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The thermodynamic properties of a one-dimensional spin-crossover molecular chain under constant external 
pressure are investigated. The effective compressible degenerate Ising model is used as a theoretical basis. Ana-
lytical results for the crossover from low to high spin are obtained using the transfer matrix formalism. Exact ex-
pressions are obtained for the fraction of molecules in the high-spin state, the correlation function, and the heat 
capacity. The analysis of the range of parameters in which the spin-crossover occurs is carried out, and it is 
shown how the pressure changes the position of the crossover. 
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1. Introduction

The research of bistable molecular systems is a chal-
lenging field of modern scientific study. The magnetic spin 
transition associated with the spin-crossover (SCO) phe-
nomenon represents a paradigm of bistability at the molec-
ular level that is of current interest because of potential 
applications in the development of new generations of 
electronic devices such as nonvolatile memories, molecular 
sensors, and displays [1–3]. The interconversion of two 
spin states is observed in iron(II) coordination compounds 
in octahedral surroundings. In these ones the paramagnetic 
high spin state (HS, S = 2) can be switched reversibly to 
the low spin state (LS, S = 0) by several external stimuli 
such as temperature, pressure or light irradiation, yielding 
significant structural, magnetic, and optical changes [3–7]. 
In general, the spin-crossover materials are the class of inor-
ganic coordination complexes of the chemical elements with 

43d – 73d  electronic configuration of the outer orbital which 
form the ligand environment with the first-row transition 
metal ion centered in octahedral ligand field. These com-
plexes can be reversibly switched between spin states, re-
sulting in different magnetic, structural or optical properties. 

The microscopic Ising-like model can be used for de-
scribing the behavior of spin-crossover crystals at molecu-
lar level. Different energies and degeneracies of the HS 
and LS states can be taken into account as an effective 
temperature dependent field. Low dimensional iron(II) spin 

transitional materials were a subject of recent experimental 
studies in both one-dimensional (1D) [8–13] and two-
dimensional (2D) [14–16] with various techniques and 
setups. Note that the finite-size effects are important for 
the understanding of the practical application of the real 
low-dimensional system. In one dimension such materials 
may be described by Ising-like models and many important 
results obtained analytically [17–22]. The one-dimensional 
Ising-like model plays an important role in statistical phys-
ics, being one of the models which have been solved exact-
ly. Compressible Ising model also has along history of 
study [23–25], and new results were obtained recently by 
numeric techniques [26–31]. Real quasi-1D spin-crossover 
materials almost perfectly correspond to the one-dimen-
sional Ising model causing particular interest for theoreti-
cal studies. 

Elastic degrees of freedom cause change of the thermo-
dynamic properties of the system. It is known that the free 
HS ferrous ion has a larger volume than the LS one. Due to 
the difference in the effective volume of HS and LS chains 
of spin crossover materials are sensitive to external pres-
sure [32]. Therefore, the pressure becomes an important 
parameter for describing the system. For example, the in-
fluence of pressure has been used to tune the spin transi-
tion properties of such 1D chain compounds. In previous 
papers [33–35] by one of the authors, the deformations were 
considered as homogeneous and isotropic. Such a compres-
sible model is the simplest special case of consideration 
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of the elastic nature of molecular crystals. In this work we 
study effects of the constant external pressure on the ther-
modynamics properties of the spin crossover materials. 

The outline of this work is as follows. Section 2 defines 
the model’s formalism. In Sec. 3 we calculate the partition 
function and introduce effective Ising-like Hamiltonian 
with temperature dependent ferromagnetic constant and 
magnetic field. Given model is solved analytically using 
transfer matrix formalism, which we introduce in the Sec. 4. 
We demonstrate on the example of the system’s volume 
and the correlation function how to make exact finite N  
calculations in Sec. 5. The specific heat capacity and sus-
ceptibility are obtained in Sec. 6. In the remaining Sec. 7 
part of the manuscript, we focus on analytical and numeri-
cal results for spin-crossover molecular chain under the 
pressure. Finally, results and discussions are given in Sec. 8. 

2. Model 

In this work, we study behavior of a molecular chain 
under the external pressure. Each particle in the chain oc-
curs in one of two states which have different properties, 
and may freely switch from one state to another. We de-
note these states as the high spin pseudo-state and low spin 
pseudo-state. We introduce single-particle quasi-spin ope-
rator ŝ as an operator which has eigenvalue 1+  for the HS 
state and eigenvalue 1−  for the LS state. Let’s denote the 
degeneracy of the pseudo-spin states ns  as sn

g , where 
=sn

g g+  for spin = 1ns +  pseudo-state and =sn
g g− for 

= 1ns −  pseudo-state. We assume pair interactions of the 
molecules in the LS–LS, LS–HS and HS–HS pairs are dif-
ferent and we denote the corresponding pair potentials as 

( )V r−− , ( )V r+− , and ( )V r++ . In Fig. 1(a) we schematically 
illustrate all possible pseudo-spin configurations of the 
pairs of molecules. In similar models, like for example in 

the two-variable anharmonic Ising-like model [18, 36] V−−, 
V+−, and V++ potentials are often referred as the LS, HL, and 
HS elastic potentials. Specific parameters of the interaction 
potentials can be extracted from experimental measurements, 
like x-ray diffraction [37] or Brillouin spectroscopy [38]. 

The Hamiltonian of system consists of the Hamiltonian 
of the molecular chain and term describing action of the 
external pressure  

 ˆ ˆ ˆ= .MC PH H H+  (1) 

The molecular chain Hamiltonian is a sum of the pair po-
tentials and single particle field  

 
1

11
=1 =1

ˆ = ( ) ,
N N

MC s s n n sn n n
n n

H V x x W
−

++
− +∑ ∑  (2) 

where N  is the total number of molecules in the chain and 
sn

W  is the energy of the single-molecule pseudo-state. The 
difference of the pseudo-state energies = W W+ −∆ −  is the 
external ligand field acting on a single molecule. Action of 
the external pressure P  is described by the following extra 
term in the Hamiltonian  

 ˆ = ,pH PL  (3) 

where 1= NL x x−  is the effective volume of the one-
dimensional system. We apply a harmonic approximation 
for the nearest-neighbor pair potential 

1
( )s sn n

V r
+

 at the 
potential minimum  

 ( )2(0)
1 1 11

1( ) = ,
2s s s s s ss sn n n n n nn n

V r V K r a
+ + ++

+ −  (4) 

where 
1s sn n

a
+

 is the average distance between the particles 

at the equilibrium, (0)
1 11

= ( )s s s ss s n n n nn n
V V a

+ ++
 is the potential 

Fig. 1. (Color online) Schematic interactions of the pseudo-spin states and treatment of the inter-particle potential. (a) All possible 
configurations of the nearest pseudo-spin states. Molecules in the LS and HS state are illustrated with blue and red, correspondingly. 
Interaction potentials and average distances between particles depend on the pseudo-spin states. (b) Interaction potential and har-
monic approximation. We consider possible displacement of the particles from the equilibrium position for the given pseudo-state 
configuration to be small. 
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depth and 
1s sn n

K
+

 is an elastic constant coupling nth and 

( 1)n + st molecules in the pseudo-states ns  and 1ns +  respec-
tively. In Fig. 1(b) we illustrated treatment of the ( )V r−− , 

( )V r+−  and ( )V r++  potentials in the harmonic approxima-
tion. Let’s introduce relative coordinate variables 

1=n n nq x x +− . In the new variables 1
=1

ˆ = N
P nn

H Pq−∑ . 

We split the total Hamiltonian (1) into a sum of two 
terms: 
 1 2

ˆ ˆ ˆ= ,H H H+  (5) 

where  

 
1

(0)
1 1

=1 =1

ˆ =
N N

ss s nn n
n n

H V W
−

+
+∑ ∑  (6) 

is a part of the Hamiltonian which does not contain nq  va-
riables and  

 ( )
1 12

2 1 1
=1 =1

1ˆ =
2

N N

s s n s s nn n n n
n n

H K q a Pq
− −

+ +
− +∑ ∑  (7) 

is a part of the Hamiltonian which depends on nq . We note 
that both 1Ĥ  and 2Ĥ  depend on the spin variables. After 
some manipulations the Hamiltonian 1Ĥ  yields the Ising-
like form [22], and effects of degeneracy and the Hamilto-
nian 2Ĥ  describe the pressure and temperature dependent 
corrections to the coefficients of the basic Ising model. 

3. Partition function and effective Hamiltonian 

The partition function completely determines the statis-
tical properties of the model. By the definition  

 ( ), , , , ,1 1 1
1 1 1

, ,1

= e ,E q q s sN N
N s sN

s sN

Z dq dq g g −β −
−

〈 〉
∑ ∫∫∫  



    

  (8) 

where 1 1 1( , , , , , )N NE q q s s−   is the energy, = 1/ ( )Bk Tβ  
is the inverse temperature, Bk  denotes the Boltzmann con-
stant and the sum goes over all possible spin configurations 

1, , Ns s〈 〉 . Integration over phonon variables nq  gives 
the expression  

 

1
1

1
, ,1

1 2
1

=1 1

=

2 exp e .
2 n n

n n

s sN
s sN

N
E

s s
s s s sn n n

Z g g

P Pa
K K +

+

〈 〉

−
−β

+

×

  π β × −β  β   

∑

∏





 (9) 

Exponents in the partition function (9) are formed by terms 
of 1Ĥ  only. We rewrite this part of the Hamiltonian in 
terms of pseudo-spin variables  

 
1 1

1
1 0 1 1

=1 =1

ˆ = ( ) ( ),
2

N N
n n

n n N
n n

s s
H E Js s B W s W s

− −
+

+
+

− − − −∑ ∑   

  (10) 

where the following notations were introduced: the refe-
rence energy 

( )(0) (0) (0)
0

1 1=
4 2 2

W WN NE V V V N + −
−− ++ +−

+− −
+ + + , 

the ferromagnetic constant ( )(0) (0) (0)1 1=
4 2

J V V V−− ++ +−− + + , 

the external field ( )(0) (0)1=
4 2

B V V++ −−
∆

− − , and the term 

acting on the edge spins ( ) =
4n nW s s∆

− . 

We express spin state degeneracies as follows: 

( ) ( )1 1= exp ln ln ln ln .
2 2s nn

g g g g g s+ − + −
 + + − 
 

 (11) 

The expression in the partition function (9) which we ob-
tain during the integration over the phononic degrees of 
freedom we rewrite in the form  

 
1

1

2

1

2 exp
2 n n

n n
s s

s s s sn n

P Pa
K K +

++

 π β
−β =  β  

  

 ( )1 1= exp ( )( ) / 2 ( ) .P P n n P n nb b s s j j s s+ +ε + δε + + δ + + + δ   

  (12) 

where the energy term 
2

=
2P

PPa
Kε
ε

β
ε −β + , and the coeffi-

cients 
2

=
2P J

J

Pj Pa
K
β

−β +  and 
2

=
2P b

B

Pb Pa
K
β

−β + , with 

the characteristic distances expressed through the average 
distances at the equilibrium as follows 

( )1 1=
4 2

a a a aε −− ++ +−+ + ,    ( )1 1=
4 2Ja a a a−− ++ +−+ − , 

and ( )1=
2Ba a a++ −−− , 

and characteristic elastic constants expressed through the 
elastic constants of the 

1
( )s sn n

V r
+

 potentials as follows 

1 1 1 1 1 1=
4 2K K K Kε −− ++ +−

 
+ + 

 
, 

1 1 1 1 1 1=
4 2JK K K K−− ++ +−

 
+ − 

 
, 

1 1 1 1=
2BK K K++ −−

 
− 

 
. 

The terms Pε , Pj , and Pb  take origin from the presence 
of pressure and vanish when 0P → . The term 

4
2

4
1= ln
8 (2 )

K K K+− −− ++
 β

δε −  
π 

, and the coefficients, 
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21= ln
8

Kj
K K

+−

−− ++

 
δ  

 
 and 1= ln

4
Kb
K
−−

++

 
δ  

 
 are manifesta-

tions of the elastic interaction. 
Hence we have an expression for the partition function  

1

1 1
, , =11

= exp ( , ) ( ) ( ) ,
N

n n N
s s nN

Z v s s w s w s
−

+
〈 〉

 
ε + + +  
 

∑ ∑


 (13) 

where  

 ( ) = ,
2
n

n
s

w s w  (14) 

with the field acting on the edges 1= ln
2 2

w g β∆
− , and 

effective two-particle energy terms: 

 1 1 1( , ) = ( ) / 2,n n n n n nv s s js s b s s+ + ++ +  (15) 

and 

 ( )0= ln ( 1) ,
2P
NE g g N+ −ε ε −β + + − δε  (16a) 

 = ,Pj j J j+β + δ  (16b) 

 1= ln .
2Pb b B g b+β + + δ  (16c) 

We make notation =
gg
g
+

−
. 

The partition function (13) can be expressed as the par-
tition function of the Ising-like model with the effective 
Hamiltonian: 

 
1 1

eff 0,eff eff 1 eff
=1 =2

ˆ ˆ ˆ ˆ=
N N

n n n
n n

H E J s s B s
− −

+− − +∑ ∑   

 bound eff
1̂ ˆ( ),

2 N
B B

s s
+

+ +  (17) 

where the reference energy 0,eff 0= ln
2
BNk TE E g g+ −− − 

2
( 1) ( 1) ( 1)

2B
PN k T N Pa N
Kε
ε

− − δε − − + − , the ferromag-

netic interaction constant 
2

eff =
2B J

J

PJ J jk T Pa
K

+ δ + − , 

the field acting on the bulk eff = ln
2
B

B
k TB B g bk T+ + δ +  

2

2b
B

PPa
K

+ − , and field acting on the boundaries 

bound = ln
2 2

Bk TB g∆
− + . The effective Hamiltonian coin-

cides with the Hamiltonian of the Ising model in which the 
reference energy, effective magnetic field [39, 40], and 
ferromagnetic interaction constant are functions of tem-
perature and pressure. This dependence on temperature 
roots from the taking into account pseudo-states degener-

acy and phononic interactions. In the limit 0P →  and 
= =K K K++ +− −− , phonon degrees of freedom are decou-

pled from the spin degrees of freedom, thus the effective 
ferromagnetic interaction constant effJ J→  and the effec-
tive external field effB B→ . 

4. Transfer-matrix formalism 

The thermodynamic properties of the system are com-
pletely described by the partition function. Here, we use 
the transfer matrix formalism [22, 41, 42] to calculate the 
partition function. We rewrite the partition function (13) in 
the following form: 

 1ˆ ˆ= e Tr ,NZ T Rε −  (18) 

where the transfer matrix is  

 1( , ) e eˆ = e = ,
e e

n n
j b j

v s s
j j bT +
+ −

− −

 
 
 

 (19) 

and the matrix R̂  is accounting effects of the field acting 
on the surface spins  

 1( ) ( ) e 1ˆ = e = .
1 e

N
w

w s w s
wR +

−

 
 
 

 (20) 

For calculating 1ˆ ˆTr NT R−  we change the basis to the 
eigenbasis of the transfer matrix: 

 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ= e Tr ,NZ UU T UU Rε − − −  (21) 

where  

 
cos sinˆ = ,
sin cos

U
φ φ 

 − φ φ 
 (22) 

and the angle of rotation φ is given by a solution of the 
equation  

 2cot 2 = e sinh .j bφ  (23) 

The eigenvalues of the transfer matrix T̂  are  

 ( )2 2 2= e cosh e sinh e .j j jb b −
±λ ± +  (24) 

Therefore we obtain the partition function for the system of 
N  particles  

 ( )1 1= e ,N NZ c cε − −
+ + − −λ + λ  (25) 

where the coefficients are 

 
2

2 4

e sinh sinh= cosh ,
sinh e

j

j

b wc w
b

−

+ −

+
+

+
 (26a) 

 
2

2 4

e sinh sinh= cosh .
sinh e

j

j

b wc w
b

−

− −

+
−

+
 (26b) 

Until now all calculation were exact and the partition func-
tion (25) contains all finite N  effects. The free energy den-
sity is given by the following expression: 
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 1= ln .f Z
N

−
β

 (27) 

In the thermodynamic limit, we obtain  

 1 1= ln = ln .lim
N

f Z
N N +

→∞

ε
− − − λ

β β β
 (28) 

Average magnetization per quasi-spin is 
1 ln= = Zm s
N b
∂
∂

. The magnetization per spin in the 

thermodynamic limit s  at nonzero temperature T , pres-
sure P , and external field B  are easily evaluated:  

 
2 4

sinh= .
sinh e j

bm
b −+

 (29) 

Average magnetization given by the Eq. (32) has the same 
form as one of the Ising model but in our model the de-
pendence of b  and j  from the temperature and pressure is 
different from one of the Ising model. The fraction of mo-
lecules in the HS state is given by the occupation number 

1
=

2HS
s

n
+

 and the fraction of the molecules in the LS 

state is 
1

=
2LS

s
n

−
. Results for zero pressure, symmetric 

degeneracies case =g g+ − and without phononic part repeat 
well-known behavior of conventional Ising model. 

In Fig. 2 the dependencies of the fraction molecules in 
the HS state on the temperature for various values of 
pressure are plotted. The parameters of the model are 
chosen to be following: / = 0.104Ba aε , / = 0.0104Ja aε , 

/ = 1.28BK Kε , and / = 0.57JK Kε  with 2 = 72J JK a J . 
The thermal behavior of the molecular fraction ( )HSn T  
characterizes the nature of transitions that may be abrupt 
or gradual, depending on the choice of the values of eqT  
and crosT . Under small pressure, the cooperativity decreases 
and the transition becomes less abrupt at higher temperatures. 

5. Average volume and the correlation function 

Let’s calculate average effective volume of the finite 
molecular chain  

 
1 1

1
=1 =1

= = .
N N

n n n
n n

L x x q
− −

+〈 − 〉 〈 〉∑ ∑  (30) 

By the definition, the average distance between the nearest 
molecules is  

 1 1 1
, ,1

1= e .E
n N n s sN

s sN

q dq dq q g g
Z

−β
−

〈 〉

〈 〉 ∑ ∫∫∫


   (31) 

Integrating over the phonon degrees of freedom we get  

 

eff
1

, , 11
eff

, ,1

e

= .
e

H
s sn n

s ss s n nN
n H

s sN

Pa
K

q

−β
+

〈 〉 +
−β

〈 〉

 
 −
 
 〈 〉

∑

∑




 (32) 

Suchwise, the effective volume of system (length of mo-

lecular chain) is 1
=1 1

1

= N
s sn n n

s sn n

PL a
K

−

+
+

〈 − 〉∑ . We rewrite 

later expression as follows: 

 
1

1
=1

= ( )
N

J n n
Jn

P PL a a s s
K K

−

ε +
ε


− + − 〈 〉 +


∑   

 1 .
2 2
B

n n
B

a P s s
K +

 
+ − 〈 + 〉     

 (33) 

Thus, the effective volume of the system is connected with 
the average magnetization and the correlation function. 
The local magnetization may be calculated directly [22]  

 

1

1
e eˆ = ,

e

n N n

n N
C Cs m

c c

− −
− −

ξ ξ
+− −+

−
−

ξ
+ −

+
〈 〉 +

+

 (34) 

Fig. 2. Average occupation number HSn  as a function of temperature for eq cros<T T  (a) and eq cros>T T  (b) and various values of pressure 

= 0, 0.0025, 0.005, 0.01P , and 1 ln = 0.5
2

g b+ δ  and = 0.35jδ . 



A. Gudyma and Iu. Gudyma 

496 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 6 

where coefficients  

 2 2= = ( 1)( sinh e sinh ),jC C m w b−+ +− − − +  (35) 

and the correlation length = ln( / )− +ξ − λ λ . It is easy to see 
that since <− +λ λ , > 0ξ . The average magnetization is  

 
1

ˆ = .

1 e e
N N

C Cs m

N c c

+− −+
−

− −
ξ ξ

+ −

+
〈 〉 +

  
  − +
  
  

 (36) 

In the thermodynamic limit, we get classic Ising model 
magnetization ˆ =s m〈 〉 . We note that only average over all 
spins magnetization coincides with the classic Ising mo-
del result, while the average of the individual spin is dis-
tinct from the classic result due to the system boundary. 
We see boundary effects do not vanish even in the ther-
modynamic limit. 

The local correlation function ( )nG r  is [22]  

 

1

2 2
1

e eˆ ˆ( ) = = (1 )

e

r N r

n n n r N
c cG r s s m m

c c

− −
− −
ξ ξ

+ −
+ −

−
ξ

+ −

+
〈 〉 + − +

+

  

 

1 1

1
e e e e .

e

n n r N n r N n

NmC

c c

− − + − − −
− − − −

ξ ξ ξ ξ

+− −
−

ξ
+ −

− + −
+

+

 (37) 

In the thermodynamic limit, we get the correlation function  

 
1

2 2

=1

1 ˆ ˆ( ) = = (1 )e .
rN r

n n r
n

G r s s m m
N

− − −
ξ

+〈 〉 + −∑  (38) 

The average magnetization given by the Eq. (37) and the 
correlation function given by the Eq. (40) are exact. We 
see the average correlation function matches with the classic 
Ising model result [4] in the thermodynamic limit. Local 
correlation function [see Eq. (40)] has information about the 
edges of the system even in the thermodynamic limit. 

Finally, we get the length of chain  

 = ( 1) (1)B J
B J

P P PL N a a m a G
K K Kε
ε

   
− − + − + − +   

     
  

1

1
1 1 (1 e )

2
e 1 e

N

B N N
B

C CPa
K

c c

−
−

+− −+ ξ
−

− −
ξ ξ

+ −

 
  +  + − − + +      + − 

  

1 1

1 1 1
(1 e ) 1 e .

e 1 e 1 e

N

J N N N
J

CPa m
K

c c

−− −
ξ ξ

+−
− − −

− −
ξ ξ ξ

+ −

 
   −

+ − +   
   + − − 

 (39) 

Expression (39) is exact and, in the thermodynamic limit, 
defines average density of the molecular chain 

1 = / (1)B J
B J

P P PL N a a m a G
K K K

−
ε

ε

  
ρ → − + − + −  

   
. 

The only approximation we made is the harmonic ap-
proximation of the interparticle potential. This approxima-
tion should be valid when the displacement of particles 
from the equilibrium distances is small. Applied external 
pressure clearly reduces the distances between the particles 
and at some point harmonic approximation loses its validi-
ty. Equation (39) gives us some understanding of the har-
monic approximation limits. The volume of the system 
should be positive, therefore we external pressure should 
satisfy the following condition =P P a Kε ε ε . 

6. Specific heat capacity and susceptibility 
The specific heat capacity is one of the most im-

portant thermodynamic characteristic of the system 
which can be easily measured experimentally. We con-
sider a system under a constant pressure, and therefore 
the volume of the system changes. The internal energy per 

particle is = lnE Z∂
〈 〉 −

∂β
, 

 
1 2

0 1
=1

1=
2 2

N

B J n n
Jn

PE E Nk T J a P s s
K

−

+
 

〈 〉 + − + − − 
 

∑   

 
2

=1
.

2

N

B n
Bn

PB a P s
K

 
− + − 〈 〉 

 
∑  (40) 

And the heat capacity per particle 1=P
Ec

N T
∂〈 〉
∂

 in the 

thermodynamic limit can be written in the following way: 

 
21=

2 2P B B
B

P mc k B a P
K T

  ∂
− + − − 

∂ 
  

 
2

(1).
2J

J

PJ a P G
K T

  ∂
− + − 

∂ 
 (41) 

Specific heat capacities per particle for small pressures are 
given in Fig. 3. Parameters of the model in Figs. 3 and 4 
are the same as in Fig. 2. One-dimensional systems demon-
strate two-peak specific heat capacity thermal behavior on 
experiments [13]. Our model captures this phenomenon at 
small pressure in the abrupt crossover regime. Main peak 
is associated with the Schottky anomaly. This result may 
be expected as we demonstrated the exact mapping onto 
the Ising-like system with the Hamiltonian (17). Such be-
havior appears as a result of the initial assumption about 
the nature of iron(II) materials that only two lowest single-
molecule levels (denoted LS and HS) are relevant for the 
description of the system. With the increase of pressure the 
main peak of specific heat capacity become broader and 
shifts to higher temperatures. Such behavior quickly disap-
pears with pressure increase. 
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The susceptibility = 2 HSn
B

∂
χ

∂
, is  

 

( )

4

3
2 4 2

1 cosh( )e= .
sinh e

j

B j

b
k T

b

−

−

χ

+

 (42) 

The susceptibility as a function of /Bk T J  under various 
pressure is shown in Fig. 4. Similarly to the specific heat 
capacity, with the pressure increase the peak of the suscepti-
bility shifts to higher temperatures and becomes broader. 

7. Spin crossover under the pressure 

In our previous paper [22], we investigated regimes of 
gradual and abrupt crossover under zero pressure = 0P . 
We introduced two characteristic values of the system, 
namely the equilibrium eqT  and the crossover temperature 

crosT . We demonstrated that if eq cros<T T  the crossover is 
abrupt and some thermal quantities resemble ones for the 
phase transition, and if eq 0T <  or eq cros>T T  the crossover is 
gradual. Here our goal is to explore what changes crosso-
ver undergo in the case 0P ≠ . At zero temperature system 

always stays in ordered phase which is defined by the sign 
of the effective field: 

 
21( 0) = 1 sign .

2 2HS B
B

Pn T B a P
K

  
→ + + −  

   
 (43) 

Usually, in Fe (II) compounds > 0B  and LS is lower than 
HS state under zero pressure, thus ( 0) = 0HSn T → . Never-

theless for large pressure 
2

< 0
2B

B

PB a P
K

+ −  and therefore 

crossover starts from ( 0) = 1HSn T → . At the same time at 
high temperatures occupation numbers are  

2 4

1sinh ln
1 1 2( ) = .
2 2 1sinh ln e

2

HS
j

g b
n T

g b − δ

 + δ 
 → ∞ +

 + δ + 
 

 (44) 

We introduce the equilibrium temperature eqT  as a tem-
perature when pseudo-spin states have equal occupations 

= 1/ 2HSn . Often the equilibrium temperature is denoted 
as 1/2T . This happens when the effective field vanishes, 

Fig. 3. Specific heat capacity per particle Pc  as a function of temperature for various pressure (a) eq cros= 0.3T T , (b) eq cros= 3T T . With 
the pressure increase peak of the specific heat capacity shifts to higher temperatures.  

Fig. 4. Susceptibility χ  as a function of temperature for various pressure (a) eq cros= 0.3T T , (b) eq cros= 3T T . With the pressure increase peak 
of the susceptibility shifts to higher temperatures.  
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i.e., = 0b . In doing so, one gets the following expression 
for the equilibrium temperature eqT  as a function of the 
pressure:  

 

2

eq
2

( ) = .
1 ln
2

b
B

B

PB Pa
KT P

k g b

− +
−

 + δ 
 

 (45) 

We note that for certain values of the external field B , 
pressure P  and pseudo-spin degeneracies g  the equilibri-
um temperature eqT  can be negative what means that for 
given field and degeneracies there is no such temperature 
that pseudo-spin states would have equal occupations. 

Let’s find a temperature 0T  for which the occupation 
number is maximal. This temperature should be a solution 
of the equation  

 
= 0

= 0.HS

T T

n
T

∂
∂

 (46) 

Therefore  
 

eq
0

eq
2

( )
= .

( )1 11 arctanh ln1 2ln 22 2

B

J
J

T P
T

k T P
g b

Pg b J Pa
K

 
 

  − +δ     +δ  + −    
 

  (47) 

We call the maximal equilibrium temperature eqT  at which 
Eq. (49) has finite solutions for the 0T  as the crossover 
temperature. The derivative /HSn T∂ ∂  is always positive 
and the occupation number HSn  is a monotonous function 
of temperature when eq cros<T T . Thus we get the crosso-
ver temperature  

2

cros

12 tanh ln2 2( ) = .
1 ln
2

J
J

B

PJ Pa g bK
T P

k g b

   + − + δ   
   

+ δ
 (48) 

The crossover temperature cros cros( ) > (0)T P T  when the 
pressure < = 2J J JP P K a , and cros cros( ) < (0)T P T  when 

> JP P . Therefore we shall observe abrupt crossover when 
cros ( ) > 0T P  and eq cros( ) < ( )T P T P , and gradual crossover 

otherwise. 
The resulting phase diagram for the spin crossover is 

presented in Fig. 5. In left and central panels (a), (b) occu-
pation number is depicted for temperature and pressure 
values close to zero. A spin crossover phase diagram, where 
the HS fraction is indicated by color, is shown in a wide 
range of temperature and pressure variations in Fig. 5(c). 
The diagram shows regions of the HS paramagnetic phases 
under high pressure and the LS diamagnetic phase at rela-
tively low temperature and pressure. We observe two re-
gions with abrupt HS–LS transitions: the region near 

= 0P  and = JP P . For eq cros(0) > (0)T T , it can be seen 
that no sharp discontinuous changes in HSn , therefore in 
structural or optical properties, should be expected to occur 
across this spin crossover. As the pressure increases, the 
width of the SCO region is broadened, the sharp spin tran-
sition becomes a smoother and broader SCO. Evidently, 
system undergoes a sharp HS–LS transition with a very 
narrow SCO region at low temperature when eq cros<T T . 

8. Summary and conclusions 

This paper aimed to give a thorough discussion of the 
thermodynamic properties of the one-dimensional spin-
crossover systems being a subject of constant pressure. We 
start with the exact microscopic Hamiltonian which con-
sists of sum of the pair intermolecular potentials. In the 
harmonic approximation, we demonstrate exact mapping to 
the Ising-like Hamiltonian with temperature dependent 
effective parameters of the model, namely the reference 
energy, ferromagnetic constant, and magnetic field. For 
this purpose, the transfer-matrix method was transformed 
to form that addresses free-boundary case. The elaborated 
rigorous procedure has enabled us to derive exact results 
for the basic thermodynamic quantities and pair correlation 
function. In the framework of this approach we show that 
the degeneracy of the levels, elastic interaction and pres-

Fig. 5. (Color online) Phase diagram of the average occupation number ( , )HSn T P . (a) small T, P region for eq cros( = 0) <T P T , (b) small 
T, P region for eq cros( = 0) >T P T , (c) large scale T, P dependence. Colors in the vertical column on the right represent the fraction of 
high-spin molecules.  
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sure renormalize the parameters of the effective Ising 
model. We analyze regimes of the HS–LS crossover and 
identify regions of parameters where the crossover abrupt 
or gradual and show how pressure effects on the location 
and size of the transition. In the next works, we are plan-
ning to extend our results to higher dimensions and exper-
imental situations. 
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Вплив стискування на молекулярні 
спін-кросоверні ланцюжки 

A. Gudyma, Iu. Gudyma 

Досліджено термодинамічні властивості одновимірного 
спін-кросоверного молекулярного ланцюжка, що знаходить-
ся під постійним зовнішнім тиском. Як теоретична основа 
використовується ефективна вироджена стислива модель 
Ізінга. З використанням формалізму трансфер-матриці отри-

мано аналітичні результати щодо кросовера від низькоспіно-
вих до високоспінових станів. Отримано точні вирази для 
частки молекул у високоспіновому стані, кореляційної функ-
ції та теплоємності. Проведено аналіз області параметрів, у 
якій відбувається спіновий кросовер. Показано, як тиск змі-
нює положення кросовера. 

Ключові слова: спін-кросовер, молекулярний ланцюжок, модель 
Ізінга, намагніченість, фонони.
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