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A class of frustrated one-dimensional periodic Heisenberg spin systems formed either by triangular unit cells
with spin 1/2 or by composite unit cells formed by two different structural units, triangles and small linear seg-
ments formed by an odd number of spin-1/2 is investigated. Based on perturbative processing and numerical cal-
culations of the density matrix renormalization group method, the gapless character of the exact energy spectrum
of excitation for these systems was found. Their instability with respect to regular (Peierls) oscillations of inter-
actions between structural units is demonstrated. The corresponding critical exponents for the energies of the
ground state are estimated numerically. For some frustrated systems, a quantum phase transition associated with
the spin symmetry of the ground state, caused by frustration, has been discovered.
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1. Introduction

The theoretical study of the peculiarities of the energy
spectrum and magnetic properties of one-dimensional (1D)
Heisenberg spin systems with antiferromagnetic coupling
between neighboring spins is motivated by a large number
of successful applications of Heisenberg spin Hamiltonian
to the simulation of the magnetic properties of polymeric
transition-metal complexes [1-3], organic polymers with
conjugated bonds [4-6], stackings of radicals [7]; crystals
of ion-radical salts [8, 9]; and so on.

The lowest excitations of the 1D periodic bipartite Hei-
senberg spin-1/2 systems having the odd number of spins
n per unit cells obey the extended Lieb-Schultz—Mattis
(LSM) theorem [10-12] according to which, these excita-
tions are gapless, in the limit of long chains. In contrast,
the systems with even n like a two-leg spin ladder usually
have gapped excitation energy spectra. Therefore, the
study of periodic spin systems which have gapless excita-
tion spectrum and even numbers of spins per unit cell is of
interest.

In our previous paper [13], we studied several 1D bipar-
tite periodic spin systems with composite unit cells with
even n. As expected, these showed no gap in the exact
energy spectrum, for the long-chain limit.
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Here we continue such a study to extend our considera-
tion to the case of 1D periodic spin systems with geomet-
rical frustrations. In particular, in Sec. 2 we study the case
of weak interaction between triangular unit cells or bet-
ween structural units of the corresponding composite unit
cells of our systems. The (nonequilateral) isosceles trian-
gles of spin-1/2 have the nondegenerate ground state. This
permits us to apply simple perturbative analysis of the
lowest energy states of the corresponding frustrated sys-
tems similar to bipartite 1D systems from [13]. We demon-
strate here the gapless character of the lowest part of the
exact energy spectrum, which results in instability of the
corresponding magnets against the periodic lattice distor-
tions such as spin-Peierls transition (known for the simple
strictly 1D chain, with n =1). The case of equilateral trian-
gles is more complicated due to the double degeneracy of
the corresponding ground state of this triangle. Hence, we
may expect, that the transition from isosceles triangles to
equilateral ones due to the variation of the corresponding
coupling parameters may result in significant changes in
the lowest part of the energy spectrum and the magnetic
properties of the frustrated systems. The perturbative ana-
lysis of the energy spectra of such spin systems also
demonstrate the existence of gapped excitations which
result in an intermediate plateau in field dependence of the
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magnetization at low temperatures. In Section 3 we ex-
tended the above consideration to the case of intermediate
values of coupling between the unit cell and structural
units by means of the numerical density matrix renormali-
zation group method (DMRG) [14].

2. Perturbation theory

One of the simplest representatives of 1D frustrated
spin-1/2 systems is the chain of interacting isosceles trian-
gles. There are also a bit more complicated chain systems
with composite unit cells formed by two structural units:
isosceles triangle and the finite fragment of a linear spin-1/2
chain, as shown below in Fig. 1.

The corresponding spin Hamiltonians can be written in
the form

H= ZH (|)+‘]Zs|n i+1,1) (1)

where N is the total number of unit cells of the corre-
sponding spin chain system, n is the total number of spin-
1/2 sites of the unit cell (n=3, 4, 6 for the systems 1(a),
1(b), and 1(c), respectively), S; ; is the spin-1/2 operator
located on the jth site of the ith unit cell.

H3 (1) = 30Si 2(Siq + Si3) +315i1Si 5,
H, (i) = H(i) + JS; 3S; 4,

He (i) = Hy (i) + 30Si5(Sia +Si)-
In our study the coupling constants J, J,, and J; take the
non-negative values only.

We view each unit cells in Figs. 1(b) and 1(c) to be
composed of two primitive cells: a triangular one and a
second either of 1 or 3 vertices. At J, = J; the ground state
of triangular primitive unit cell is double degenerate with
respect to z projection of total spin m and the correspond-
ing wave functions have the form:

@ A
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Fig. 1. (Color online) The fragments of the chain of interact-
ing spin-1/2 triangles and two 1D spin systems with compo-
site unit cells.

(Po(m):{(ZaBa—ococB—B(xoc)/x/g, m=1/2 Catdy >3
(2Baf—PRa—app)/\/6, m=-1/2
and
(aof—Pac)/~2, m=1/2
= . atd, < J,.
o) {(BBOL—OLBB)/«/E, m=_1/2 oS

Here o and B are the eigenvectors of spin-1/2 operator S;’.

As a result, the set of N noninteracting isosceles triangles
has 2N degenerate ground state. In particular, for the case
J, > J; the corresponding wave functions have the form

N N
MY =] Joo, (M), m=+1/2, M =>"m,.
i=1 i=1
For equilateral spin triangle (J, = J;) we have addition-
al degeneracy of the unit cell ground state with respect of
C,, space symmetry of the triangle

{e+ (M) = [o (M) +ido (M)]/ 2
07 (m) = [o(m) —idg (M)]/~/2

and the corresponding system of non-interacting triangles
has 4N degenerate ground state.

The interaction between neighbor unit cells in the chain
systems, shown on Fig. 1, resolves the above degeneracy.
For the case J,—J; > J it can be shown similar to [13]
that the lowest part of the energy spectrum of above spin
chain models can be described by means of the first order
of the perturbation theory (PT) in the coupling J. The cor-
responding low-energy Hamiltonians may we have written
in a general form as the Hamiltonian of antiferromagnetic
uniform spin-1/2 chain:

N-1
H= N80+‘]eﬁzsisi+l' )

i=1
Here for the Fig. 1(a) N is the total number of triangular
unit cells, g, is the ground state energy of isolated unit cell

(80 :—J0+%Jeﬁj and J.s =4J/9. For the Figs. 1(b)

and 1(c) N is the total number of structural units, g is the
mean ground state energy of isolated structural unit and
Jei equals to 2J/3 and 4J/9 for the systems 1(b) and 1(c),
respectively.

According to above PT consideration, for J;—J; > J
the systems 1(a)-1(c) have non-degenerate singlet ground
state. In addition, in the limit N — o« they have the gapless
excitation energy spectrum. Similar to the chain systems
considered in [13], the gapless energy spectrum of (2) leads
to the spin-Peierls instability of the above 1D spin systems
with the critical exponent for the ground state energy
o ~1.45 [9]. In other words we universal critical behavior
of our spin systems at J, —J; > J despite the even number
of spin-1/2 per unit cells for systems 1(b) and 1(c).
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(2)

Fig. 2. (Color online) The fragments of two 1D frustrated spin
systems of “branched” geometry.

At J, = J,, the case of weakly interacting unit cells can
be also studied by the first order of PT in coupling J simi-
lar to [15], but the corresponding low-energy Hamiltonians
have more complicated structure and require additional
numerical treatment. Therefore we skip here the corre-
sponding PT analysis and consider the case of weakly in-
teracting equilateral triangles by the direct DMRG calcula-
tions in the next section. For J; —J, > J the degeneracy
of the energy spectra of our systems is lifted only in the
second PT order in J. In other words, we may expect a
significant change of the exact energy spectrum of the sys-
tems 1(a)-1(c) at the transition from isosceles triangles to
equilateral one.

Now, let us consider the following 1D frustrated spin
systems presented in Fig. 2.

For the case of J, —J; > J the first PT order in J give
the following low-energy effective spin-1/2 Hamiltonians:

System 2(a)

1 2 N-1
H=-N (JO_ZJlj_g‘]ZSiSHl' @)
i=1
System 2(b)
1 2 2N-1
H:—NKNO—Z%J—gJEZS&H. (4
i=1

Here N is the total number of unit cells.

Both the Hamiltonians (3) and (4) have macroscopic
ground state spin S=N/2 and S =N, respectively. In
case of J; = 0, this result is in agreement with the extended
LSM theorem due to bipartite character of the correspond-
ing spin lattices. We also have gapless energy spectrum for
both systems. Nevertheless, for J, —J, > J, in contrast to
the systems shown on Fig. 1, the systems 2(a) and 2(b)
should be stable against spin-Peierls transition because of
the absence of the excitations with the spin S = S;.

Note also, that similar to the bipartite spin systems con-
sidered in [13], our frustrated system at J,—J; > J have
two types of the excitations. First one is described by the

effective Hamiltonians (2)-(4) and has gapless character. It
corresponds the excitations with the total spin 0<S < N /2.
The second type corresponds to the gapped excitations
with S > N /2. In the result, our spin systems should have
at least one intermediate plateau in the field dependence of
its magnetization at low temperatures.

3. Numerical simulation

In order to extend our analysis on the case of arbitrary
positive values of coupling parameters, we used two ver-
sions of the DMRG method, so-called finite and infinite
algorithms. In addition, for the infinite algorithm, we used
structural units of the corresponding spin chain systems as
the active blocks similar to [16]. For simplicity, we put
Jo =1in all numerical calculations.

Let us start the consideration of the results of our nu-
merical study from the system 1(a). According to our
DMRG study, this spin system has the nondegenerate sin-
glet ground state and the gapless lowest excitations at arbi-
trary positive value of coupling constants J, and J. Hence,
the infinite system 1(a) may be unstable against periodic
lattice distortions of the distances between neighbor trian-
gles (spin-Peierls instability). To study this instability, we
used a modified Hamiltonian (2) with oscillating values of
coupling between unit cells with the numbers i and i +1

()= 3(1+(-1)'s), <1 (5)

In case of spin-Peierls instability, the ground state ener-
gy Ey(8) of modified Hamiltonian (2) should be non-
analytical function of the distortion parameter &. For the
systems with the open ends the quantity AE = E,(d)+
+E(—8) —2E,(0) does not depend on the sign of §. Simi-
lar to [13] non-analytical behavior of the ground state en-
ergy in thermodynamic limit is associated with the de-
pendence AE ~|8|*, 1<a<2. We used the DMRG
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Fig. 3. The dependence a(J;) for the spin system 1(a) at three
different values of the interaction between neighbor unit cells.
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Fig. 4. The dependence o(J,) for the spin system 1(b) at three
different values of the interaction between neighbor unit cells.

method to calculate the value E,(8) for five different val-
ues of the small parameter 6. To reach proper accuracy, we
used 50 optimized states and extrapolated our numerical
results to the infinite spin system.

As for exact energy spectra and critical behavior of the
frustrated spin systems with composite unit cells 1(b) and
1(c), our DMRG study gave the results, which are very
similar to the case of the system 1(a). Both systems have
the gapless energy spectra despite the even number of spin-
1/2 per unit cell. In both cases, the critical exponents for
the ground state energy take the values less than 2, which
mean the instability of the systems against to the transition
into the state with periodic oscillations of the coupling be-
tween structural units. It should be noted, that in contrast to
the system 1(a) the above transition does not change the
space symmetry of the systems 1(b) and 1(c).

The results of our numerical estimations of the values
of critical exponents for the above spin systems are pre-
sented of Figs. 3-5. It is of interest significant decrease of
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Fig. 5. The dependence «(J;) for the spin system 1(c) at three
different values of the interaction between neighbor unit cells.

the value of critical exponents in the vicinity of the point of
strong frustration J; =1 for all the systems studied.

According to our preliminary PT study of the chain sys-
tems 2(a) and 2(b) it has macroscopic ground state spin at
Jo—Jy > J. For intermediate values of coupling J the
ground state spin S, may change its value. We performed
the exact diagonalization study of the lowest energy states
of finite lattice clusters containing up to 18 spins in sub-
spaces with specified values of total spin (see Fig. 6).

This study demonstrated for both clusters the quick de-
crease of the ground state spin from the value S, to zero
one in the vicinity of some critical value of coupling J;.

We also performed the corresponding DMRG calcula-
tions in subspaces with specified values of z-projection of
total spin, which are support the above conclusion. Moreo-
ver, for system 2(a) of a big size we may suppose the pres-
ence of jumpwise transition from the state with S; =N /2
at J; < J; to the state with S, = 0 at J; > J; for given value
of coupling J between triangular unit cells (see Fig. 7).
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Fig. 6. The lowest energy states of finite lattice clusters of the systems 2(a) and 2(b) (left and right figures, correspondingly) con-

taining 18 spins.
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Fig. 7. Critical value of frustration parameter Jf Vs interaction
between neighbor unit cells J of the system 2(a).

Note also that at J; =1 the systems 1(a) and 2(a) have
coincident energy spectrum at any values of J, which cor-
responds to the absence of the transition with the change of
the ground state spin.

According to our DMRG study at J; <J; we have
guadratic dependence of the ground state energy on the
value of distortion parameter & (critical exponent o ~ 2),
which corresponds to the absence of spin Peierls instabil-
ity. At J; > J; we found rapid decrease of the value of
critical exponent up to the value o ~1 at J; =1 similar to
the case of the systems 1(a)-1(c).

The presence of the transition with the quick change in
the ground state spin for the systems 2(a) and 2(b) gives
the peculiarity in its magnetization profile at low tempera-
tures. Unfortunately, quantum Monte-Carlo method is not
applicable to study the low-temperature thermodynamics
of these frustrated spin systems. That is why we used
DMRG numerical simulation to obtain zero-temperature
magnetization profile for the systems 2(a)-2(b). The results

are presented in Fig. 8. The dependencies m(h) clearly
demonstrate the presence of intermediate magnetization
plateau, which is in agreement with our preliminary
perturbative treatment and known results for 1D for bi-
partite spin systems with the macroscopic ground state
spin [16, 17]. It is of interest that for model 2(a) the size
of this plateau decreased with the increase of the coupling
constant J;.

4. Conclusions

Several one-dimensional models of frustrated spin with
unit cells formed by odd and even spin-1/2 have been pro-
posed. These spin models are characterized by the gapless
character of the exact energy spectrum of the correspond-
ing Heisenberg spin Hamiltonians. It should be noted that
the gapless structure of energy spectrum of similar frus-
trated systems was discovered earlier [18-21], but in these
papers the case equilateral triangles (i.e., J, = J;) was not
considered. Using perturbation theory and numerical simu-
lation by means of DMRG method we studied the possible
instability of the corresponding magnets against the perio-
dic lattice distortions like spin-Peierls transition. It was
found that for our two models with a “branched” geometry,
there is a transition from a stable spin system to an unsta-
ble one, mediated by the magnitude of the spin coupling,
which is responsible for their frustrated nature. For unsta-
ble one-dimensional spin systems, a numerically signifi-
cant decrease in the value of the critical exponent for the
ground-state energy in the vicinity of the point of strong
frustration was found in comparison with similar two-part
one-dimensional spin models. For our “branched” spin
models, the existence of quantum phase transitions associ-
ated with a change in the spin symmetry of the ground
state was also numerically discovered, and the correspond-
ing set of critical values of the coupling parameter respon-
sible for the effects of frustration was estimated.
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Fig. 8. (Color online) The field dependence of zero-temperature specific magnetization of the systems 2(a) and 2(b) (left and right fig-
ures, correspondingly) at four different values of J,. Exchange constant J =1 for all these curves.
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KBaHTOBI (ha3osi nepexoam y ppycTpoBaHmx
OAHOBUMIpPHUKX CcniHOBUX cuctemax [enseHbepra

V. O. Cheranovskii, V. V. Slavin, D. J. Klein

JocnimkeHo xmac (GpycTpoBaHMX OJHOBHMIPHHX Hepioand-
HHUX CriHOBUX cucteM [eit3eHOepra, siki yTBOpeHi ab0 TPUKYT-
HUMH eJIeMEHTapHUMH KOMipKaMu 3i criiHoM 1/2, abo ckiiafoBu-
MM €JIEMEHTAPHUMM KOMIpKaMH 3 JBOX Pi3HUX CTPYKTYPHHX
OJMHWIB: TPUKYTHHUKIB Ta HEBENMKHUX JIHIHHUX CETMEHTIB, sKi
copMoBaHi HEAPHUM YKCIIOM criHiB 1/2. 3a gomomMororo Teopii
30ypeHb Ta YHCEIbHUX PO3PaxyHKIB, a TaKOXK METOHY DPEHOp-
Mai3aniifHol Tpynu MaTpuli T'yCTHHH, 3HailIeHO Oe3IiNHHHIIA
XapakTep TOYHOTO HEPreTHYHOTrO CIEeKTpa 30yIDKEHHS Ul X
cucreM. [IpogeMoOHCTpOBaHO iX HECTIHKICTh BiIHOCHO 0 pery-
JSIpHUX (NMaHEPIICOBCHKUX) KOJIMBAHb B3a€EMOJIH MiX CTPYKTyp-
HUMH OJUHUISIMH. YHCEIBHO OLIHEHO BiMOBiIHI KPUTHYHI I10-
Ka3HUKMA MO0 CHEeprii OCHOBHOTO cTaHy. Jlms neskmx
(pYCTPOBaHUX CHCTEM BHSBICHO KBaHTOBMII (pa30BMH mepexin,
SKAI TI0B’S13aHUII 31 CIIIHOBOIO CHMETPi€I0 OCHOBHOTO CTaHy,

006yMOBIICHOTO (pycTpaLii€ero.

KirouoBi cioBa: ciinoBuit raminbsToHiaH ['elizenOepra, dpycr-
pOBaHi OJHOBUMIpHI CIIIHOBI CHCTEMH, KBaH-
TOBI (ha30Bi mepexou.
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