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The ground state behavior of the spinless fermion chain with an interaction between fermions at neighboring 
sites is studied for free open boundaries. For the strong enough repulsion boundary gapless states (bound state 
of Majorana operators from opposite sites of the chain) can exist inside the gap for bulk excitations, i.e., 
in the topological insulator regime. We propose to use those Majorana zero modes as topological qubits, similar 
to the ones in one-dimensional topological superconductors. Possible physical realizations of the considered 
model are discussed. 
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During last years Majorana zero energy edge modes at-

tract attention of researchers, for the review use, e.g., [1–3]. 
According to the original proposal [4] such modes can be 
used as the topological qubit. Such a qubit (a two-level 
system) can be formed by two Majorana fermions situated 
at different edges of the system. As such, by construction, 
the topological qubit is more stable with respect to local 
perturbations (local noise), than the local one. It will be 
more difficult to destroy the quantum coherence for the set 
of such topological qubits. As possible realizations, Majo-
rana edge modes were proposed to be used in many con-
densed matter systems, including nanowires, topological 
insulator/superconductor heterostructures, helical liquids, 
two-leg ladders, Josephson junctions, etc. In experiments, 
a number of realizations of Majorana zero modes has been 
observed by now, see, e.g., [5–8]. 

To be distinguishable, Majorana edge modes must have 
energies lying inside the gap of bulk states. This is why, in 
the most of proposals related to Majorana edge modes, one 
uses the system of fermions with pairing. The latter yields 
the gap for bulk states, and Majorana edge modes exist 
(according to the special conditions on the parameters of 
the system, see [2–4]) with their energies inside that gap. 
In fact, Majorana edge modes, in that case, are the manifes-
tation of the topological superconductivity. It is interesting, 
that Majorana state fixed at one edge can be observed [9]. 

Here we propose to consider a different situation: Let us 
study edge Majorana states in the (fermionic) system with-
out pairing, however with interactions between fermions. 
For some conditions satisfied, bulk states of such systems 

can be gapped. On the other hand, there can exist Majorana 
edge states in such systems. It means that we propose to 
replace the one-dimensional topological superconductor of 
previous propositions by the one-dimensional topological 
insulator. In our contribution we study exactly, using the 
Bethe ansatz technique, the onset of Majorana edge modes, 
using as the prime example, following Kitaev [4], the one-
dimensional model of spinless fermions with the interac-
tion between fermions at neighboring sites of the lattice. 
Notice that unlike other studies, which consider interac-
tions in fermion chains [10–16], we study systems without 
pairing. We consider open boundary conditions with free 
edges. For large enough repulsion between fermions 
(so that bulk excitations are gapped) there exist boundary 
bound states related to edge Majorana operators with zero 
(in the limit of infinite chain) energy. The model possesses 
two degenerate ground states. In addition to simple bound 
states for the noninteracting system (cf. Ref. 4), we point out 
that in our model of the topological insulator there exist 
a large number of boundary string bound states with zero 
energy, caused by the interaction. Finally, we discuss pos-
sible realization of the proposed model situation. 

Consider the Hamiltonian of the open chain of spinless 
fermions, which interact being at neighbouring sites 
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where †
ja  ( ja ) creates (destroys) a spinless fermion at the 

site j, †=j j jn a a , t is the hopping integral, = | | exp ( )i∆ ∆ θ  
is the pairing amplitude, 0µ ≥  is the chemical potential, 
V denotes the nearest-neighbor interaction, and L is the 
number of sites. Kitaev has suggested [4] (he considered 
the noninteracting chain = 0V ) that one can replace stand-
ard Dirac operators †

ja  and ja  by other fermion operators, 
Majorana ones, jc , = 1, , 2j L  according to the rule 
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with = 1, ,j L . The following relations are satisfied for 
the Majorana operators † =j jc c , and ,= 2j m m j j mc c c c+ δ , 

, = 1, , 2j m L . Using the Majorana representation for the 
interacting case 0V ≠  we obtain, taking into account that 
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For = 0V  Kitaev has pointed out that for the formation 
of Dirac operators, the pair of Majorana operator can be 
related to the same site of the original lattice (i.e., with the 
indices 2 j  and 2 1j − , see above), or to the neighboring sites 
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For the latter case, the Majorana operators 1c  and 2Lc  
remain unpaired (for instance, they do not enter the Hamil-
tonian for | | t∆ =  and = = 0V µ ). Kitaev has shown that 

for finite L in the noninteracting chain = 0V  for 2 | | > | |t µ  
and 0∆ ≠  the system possesses two ground states with 
exponentially small energy difference between them and 
different fermionic parities 2 1 2= ( )j jj

P ic c−−∏ . Both 

states have the same bulk properties, however different 
edge ones. One of these phases can be transformed into the 
other one and vice versa by the permutation of Majorana 
operators. Mentioned two Majorana operators can be bond-
ed into a boundary mode, constituting the phase coherence 
between two edges. Boundary modes are localized at either 
edge of the chain with zero energy for L →∞ . 

For = 0∆  and in the absence of interactions = 0V  the 
condition 2 | | > | |t µ  just defines the region of a normal 
metal. In this case, there are no boundary states. Let us turn 
to the case = 0∆ , however with nonzero interaction V . 
Our goal is to find, whether boundary modes can exist in 

this situation. For that purpose let us use the Jordan–
Wigner transformation [17] for the Hamiltonian Eq. (3) 
(from now on let us consider for simplicity the case of 
real ∆, i.e., = 0θ ), which can be written as 
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with , ,x y z
jσ  being the Pauli matrices. In the terms of Pauli 

matrices the Hamiltonian (1) or (3) exactly becomes the 
Hamiltonian of the effective spin chain. It reads 
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with , = ( )x yJ t− ± ∆ , = / 2zJ V  and = / 2H −µ . Notice 
that after the nonlocal Jordan–Wigner transformation for 

= 0zJ  case (the XY model) in the phase | | >x yJ J H−  the 
spin chain is ordered with the nonzero order parameter 

0x
j〈σ 〉 ≠  in the ground state [19]. For the spin chain exter-

nal fields can interact with the order parameter, breaking 
the phase coherence between two mentioned above ground 
states [4]. Notice that the ground state of the Hamilto-
nian (6) of the spin chain for =x yJ J  (the XXZ model) for 

> > 0z xJ J  with periodic boundary conditions is degener-
ate in the thermodynamic limit ,L M →∞ with /M L  fixed: 
There are two states with different energies for the finite 
chain, and the difference in their energies goes to zero for 
L →∞ . The spontaneous magnetization z

j〈σ 〉 , defined as 
the modulus of the normalized matrix element of the z -pro-
jection of the local spin operator between these two states, 
is nonzero [20]. Notice that for the antiferromagnetic case 
the site spontaneous magnetization must be staggered. 
Then for the XXZ spin chain, as well as for the XY spin 
chain, external fields can interact with the order parameter, 
and break the phase coherence. However, we use the spin 
representation of the fermionic Hamiltonian only for ana-
logy in calculation of the eigenvalues and eigenstates of 
the Hamiltonian Eqs. (1)–(3). To remind, after unitary trans-
formations (the Jordan–Wigner transformation is the uni-
tary one) the system has the same set of eigenvalues and 
eigenstates, and the Bethe ansatz describes the complete 
set of eigenstates and eigenvalues of the Hamiltonian (6), 
see, e.g., [18]. 

Each eigenvalue and eigenstate of the Hamiltonian 
Eqs. (1)–(3) for = 0∆  can be parametrized by the set of 
quantum numbers called rapidities, ju , with = 1, ,j M , 
where M  is related to the total charge (total number) of 
spinless fermions (or to the z -projection of the total spin 
moment of the chain in the spin representation). Let us con-
sider the strong enough repulsion between spinless fermions 

2 | |V t≥ , and denote / 2 | | = / = cosh ( ) 1z xV t J J η ≥  (to 
remind, the case = 0∆  corresponds to the case =x yJ J ). 
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The rapidities ju , = 1, ,j M  satisfy the Bethe ansatz equa-
tions, cf. [21] 
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with the eigenvalue of the Hamiltonian 
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The number M  is determined by the value of the chemical 
potential for spinless fermions (or by the value of the ho-
mogeneous magnetic field in the spin representation). Con-
sider for simplicity the case = 0µ  ( = 0H ), at which 

= / 2M L  (half filling) in the ground state (nonzero µ case 
can be considered in a similar way; for example, for 

= (2 | | )c t Vµ ≤ µ − +  one has = 0M  in the ground state; in 
that case boundary bound states do not contribute to the 
ground state energy, see below). The point with zero chem-
ical potential for = 0V  ( = 0zJ ) and 0∆ ≠  according to 
Kitaev’s analysis [4] also belongs to the interval where two 
edge Majorana operators are bound into the edge bound 
state. 

Following [21–23] we can study the thermodynamic 
limit L →∞ , M →∞  with /M L  finite. We use the stand-
ard technique of the Bethe ansatz [24]. 

In the ground state in the main in 1L−  approximation it 
corresponds to only real ju  being the roots of Eq. (7). Due 
to nonzero V  there exist many other solutions to Eq. (7), 
namely bound states (called strings) [24], which are related 
to complex values of ju . However, none of those solutions 
have negative energies, and, therefore, do not contribute to 
the ground state formation [24]. To remind, the ground 
state of the fermionic system is formed by the total filling 
of the Fermi sea: All eigenstates with negative energies 
have the filling factor 1, while for eigenstates with positive 
energies the filling factor is 0. Excitations of fermion sys-
tems are related to holes for eigenstates with negative en-
ergies and/or filling of eigenstates with positive energies. 

We can find using the standard Bethe ansatz technique 
for densities of roots of Bethe equations in the thermody-
namic limit [24] that the main contribution in 1L−  (the con-
tribution from the bulk states) to the ground state energy is 
cf. [21, 23] 
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with the total charge of the ground state equal to = / 2M L . 
Obviously it agrees with the ground state energy of the 
periodic spin chain [23]. 

The elementary bulk excitation with the rapidity u  with 
respect to the ground state is the hole in the distribution of 
real rapidities ju , which form the Fermi sea (i.e., which 
have negative energies) 
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with the quasimomentum 

( )= ln cosh [( ) / 2] / cosh [( ) / 2]p i iu iu− + η −η  

and the fractional charge 1/ 2 with respect to the ground 
state. According to [25] physical excitations can carry only 
even number of holes, so the physical bulk excitation is the 
pair of holes. Such a state has the gap [23], i.e., energies of 
physical excitations have to be larger than the gap value. 
So, in the regime > 2 | |V t  at = 0µ  the Hamiltonian (1) or 
(3) describes the one-dimensional Mott insulator. 

However, we are interested in the (finite size) correc-
tions to the energy (0)E  of order of 1L− , which define the 
difference between the system with periodic boundary 
conditions and the one with the open boundary conditions. 
Their contribution is determined by the second multiplier 
in the l.h.s. of Eq. (7). Similar to [26] we can find the addi-
tional (with respect to the bulk ones) root of Eq. (7), name-
ly with 0 =u iη . It is the solution to Eq. (7) because of the 
mutual cancellation of the decreasing modulus of the first 
multiplier in the l.h.s. of Eq. (7) and the increasing modu-
lus of the second multiplier, when L →∞  and 0ju u→ . 
That boundary bound state is localized at the edge of the 
chain: Its eigenfunction decays exponentially with the dis-
tance from the edge [27]. Such a boundary bound state has 
the energy 
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and carries the fractional charge 1/ 2−  with respect to the 
ground state of the periodic chain. This state has a negative 
energy, and, hence, it contributes to the Fermi sea of the 
open chain. The energy of the bound state is smaller than 
the energy of the minimal bulk excitation. It means that 
such a boundary bound state of the fermion chain with a 
neighboring repulsion has the energy, which value is inside 
the gap for bulk excitations. There can also exist boundary 
bound states, which correspond to complex boundary solu-
tions to Eq. (7), similar to the string bound states of the 
bulk. They correspond to the roots of Eq. (7) of the form 

0 0 02 , 2 ( 1) , , 2u il u i l u mi− η − − η + η  with integer , 0m l ≥ . 
However, it is easy to show similar to the analysis of [26] 
that their energies are either zero (for strings with nonzero 
m and = 0l , i.e., for strings with even number of poles), or 
they are equal to be  for boundary strings with nonzero m 
and 1l ≥  (i.e., for boundary strings with odd number of 
poles). As bulk excitations, physical boundary excitations 
exist in pairs. However, the boundary state at the other 
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edge of the chain has the energy be−  and carries charge 
1/ 2. Hence, the energy of the physical boundary edge state 
is zero, and it carries zero charge. This is why, our model 
Eqs. (1)–(3) in this regime > 2 | |V t  describes one-dimen-
sional topological insulator with gapped bulk eigenvalues 
and gapless boundary ones. 

We can calculate the ground state surface energy, which 
is the difference between the ground state energy of the 
fermion chain with free open boundary conditions, and the 
one of the chain with periodic boundary conditions. As it 
must be, the ground state of the open fermion chain with 
free open boundaries also has the charge = / 2M L . The 
ground state can be formed by any of two boundary bound 
states (at each edge), which means the degeneracy, cf. the 
analysis of Kitaev [4] for 0∆ ≠ , = 0V . The surface energy is 
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To stress the contribution of boundary bound states we 
have written the last term explicitly, which is caused by con-
tribution from two boundary edge states, despite it is zero. 

Hence, we can conclude that in the fermion chain with-
out pairing, but with the strong enough repulsion > 2 | |V t  
at neighboring sites (insulator regime) with free boundaries 
for = 0µ  there exist (topological) edge states (related to 
edge Majorana fermions) with zero energy in the thermo-
dynamic limit. For  

=
< = 2 | | sinh ( ) [( 1) / cosh ( )]n

s
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(at sµ  the gap for bulk excitations is closed) the situation 
remains similar, to what was described above. Then, for 

c sµ ≤ µ ≤ µ  the bulk excitations become gapless, and it is 
difficult to distinguish boundary state(s) from bulk states. 
The boundary states become quasilocal, i.e., they renormalize 
the density of states inside the band of bulk excitations, but 
do not produce local levels. The system for those values of 
the chemical potential is in the normal metal regime. Final-
ly, for < cµ µ  such states do not contribute to the ground 
state energy, because their energy becomes positive. 

Analysing the case with the strong enough attraction 
< 2 | |V t− , we can see that the ground state corresponds to 
= 0M . Therefore, solutions of Eq. (7) describing boundary 

bound states do exist. However they have positive energies 
(as well as for the strong repulsive case for < cµ µ , see 
above), and do not renormalize the ground state energy of 
the chain. 

We can also consider the case with a weak interaction, 
2 | | 2 | |t V t− ≤ ≤  (related to the states of the XXZ spin chain 

with x z xJ J J− ≤ ≤ ). We can parametrize / 2 | | = cos ( )V t γ . 

The Bethe ansatz equations for the set of rapidities 
( = 1, ,j j Mv ), which parametrize all eigenstates and 

eigenvalues of the Hamiltonian, are 
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with the eigenvalue of the Hamiltonian 
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The system is in the normal metal regime for <cµ µ . 
Using the analysis similar to [28, 29] it is possible to show 
that there exist solutions of Eqs. (13), which describe boun-
dary states, only for large enough boundary fields (no such 
states for free boundaries). One can check it, e.g., for the 
simplest case of noninteracting fermions, = 0V , see [24]. 
For that case, naturally, there are no string solutions, either 
bulk, or edge ones. For < cµ µ  again = 0M , and boundary 
states do not contribute to the ground state. 

How the considered model can be realized? First, one 
can study a one-dimensional spin-polarized interacting elec-
tron system (which is described by fermions with only one 
spin projection), using a quantum wire patterned in a semi-
conductor quantum well [31] with the device put on top of 
a ferromagnetic insulator to provide for the spin polariza-
tion [30]. On the other hand, the model can be realized in 
the spin-imbalanced ultracold gases of atoms confined to 
one-dimensional traps (tubes) [32]. Tubes can be regarded 
as isolated if the confinement by the laser beams is strong 
enough to suppress tunnelling between tubes. The scattering 
between atoms under transverse harmonic confinement is sub-
ject to a confinement-induced Feshbach-type resonance [33]. 
Then the strength of the interaction between fermions can 
be varied by the fine-tuning of that resonance [34]. Both of 
cases can be used to construct a topological qubit based on 
the boundary bound state for the open fermion chain. Of 
course, other realizations are possible, too. 

In summary, we have shown that for the spinless inter-
acting fermion chain with open free boundary conditions 
without pairing there can exist Majorana edge bound states. 
Those states define the ground state Fermi sea of the sys-
tem for the strong enough repulsion between neighboring 
fermions. The energy of those Majorana edge modes is zero 
for the infinite chain, and there are degenerate ground states, 
similar to the one of the Majorana edge states of the open 
chain of noninteracting spinless fermions with pairing, 
considered by Kitaev. It means, that we predict Majorana 
edge states for the one-dimensional topological insulator, 
instead of one-dimensional topological superconductor. 
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We expect that similar states can be realized for higher-
dimensional topological insulators also. Majorana edge 
zero modes, described in our work, can be used as topolog-
ical qubits in topological quantum computation. 

I thank E. N. Bratus’ for discussions. 
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Майоранівські нульові моди в ферміонному 
ланцюжку з взаємодією без спарювання 

A. A. Zvyagin 

Вивчається поведінка ланцюжка безспінових ферміонів 
з взаємодією між ферміонами у сусідніх вузлах без спарю-
вання в основному стані для відкритих вільних границь. Для 
достатньо сильного відштовхування граничні безщільові стани 
(зв’язані стани майоранівських операторів з різних кінців 
ланцюжка) можуть існувати в щілині для об’ємних збуджень, 
тобто в режимі топологічного ізолятора. Запропоновано вико-
ристовувати такі майоранівські нульові моди як топологічні 
кубіти, подібно модам в одновимірному топологічному над-
провіднику. Дискутуються можливі фізичні реалізації моделі, 
що розглядається.  

Ключові слова: майоранівські крайові стани, топологічний 
ізолятор, топологічний квантовий комп’ютер.
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