau algorithm is described in more de-
tail in [15]. This algorithm allows calculate the values of 
thermodynamic parameters at any temperature. In particu-
lar, the internal energy U, free energy F, specific heat C, 
and entropy S can be calculated, using the following ex-
pressions: 
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where N is the number of particles, T is temperature (here 
and hereafter temperature is given in units |J1|/kB) (U is the 
normalized quantity). 

The PT character was analyzed using the four-order Bin-
der cumulant method and the histogram method of analyz-
ing the data of the MC method [28, 29]. 

The calculations were performed for the systems with 
the periodic boundary conditions and linear sizes L = 12–96 
and the numbers of spins N = L×L×3/4. 

3. Results of modeling 

Figure 1 shows the model description [Fig. 1(a)] and the 
magnetic structures of the ground state for r: 0.2 [Fig. 1(b)], 
0.5 [Fig. 1(c)], and 0.9 [Fig. 1(d)]. The different states of 
spins are indicated by different circles [see inset in Fig. 1(a)]. 
To indicating the various ground states we make additions 
to the standard Wang–Landau algorithm, which allow us to 
find out the magnetic structure of the ground state of the 
system. We calculate the density of ground states and ana-

Fig. 1. Model description (a) and the magnetic structures of 
the ground state (b)–(d). 
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lyze their degeneracy. Thus, we found the three areas with 
different degeneracy of the ground states. In the first area 
(J2 > –0.5), the ground states are ferromagnetic and density 
of stated ln ( ) ln 4g E =  for all linear sizes, ground states are 
fourfold degenerated. In the second area (J2 < –0.5), density 
of stated 2ln ( ) lng E a L∝  and ground states are degenerated. 
In the third area (J2 = –0.5), the ground state are strongly 
degenerated and density of states 2ln ( ) lng E b L∝  (note, 
that a b<< ). We analyze each magnetic structure and save 
them in graphic files. For strongly degenerated states only 
first 100 structures. The spins marked with the same circles 
have the same direction. As seen in Fig. 1(b), for r = 0.2, 
ferromagnetic ordering is observed in the system. The same 
picture is observed in the range 0 ≤ r < 0.5. At r = 0.5, the 
ferromagnetic order is violated and a disordered state is ob-
served in the system [Fig. 1(c)]. In the range 0.5 < r ≤ 1.0, 
«triplet ordering» is observed, which is shown in Fig. 1(d) 
for r = 0.9. “Triplet ordering” in this paper, means that the 
spins in triangles have the same value. 

Figure 2 shows the dependence of the minimum energy 
Emin on the value of the interaction of the next-nearest neigh-
bors J2. Three different structures of magnetic spin order-
ing are observed for the model under study, depending on 
the value of J2. The figure shows that for J2 < –0.5 a triplet 
magnetic structure is observed, and for J2 > –0.5 it is ferro-
magnetic. At a value of J2 = –0.5, the magnetic ordering is 
violated, which indicates that this value of J2 are the frus-
tration point. 

The temperature dependences of entropy S are shown in 
Fig. 3 (hereinafter the statistic error does not exceed the 
sizes of the symbols of the presented dependences). As can 
be seen in the figure, for the entire considered range of r 
values, the entropy tends to the theoretically predicted value 
of ln 4 with increasing temperature. In the range 0 ≤ r < 0.5 
in the low-temperature region, the entropy tends to zero. 
This means that in the given range of r there is no degener-
acy of the ground state and the system is not frustrated. In 
the range 0.5 < r ≤ 1.0, the entropy tends to a nonzero value. 

This behavior of entropy indicates that the ground state of 
the system is degenerated in this range and frustrations may 
arise in the system. 

Figure 4 shows the temperature dependences of the heat 
capacity C for different values of r. As can be seen from 
the figure, for all values of r in the ranges 0 ≤ r < 0.5 and 
0.5 < r ≤ 1.0, distinct maxima are observed near the critical 
point. In the range 0 ≤ r < 0.5, an increase in r is accompa-

Fig. 2. Dependence of the minimum energy Emin on the value of 
the interaction of the next-nearest neighbors J2. 

Fig. 3. Temperature dependences of the entropy S/N. 
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nied by a shift of the maxima towards lower temperatures 
and a decrease in the amplitude of the maxima. The oppo-
site picture is observed in the range 0.5 < r ≤ 1.0, where 
the maxima shift towards higher temperatures. For r = 0.5, 
an unusual behavior is observed, which is characterized by 
the absence of a pronounced peak. In this case, the heat 
capacity maxima have smoothed peaks instead of sharp 

λ-shaped peaks. Such a picture of the temperature depen-
dence of the specific heat is usually observed for frustrated 
spin systems [30]. Based on this, we can assume that the 
value r = 0.5 is the point of frustration for this model. For 
r = 0.6, a splitting of the heat capacity is observed, which 
is a characteristic feature of frustrated systems near the points 
of frustration. One maximum is sharp, and the second is 
smooth. This behavior is explained by the partial ordering 
of the system [Fig. 1(c)]. For r = 0.5, the effects of frustra-
tion are most pronounced, there is no sharp peak, a smooth-
ed maximum is observed, the system passes into a highly 
frustrated state, i.e., there is no order in the system. 

The phase diagram of the dependence of the critical tem-
perature on the value of the interaction of the next-nearest 
neighbors is shown in Fig. 5. The diagram shows three dif-
ferent phases: ferromagnetic, paramagnetic, and triplet. For 
r = 0.5, the critical temperature is zero and there is no PT. 
This is explained by the fact that the competition of ex-
change interactions of the nearest and next-nearest neighbors 
in this model leads to complete frustration. Frustrations dis-
turb the order in the system and lead to the disappearance 
of the PT. 

To analyze the type of PT, we used the histogram analy-
sis of the MC data [27, 28]. This method allows you to re-
liably determine the type of PT. The method for determin-
ing the type of PT by this method is described in detail in 
[31, 32]. 

The results obtained on the basis of the histogram analy-
sis of the data show that a first-order PT is observed in this 
model. This is shown in Fig. 6. This figure shows the histo-
grams of energy distribution for a system with linear di-
mensions L = 96 for r = 0.2. The plot is plotted near the 
critical temperature. It can be seen from Fig. 6, the depend-
ence of the probability W of the energy E has the two max-
ima, and this fact favors the first-order PT. The existence 
of a double peak in the histograms of energy distribution is 
a sufficient condition for a first-order PT. Note that, double 
peaks in the distribution histograms for the model under 

Fig. 4. Temperature dependences of the specific heat C/kB. 

Fig. 5. Phase diagram of the dependence of the critical tempera-
ture on the value of the interaction of the next-nearest neighbors. 
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study are observed for r values in the ranges 0 ≤ r < 0.5 
and 0.5 < r ≤ 1.0. This allows us to state that the first-order 
PT observed in the was considered ranges of r values. 

4. Conclusions 

The magnetic structures of the ground state, the phase 
transitions, and the thermodynamic properties of the two-di-
mensional Potts model with the number of spin states q = 4 
on a kagome lattice taking into account the interactions of 
the nearest and the next-nearest neighbors, have been per-
formed using the Wang–Landau algorithm of the Monte 
Carlo method. The magnetic structures of the ground state 
are obtained in a wide range of values of the interaction the 
next-nearest neighbors. A phase diagram of the dependence 
of the critical temperature on the value of the interaction 
of the next-nearest neighbors is constructed. It is shown 
that a first-order phase transition is observed in the ranges 
0 ≤ r < 0.5 and 0.5 < r ≤ 1.0. For r = 0.5, the ground state is 
strongly degenerates, and the system becomes frustrated. 

Acknowledgments 

This research was performed with financial support 
from the Russian Foundation for Basic Research, as part of 
scientific projects No. 19–02–00153-a. 

 _______  

1. H. T. Diep, Frustrated Spin Systems, World Scientific Pub-
lishing Co. Pte. Ltd., Singapore (2004), p. 624. 

2. F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, 
M. K. Ramazanov, and A. I. Proshkin, J. Magn. Magn. 
Mater. 384, 247 (2015). 

3. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, 
Phys. B, Condens. Matter 476, 1 (2015). 

4. R. J. Baxter, Exactly Solved Models in Statistical Mechanics, 
Academic, New York (1982); Mir, Moscow (1985). 

5. F. Y. Wu, Exactly Solved Models, A Journey in Statistical 
Mechanics, World Scientific, New Jersey (2008). 

6. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982). 

7. W. Zhang and Y. Deng, Phys. Rev. E 78, 031103 (2008). 
8. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, 

M. A. Magomedov, and K. Sh. Murtazaev, Mater. Lett. 236, 
669 (2019). 

9. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 109, 589 
(2019). 

10. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Fiz. 
Nizk. Temp. 45, 1493 (2019) [Low Temp. Phys. 45, 1263 
(2019)]. 

11. M. K. Badiev, A. K. Murtazaev, M. K. Ramazanov, and 
M. A. Magomedov,  Fiz. Nizk. Temp. 46, 824 (2020) [Low 
Temp. Phys. 46, 693 (2020)]. 

12. A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, 
J. Exp. Theor. Phys. 129, 903 (2019). 

13. M. Nauenberg and D. J. Scalapino, Phys. Rev. Lett. 44, 837 
(1980). 

14. J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Phys. Rev. B 
22, 2560 (1980). 

15. M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, 
Phys. A 521, 543 (2019). 

16. H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and 
S.-H. Tsai, J. Phys. A 31, 2287 (1998). 

17. F. A. Kassan-Ogly and A. I. Proshkin, Phys. Solid State 60, 
1090 (2018). 

18. A. K. Murtazaev, M. K. Ramazanov, М.К. Mazagaeva, and 
M. A. Magomedov, J. Exp. Theor. Phys. 129, 421 (2019). 

19. A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, 
Phys. Solid State 61, 2172 (2019). 

20. M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, 
and М.К. Mazagaeva, Phys. Solid State 62, 499 (2020). 

21. M. G. Townsend, G. Longworth, and E. Roudaut, Phys. Rev. 
B 33, 4919 (1986). 

22. Y. Chiaki and O. Yutaka, J. Phys. A, Math. Gen. 34, 8781 
(2001). 

23. R. Masrour and A. Jabar, Physica A 515, 270 (2019). 
24. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 106, 86 

(2017). 
25. A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, 

Physica A 545, 123548-1 (2020). 
26. R. Masrour and A. Jabar, Physica A 491, 926 (2018). 
27. F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001). 
28. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001). 
29. K. Binder and D. Heermann, Monte Carlo Simulation in 

Statistical Physics, An Introduction, Springer, Berlin, Hei-
delberg (2010). 

30. F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. 
Ramazanov, and M. K. Badiev, J. Magn. Magn. Mater. 324, 
3418 (2012). 

31. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 103, 460 
(2016). 

32. A. K. Murtazaev, T. R. Rizvanova, M. K. Ramazanov, and 
M. A. Magomedov, Phys. Solid State 62, 1434 (2020). 

 ___________________________ 

Fig. 6. Energy distribution histogram for L = 96. 

https://doi.org/10.1016/j.jmmm.2015.02.030
https://doi.org/10.1016/j.jmmm.2015.02.030
https://doi.org/10.1016/j.physb.2015.06.021
https://doi.org/10.1142/9789814415255_0002
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1103/PhysRevE.78.031103
https://doi.org/10.1016/j.matlet.2018.11.042
https://doi.org/10.1134/S0021364019090121
https://doi.org/10.1063/10.0000207
https://doi.org/10.1063/10.0001366
https://doi.org/10.1063/10.0001366
https://doi.org/10.1134/S1063776119090103
https://doi.org/10.1103/PhysRevLett.44.837
https://doi.org/10.1103/PhysRevB.22.2560
https://doi.org/10.1016/j.physa.2019.01.116
https://doi.org/10.1088/0305-4470/31/10/007
https://link.springer.com/article/10.1134%2FS1063783418060136#auth-1
https://link.springer.com/article/10.1134%2FS1063783418060136#auth-2
https://doi.org/10.1134/S1063783418060136
https://doi.org/10.1134/S1063776119080053
https://doi.org/10.1134/S1063783419110234
https://doi.org/10.1134/S1063783420030178
https://doi.org/10.1103/PhysRevB.33.4919
https://doi.org/10.1103/PhysRevB.33.4919
https://doi.org/10.1088/0305-4470/34/42/305
https://doi.org/10.1016/j.physa.2018.09.190
https://doi.org/10.1134/S0021364017140107
https://doi.org/10.1016/j.physa.2019.123548
https://doi.org/10.1016/j.physa.2017.09.085
https://doi.org/10.1103/PhysRevE.64.056101
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1007/978-3-642-03163-2
https://doi.org/10.1007/978-3-642-03163-2
https://doi.org/10.1016/j.jmmm.2012.02.056
https://doi.org/10.1134/S0021364016070134
https://doi.org/10.1134/S1063783420080247


M. K. Ramazanov, A. K. Murtazaev, M. A. Magomedov, et al. 

434 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 5 

Фазова діаграма моделі Поттса з числом спінових 
станів q = 4 на ґратці кагоме  

M. K. Ramazanov, A. K. Murtazaev, 
M. A. Magomedov, T. R. Rizvanova, 

A. A. Murtazaeva 

Магнітні структури основного стану, фазові переходи та 
термодинамічні властивості двовимірної феромагнітної мо-
делі Поттса з числом спінових станів q = 4 на ґратці кагоме 
вивчаються за допомогою алгоритму Ванга–Ландау методу 
Монте-Карло. Цей метод враховує взаємодію найближчих та 
наступних найближчих сусідів. Дослідження проводили для 

значення взаємодії у діапазоні 0 ≤ r ≤ 1,0. Показано, що вра-
хування антиферомагнітних взаємодій наступного найближ-
чого сусіда призводить до порушення магнітного упорядку-
вання. Побудовано фазову діаграму залежності критичної 
температури від величини взаємодії наступного найближчого 
сусіда. Проведено аналіз характеру фазових переходів. Було 
встановлено, що в діапазонах 0 ≤ r <0,5 та 0,5 < r ≤ 1,0 спо-
стерігається фазовий перехід першого роду, а при r = 0,5 
у системі спостерігаються фрустрації. 

Ключові слова: фрустрація, фазова діаграма, фазовий пере-
хід, метод Монте-Карло, модель Поттса.
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