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A class of frustrated one-dimensional periodic Heisenberg spin systems formed either by triangular unit cells 
with spin 1/2 or by composite unit cells formed by two different structural units, triangles and small linear seg-
ments formed by an odd number of spin-1/2 is investigated. Based on perturbative processing and numerical cal-
culations of the density matrix renormalization group method, the gapless character of the exact energy spectrum 
of excitation for these systems was found. Their instability with respect to regular (Peierls) oscillations of inter-
actions between structural units is demonstrated. The corresponding critical exponents for the energies of the 
ground state are estimated numerically. For some frustrated systems, a quantum phase transition associated with 
the spin symmetry of the ground state, caused by frustration, has been discovered. 
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1. Introduction 

The theoretical study of the peculiarities of the energy 
spectrum and magnetic properties of one-dimensional (1D) 
Heisenberg spin systems with antiferromagnetic coupling 
between neighboring spins is motivated by a large number 
of successful applications of Heisenberg spin Hamiltonian 
to the simulation of the magnetic properties of polymeric 
transition-metal complexes [1–3], organic polymers with 
conjugated bonds [4–6], stackings of radicals [7]; crystals 
of ion-radical salts [8, 9]; and so on. 

The lowest excitations of the 1D periodic bipartite Hei-
senberg spin-1/2 systems having the odd number of spins 
n  per unit cells obey the extended Lieb–Schultz–Mattis 
(LSM) theorem [10–12] according to which, these excita-
tions are gapless, in the limit of long chains. In contrast, 
the systems with even n like a two-leg spin ladder usually 
have gapped excitation energy spectra. Therefore, the 
study of periodic spin systems which have gapless excita-
tion spectrum and even numbers of spins per unit cell is of 
interest. 

In our previous paper [13], we studied several 1D bipar-
tite periodic spin systems with composite unit cells with 
even n. As expected, these showed no gap in the exact 
energy spectrum, for the long-chain limit. 

Here we continue such a study to extend our considera-
tion to the case of 1D periodic spin systems with geomet-
rical frustrations. In particular, in Sec. 2 we study the case 
of weak interaction between triangular unit cells or bet-
ween structural units of the corresponding composite unit 
cells of our systems. The (nonequilateral) isosceles trian-
gles of spin-1/2 have the nondegenerate ground state. This 
permits us to apply simple perturbative analysis of the 
lowest energy states of the corresponding frustrated sys-
tems similar to bipartite 1D systems from [13]. We demon-
strate here the gapless character of the lowest part of the 
exact energy spectrum, which results in instability of the 
corresponding magnets against the periodic lattice distor-
tions such as spin-Peierls transition (known for the simple 
strictly 1D chain, with = 1n ). The case of equilateral trian-
gles is more complicated due to the double degeneracy of 
the corresponding ground state of this triangle. Hence, we 
may expect, that the transition from isosceles triangles to 
equilateral ones due to the variation of the corresponding 
coupling parameters may result in significant changes in 
the lowest part of the energy spectrum and the magnetic 
properties of the frustrated systems. The perturbative ana-
lysis of the energy spectra of such spin systems also 
demonstrate the existence of gapped excitations which 
result in an intermediate plateau in field dependence of the 
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magnetization at low temperatures. In Section 3 we ex-
tended the above consideration to the case of intermediate 
values of coupling between the unit cell and structural 
units by means of the numerical density matrix renormali-
zation group method (DMRG) [14]. 

2. Perturbation theory 

One of the simplest representatives of 1D frustrated 
spin-1/2 systems is the chain of interacting isosceles trian-
gles. There are also a bit more complicated chain systems 
with composite unit cells formed by two structural units: 
isosceles triangle and the finite fragment of a linear spin-1/2 
chain, as shown below in Fig. 1. 

The corresponding spin Hamiltonians can be written in 
the form  

 
1

, 1,1
=1 =1

= ( ) ,
N N

n i n i
i i

H i J S S
−

++∑ ∑  (1) 

where N  is the total number of unit cells of the corre-
sponding spin chain system, n  is the total number of spin-
1/2 sites of the unit cell ( = 3, 4, 6n  for the systems 1(a), 
1(b), and 1(c), respectively), ,i jS  is the spin-1/2 operator 
located on the jth site of the ith unit cell. 

 3 0 ,2 ,1 ,3 1 ,1 ,3( ) = ( ) ,i i i i iH i J S S S J S S+ +   

 4 3 ,3 ,4( ) = ( ) ,i iH i H i JS S+   

 6 4 0 ,5 ,4 ,6( ) = ( ) ( )i i iH i H i J S S S+ + .  

In our study the coupling constants J , 0J , and 1J  take the 
non-negative values only. 

We view each unit cells in Figs. 1(b) and 1(c) to be 
composed of two primitive cells: a triangular one and a 
second either of 1 or 3 vertices. At 0 1J J≠  the ground state 
of triangular primitive unit cell is double degenerate with 
respect to z  projection of total spin m and the correspond-
ing wave functions have the form:  
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Here α and β are the eigenvectors of spin-1/2 operator z
iS . 

As a result, the set of N  noninteracting isosceles triangles 
has 2N  degenerate ground state. In particular, for the case 

0 1>J J  the corresponding wave functions have the form  

 0,
=1=1

{ } = ( ), = 1/ 2, = .
N N
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ii
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For equilateral spin triangle ( 0 1=J J ) we have addition-
al degeneracy of the unit cell ground state with respect of 

3vC  space symmetry of the triangle 
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and the corresponding system of non-interacting triangles 
has 4N  degenerate ground state. 

The interaction between neighbor unit cells in the chain 
systems, shown on Fig. 1, resolves the above degeneracy. 
For the case 0 1J J J−   it can be shown similar to [13] 
that the lowest part of the energy spectrum of above spin 
chain models can be described by means of the first order 
of the perturbation theory (PT) in the coupling J . The cor-
responding low-energy Hamiltonians may we have written 
in a general form as the Hamiltonian of antiferromagnetic 
uniform spin-1/2 chain:  

 
1

0 eff 1
=1

=
N

i i
i

N J S S
−

+ε + ∑ . (2) 

Here for the Fig. 1(a) N  is the total number of triangular 
unit cells, 0ε  is the ground state energy of isolated unit cell 

0 0 eff
1=
4

J J ε − + 
 

 and eff = 4 /9J J . For the Figs. 1(b) 

and 1(c) N  is the total number of structural units, 0ε  is the 
mean ground state energy of isolated structural unit and 

effJ  equals to 2 /3J  and 4 /9J  for the systems 1(b) and 1(c), 
respectively. 

According to above PT consideration, for 0 1J J J−   
the systems 1(a)–1(c) have non-degenerate singlet ground 
state. In addition, in the limit N →∞  they have the gapless 
excitation energy spectrum. Similar to the chain systems 
considered in [13], the gapless energy spectrum of (2) leads 
to the spin-Peierls instability of the above 1D spin systems 
with the critical exponent for the ground state energy 

1.45α ≈  [9]. In other words we universal critical behavior 
of our spin systems at 0 1J J J−   despite the even number 
of spin-1/2 per unit cells for systems 1(b) and 1(c). 

Fig. 1. (Color online) The fragments of the chain of interact-
ing spin-1/2 triangles and two 1D spin systems with compo-
site unit cells. 
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At 0 1=J J , the case of weakly interacting unit cells can 
be also studied by the first order of PT in coupling J  simi-
lar to [15], but the corresponding low-energy Hamiltonians 
have more complicated structure and require additional 
numerical treatment. Therefore we skip here the corre-
sponding PT analysis and consider the case of weakly in-
teracting equilateral triangles by the direct DMRG calcula-
tions in the next section. For 1 0J J J−   the degeneracy 
of the energy spectra of our systems is lifted only in the 
second PT order in J . In other words, we may expect a 
significant change of the exact energy spectrum of the sys-
tems 1(a)–1(c) at the transition from isosceles triangles to 
equilateral one. 

Now, let us consider the following 1D frustrated spin 
systems presented in Fig. 2. 

For the case of 0 1J J J−   the first PT order in J  give 
the following low-energy effective spin-1/2 Hamiltonians: 

System 2(a)  

 
1
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System 2(b)  
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Here N  is the total number of unit cells. 
Both the Hamiltonians (3) and (4) have macroscopic 

ground state spin = / 2S N  and =S N , respectively. In 
case of 1 = 0J , this result is in agreement with the extended 
LSM theorem due to bipartite character of the correspond-
ing spin lattices. We also have gapless energy spectrum for 
both systems. Nevertheless, for 0 1J J J−  , in contrast to 
the systems shown on Fig. 1, the systems 2(a) and 2(b) 
should be stable against spin-Peierls transition because of 
the absence of the excitations with the spin 0=S S . 

Note also, that similar to the bipartite spin systems con-
sidered in [13], our frustrated system at 0 1J J J−   have 
two types of the excitations. First one is described by the 

effective Hamiltonians (2)–(4) and has gapless character. It 
corresponds the excitations with the total spin 0 < / 2S N≤ . 
The second type corresponds to the gapped excitations 
with > / 2S N . In the result, our spin systems should have 
at least one intermediate plateau in the field dependence of 
its magnetization at low temperatures. 

3. Numerical simulation 

In order to extend our analysis on the case of arbitrary 
positive values of coupling parameters, we used two ver-
sions of the DMRG method, so-called finite and infinite 
algorithms. In addition, for the infinite algorithm, we used 
structural units of the corresponding spin chain systems as 
the active blocks similar to [16]. For simplicity, we put 

0 = 1J  in all numerical calculations. 
Let us start the consideration of the results of our nu-

merical study from the system 1(a). According to our 
DMRG study, this spin system has the nondegenerate sin-
glet ground state and the gapless lowest excitations at arbi-
trary positive value of coupling constants 1J  and J . Hence, 
the infinite system 1(a) may be unstable against periodic 
lattice distortions of the distances between neighbor trian-
gles (spin-Peierls instability). To study this instability, we 
used a modified Hamiltonian (2) with oscillating values of 
coupling between unit cells with the numbers i  and 1i +   

 ( )( ) = 1 ( 1) , 1.iJ i J + − δ δ  (5) 

In case of spin-Peierls instability, the ground state ener-
gy 0 ( )E δ  of modified Hamiltonian (2) should be non-
analytical function of the distortion parameter δ . For the 
systems with the open ends the quantity 0= ( )E E∆ δ +  

0 0( ) 2 (0)E E+ −δ −  does not depend on the sign of δ . Simi-
lar to [13] non-analytical behavior of the ground state en-
ergy in thermodynamic limit is associated with the de-
pendence | |E α∆ δ , 1 < 2≤ α . We used the DMRG 

Fig. 2. (Color online) The fragments of two 1D frustrated spin 
systems of “branched” geometry. 

Fig. 3. The dependence 1( )Jα  for the spin system 1(a) at three 
different values of the interaction between neighbor unit cells. 
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method to calculate the value 0 ( )E δ  for five different val-
ues of the small parameter δ . To reach proper accuracy, we 
used 50 optimized states and extrapolated our numerical 
results to the infinite spin system. 

As for exact energy spectra and critical behavior of the 
frustrated spin systems with composite unit cells 1(b) and 
1(c), our DMRG study gave the results, which are very 
similar to the case of the system 1(a). Both systems have 
the gapless energy spectra despite the even number of spin-
1/2 per unit cell. In both cases, the critical exponents for 
the ground state energy take the values less than 2, which 
mean the instability of the systems against to the transition 
into the state with periodic oscillations of the coupling be-
tween structural units. It should be noted, that in contrast to 
the system 1(a) the above transition does not change the 
space symmetry of the systems 1(b) and 1(c). 

The results of our numerical estimations of the values 
of critical exponents for the above spin systems are pre-
sented of Figs. 3–5. It is of interest significant decrease of 

the value of critical exponents in the vicinity of the point of 
strong frustration 1 = 1J  for all the systems studied. 

According to our preliminary PT study of the chain sys-
tems 2(a) and 2(b) it has macroscopic ground state spin at 

0 1J J J−  . For intermediate values of coupling J  the 
ground state spin 0S  may change its value. We performed 
the exact diagonalization study of the lowest energy states 
of finite lattice clusters containing up to 18 spins in sub-
spaces with specified values of total spin (see Fig. 6). 

This study demonstrated for both clusters the quick de-
crease of the ground state spin from the value 0S  to zero 
one in the vicinity of some critical value of coupling *

1J . 
We also performed the corresponding DMRG calcula-

tions in subspaces with specified values of z -projection of 
total spin, which are support the above conclusion. Moreo-
ver, for system 2(a) of a big size we may suppose the pres-
ence of jumpwise transition from the state with 0 = / 2S N  
at *

1 1<J J  to the state with 0 = 0S  at *
1 1>J J  for given value 

of coupling J  between triangular unit cells (see Fig. 7). 

Fig. 4. The dependence 1( )Jα  for the spin system 1(b) at three 
different values of the interaction between neighbor unit cells. 

Fig. 5. The dependence 1( )Jα  for the spin system 1(c) at three 
different values of the interaction between neighbor unit cells. 

Fig. 6. The lowest energy states of finite lattice clusters of the systems 2(a) and 2(b) (left and right figures, correspondingly) con-
taining 18 spins. 
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Note also that at 1 = 1J  the systems 1(a) and 2(a) have 
coincident energy spectrum at any values of J , which cor-
responds to the absence of the transition with the change of 
the ground state spin. 

According to our DMRG study at *
1 1<J J  we have 

quadratic dependence of the ground state energy on the 
value of distortion parameter δ  (critical exponent 2α ), 
which corresponds to the absence of spin Peierls instabil-
ity. At *

1 1>J J  we found rapid decrease of the value of 
critical exponent up to the value 1α  at 1 = 1J  similar to 
the case of the systems 1(a)–1(c). 

The presence of the transition with the quick change in 
the ground state spin for the systems 2(a) and 2(b) gives 
the peculiarity in its magnetization profile at low tempera-
tures. Unfortunately, quantum Monte-Carlo method is not 
applicable to study the low-temperature thermodynamics 
of these frustrated spin systems. That is why we used 
DMRG numerical simulation to obtain zero-temperature 
magnetization profile for the systems 2(a)–2(b). The results 

are presented in Fig. 8. The dependencies ( )m h  clearly 
demonstrate the presence of intermediate magnetization 
plateau, which is in agreement with our preliminary 
perturbative treatment and known results for 1D for bi-
partite spin systems with the macroscopic ground state 
spin [16, 17]. It is of interest that for model 2(a) the size 
of this plateau decreased with the increase of the coupling 
constant 1J . 

4. Conclusions 

Several one-dimensional models of frustrated spin with 
unit cells formed by odd and even spin-1/2 have been pro-
posed. These spin models are characterized by the gapless 
character of the exact energy spectrum of the correspond-
ing Heisenberg spin Hamiltonians. It should be noted that 
the gapless structure of energy spectrum of similar frus-
trated systems was discovered earlier [18–21], but in these 
papers the case equilateral triangles (i.e., 0 1=J J ) was not 
considered. Using perturbation theory and numerical simu-
lation by means of DMRG method we studied the possible 
instability of the corresponding magnets against the perio-
dic lattice distortions like spin-Peierls transition. It was 
found that for our two models with a “branched” geometry, 
there is a transition from a stable spin system to an unsta-
ble one, mediated by the magnitude of the spin coupling, 
which is responsible for their frustrated nature. For unsta-
ble one-dimensional spin systems, a numerically signifi-
cant decrease in the value of the critical exponent for the 
ground-state energy in the vicinity of the point of strong 
frustration was found in comparison with similar two-part 
one-dimensional spin models. For our “branched” spin 
models, the existence of quantum phase transitions associ-
ated with a change in the spin symmetry of the ground 
state was also numerically discovered, and the correspond-
ing set of critical values of the coupling parameter respon-
sible for the effects of frustration was estimated. 

Fig. 7. Critical value of frustration parameter *
1J  vs interaction 

between neighbor unit cells J  of the system 2(a). 

Fig. 8. (Color online) The field dependence of zero-temperature specific magnetization of the systems 2(a) and 2(b) (left and right fig-
ures, correspondingly) at four different values of 1J . Exchange constant = 1J  for all these curves. 
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Квантові фазові переходи у фрустрованих 
одновимірних спінових системах Гейзенберга 

V. O. Cheranovskii, V. V. Slavin, D. J. Klein 

Досліджено клас фрустрованих одновимірних періодич-
них спінових систем Гейзенберга, які утворені або трикут-
ними елементарними комірками зі спіном 1/2, або складови-
ми елементарними комірками з двох різних структурних 
одиниць: трикутників та невеликих лінійних сегментів, які 
сформовані непарним числом спінів 1/2. За допомогою теорії 
збурень та чисельних розрахунків, а також методу ренор-
малiзацiйної групи матрицi густини, знайдено безщілинний 
характер точного енергетичного спектра збудження для цих 
систем. Продемонстровано їх нестійкість відносно до регу-
лярних (пайєрлсовських) коливань взаємодій між структур-
ними одиницями. Чисельно оцінено відповідні критичні по-
казники щодо енергій основного стану. Для деяких 
фрустрованих систем виявлено квантовий фазовий перехід, 
який пов’язаний зі спіновою симетрією основного стану, 
обумовленого фрустрацією. 

Ключові слова: cпіновий гамільтоніан Гейзенберга, фруст-
ровані одновимірні спінові системи, кван-
тові фазові переходи.
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