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This paper is devoted to the study of thermodynamics of the quasi-1D spin models with Ising interaction be-

tween complex unit cells by transfer-matrix method. The field and the temperature dependences of the main

thermodynamic characteristics have been investigated. It is shown that the field dependence of the magnetization

at low temperatures for the models of “comb” and “decorated comb”, and decorated triangles structures have an

intermediate magnetization plateau in case of antiferromagnetic Ising interactions. The temperature dependence

of the heat capacity may have several maxima in zero magnetic field. For the chain model of triangles decorated

by Ising spins through the one vertex and for the “double decorated comb” some kind of the pseudo-phase transi-

tions in the critical magnetic field is found.
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1. Introduction

In recent decades, a large number of materials with qua-
si-one-dimensional and quasi-two-dimensional magnetic
structures were discovered. In particular, high-temperature
superconductivity in antiferromagnets gave a strong impe-
tus to the theoretical studies of low-dimensional systems.
One of the simplest approaches to the study of above mul-
ti-particle systems is the application of the statistical theory
of the 1D and 2D Ising model (see, for example [1-3]). For
more realistic quantum systems like Heisenberg spin chain
or Hubbard chain models until now, the exact solutions
were obtained by different variations of the Bethe’s meth-
od proposed 90 years ago [1-3, 4]. In [5] several generali-
zations of one-dimensional and two-dimensional exactly
solvable quantum spin-1/2 models are proposed. More
simple family of exactly solvable quantum models is based
on so-called spin-1/2 XY model. By means of the Jordan—
Wigner transformation it is possible to find an exact energy
spectrum and study the behavior of different thermody-
namic quantities for this model (see, for example, [2—4, 6].
The advantage of the above models is their simplicity and
possible realizations in a number of applications.

Recently a new type of pseudo-phase transitions was
found theoretically for several one-dimensional (1D) spin
models. It was shown, the models with complex unit cell
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may exhibit a peculiar pseudo-transition accompanied with
the anomalous response of thermodynamic quantities in
close vicinity of pseudo-critical temperature [7, §].

In this paper, we consider several exactly solvable
model spin-1/2 systems for which the transfer-matrix ap-
proach can be used to derive a partition function. This
permits us to investigate in details the behavior of basic
thermodynamic quantities at different temperatures and
model parameters. At least for two of the proposed models,
the numerical simulation of temperature dependences of
specific heat and magnetization demonstrate the existence
of pseudo-phase transitions for some values of model
parameters. Note also that in [9] the similar numerical
approach on the base of standard transfer-matrix tech-
nique was used for the exactly solvable quantum model
based on spin-1/2 XX chain with the periodically embed-
ded Ising spins but the above pseudo-phase transitions
were not found.

2. Models

We consider four quasi-one dimensional spin models
with rather simple periodic structure.

The exact energy spectra of the anisotropic spin chains
with the four-site unit cell formed by triangles or stripes
decorated by one-site spins are studied.
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Fig. 1. Structure of models with Hamiltonians (1)—(4).

The Hamiltonian of the (see Fig. 1(a)) formed by the
XXZ triangles, which are connected by one side through
one-site Ising spins has the form

N 3
H=- {Z[guBHS; +

n=1 Li=l

N
I (SESha+SUS L, +vS,-sz+m>}}—gouBHZS:n -1
n=1
N
_JOZ(SZnSIZn +Sjn+lS22n )’ an =S10rtz’ o=x,),Zz

n=1

Here S}, (oo = x, y, z) are the projections of spin-1/2 opera-
tor, localized at ith position at nth unit cell, J, yJ are the
exchange integrals, which correspond XXZ exchange in-
teractions inside the unit cells and J|, is the Ising exchange
interaction between unit cell, H is the longitudinal magnet-
ic field, pp is the Bohr magneton, g, g, are the g-factors for
unit cells spins and for decoration spins respectively. Peri-
odic boundaries are supposed: S;,; — S

The Hamiltonian of the model 2 [see Fig. 1(b)] con-
structed by the XXZ triangles connected through the one
vertex has the form
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The Hamiltonians of model 3 [see Fig. 1(c) and model 4
see Fig. 1(d)] we obtain by broking one connection in tri-
angles in (2)
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3. Transfer-matrix and thermodynamics

All above Hamiltonians (1)—(4) have the same frag-
ments, for which the z-projection of total spin is the good
quantum number. The Hamiltonian can be presented in
the form

N
H(oy, ... oy) = Z’}-ln(crwcn-v—l)’ oxa =0, (5

n=l1

Here 6,, n=1,2,..., N are the eigenvalues of Ising spins
S;, at (4, n) positions. So, we omitted “spin decorations”
and the Hamiltonian (5) depends now on the additional
parameters . For (5) one can apply the classical transfer
matrix method. The partition function is the trace of total
transfer-matrix, which has the following form for all above
models:

E
T(Gl,Gz) =GXP{—M}X

T
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In principle, Eq. (6) is suitable for calculating the partition
function for an arbitrary value of Ising spins. The partition
function is the trace of total transfer-matrix T

25+1

Zy=Tr(TV)=>" Y, (7
i=1

where A; is the /th eigenvalue of the transfer-matrix (6).

We will limit ourselves to the value of spin-1/2, so ¢, = £1/2,

i=1,2. In this case, the eigenvalues of the transfer matrix

are determined by the quadratic equation, and the partition

function (7) for the finite system of N unit cells is

Zy =)+ ()Y ®)

with

2
I, +T 5, -T
hy = 11; zzi\/( 112 22) L T,Ty, .

We would like to remind, that the free energy per spin

F:—%ln[(M)N +(1)"] ©)
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for finite system depends on both eigenvalues, and in ther-
modynamic limit it is defined by only maximal eigenvalue

F=-TIn(X,). (10)

The Hamiltonian of each fragment is the Hamiltonian
of spin-1/2 XXZ triangle for models 1 and 2, or XXZ
stripe formed by three spin-1/2 for models 3 and 4 in the
effective magnetic field, which depends on node number of
triangle (stripe).

For example, for model with Hamiltonian (1)
H,(c,,0,.;) has the form

okt
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For models (3) and (4)
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respectively.

The exact energy spectrum for each XXZ Heisenberg
triangles (11), (12) and stripes (13), (14) is obtained easily.
One can classify the stationary states of (9)—(12) by the
number of inverted spins, starting from the “ferromagnetic
state” Ep,,, the “vacuum” |0) with all three spins “up”.
For more symmetric models 2 and 4 described by the
Hamiltonians (12) and (14), the cubic equation for the sta-
tionary states with one or two inverted spins splits on line-
ar and quadratic equations. As an example, we present here
the simple result for (12)

1 3yJ
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4. Numerical simulations

Using the above results, we performed numerical simu-
lation of the field and the temperature dependencies of the
magnetization and the heat capacity for our systems.

The field dependence of magnetization for antiferro-
magnetic Ising interactions has several intermediate mag-
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netization plateaus associated with the reversal of the spin
directions. As can be seen from Fig. 2 the geometry of the
models significantly affects the behavior of the magnetiza-
tion for the same model parameters, and the dimensional
effects are almost invisible at fairly low temperatures.

We modeled the temperature dependence of the heat ca-
pacity in the zero magnetic field for all models for different
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Fig. 2. (Color online) The field dependence of magnetization for
models 1-4 at 7= 0.1 K for the the same values of parameters
J=1K, J,=-12K, g=3, g,=2, y=-2. Solid lines correspond
to infinite number of unit cells, dashed lines correspond to N = 2.

numbers of unit cells with strong antiferromagnetic interac-
tion of decorative Ising spins with triangles (stripes) and a
sufficiently strong ferromagnetic easy axis anisotropy y . As
can be seen from Figs. 3(a)-3(d) the dimensional effects
strongly depend on the geometry of the corresponding model.
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For example, the finite size effects for the model 1 are
disappeared at N =50. For models 2 and 3, the finite size
effects are noticeable for a fairly large number of unit cell.
Moreover, there are the additional local minima and maxima
[see Fig. 3 (b)]. The heat capacity behavior for the models 3
and 4 in zero magnetic field is very similar. We can expect
this effect due to the similar geometrical structure of these
two models. Nevertheless, the temperature dependences of
C(T) and y(T) in the presence of longitudinal magnetic
field may differ drastically.

It is known that in one-dimensional models with a finite
radius of interaction phase transitions in temperature does
not exist. But recently, so-called pseudo-transitions in a
critical magnetic field have been discovered theoretically.
In [7] such a kind of pseudo-transition was discovered for
three-leg Heisenberg—Ising tube. In [8] for the mixed-spin
model (1/2 — 1), a pseudo-transition in temperature similar
to a lambda point for the second-order phase transitions
was observed in the Ising—Heisenberg double tetrahedral
chain. We believe that presented here models 2 and 4 have
a similar effect. In Figs. 4 and 5 the temperature dependen-
cies of specific heat and magnetic susceptibility with pseu-
do-phase transition behavior are presented for models 2 and
4, respectively.
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Fig. 3. (Color online) The temperature dependence of heat capacity for models 1-4 in zero magnetic field for different number of unit
cellsand J =1, Jy=-12, g=1, g,=2, y=2; (a) model 1, (b) model 2, (c) model 3, (d) model 4. Plot legends are the same for all

figures and are shown at Fig. 3(d).
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Fig. 4. (Color online) (a) C as T'and (b) y as T at pz,H/J =1.5 for
pseudo-phase transition for model 2 at J =1, J,=-12, g=1,
g, =2, ¥ =2 with increasing of the number of unit cells.
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Fig. 5. (Color online) Pseudo-phase transition behavior at pzH/J =1
for model 4. All other parameters as at Fig. 4.

We may suppose, that the pseudo-phase transition is
due to special symmetry, which leads to the degeneration
of the energy spectrum and the appearance of the flat
bands.

5. Conclusions

The low-temperature properties of quasi-one-dimen-
sional spin-1/2 exactly solvable models with “decorated
comb”, and decorated triangles structures are investigated.
It is shown that the low-temperature dependence magneti-
zation may have one of two intermediate magnetization
plateau in case of antiferromagnetic Ising interactions.

The temperature dependence of the heat capacity may
have several maxima in zero magnetic field. The tempera-
ture dependences of C(T) and y(7) in the presence of
longitudinal magnetic field may differ drastically for the
same values of coupling parameters for the above models
with different geometry. For the “double decorated comb”
and for the chain model decorated by triangles through the
one vertex some kind of the pseudo-phase transitions in the
critical magnetic field is determined.
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BuBueno TepMoanHaMiKy KBa3iOJHOBUMIPHUX CITIHOBHUX MO-
nernedl i3 B3aemofiero I[3iHra MiX CKIAQTHUMH elleMEHTapHUMH
KOMIpKaMH MeTOROM TpaHchep-MaTpuii. JociimKeHo MOoIboBi
Ta TEMIIEPaTypHi 3aIe)KHOCTI OCHOBHHUX TEPMOJMHAMIYHUX Xapa-
krepucTHK. [loka3aHo, 10 MOJNBOBA 3AJIKHICTH HAMarHiYeHOCTI
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E. V. Ezerskaya

[PU HU3BKUX TEMIIEpaTypax JJIs MOACNEH «peOiHLs» Ta «IeKO-
POBAHOTO IpeOiHII, & TAKOXK 03J00JICHUX TPUKYTHUX CTPYKTYP
Mae MPOMDXKHE [JIaTO HAMarHiYeHOCTi y pa3i aHTU(EePOMArHITHUX
B3aeMoii I3inra. TemmeparypHa 3aJeXHICTh TEINIOEMHOCTI MO-
)K€ MaTd KijlbKa MAaKCHMyMiB B HYyJbOBOMY MAarHiTHOMY IIOJIi.
Jlnst Mozienni TPUKYTHHKIB, SIKi HO€JHAHI 131HTIBCBKUME CIIIHAMH
4yepes OJIHY 3 BEpIUMH TPUKYTHHKIB, Ta «IIOJBIHHOTO JEKOpOBa-

HOTO TpeOiHIs», 3HalieHo NceBno(a3oBi Mepexoan y KpHUTHY-
HOMY MarHiTHOMY IIOJIi.

Kiro4oBi cioBa: criHoBHi ramineroHian, XXZ MoJelb, MOJIENIb
[3iHra, CHIHOBHI JIAHIFOXKOK, TEPMOJWHAMIKA,
TpaHcdep-MaTpHULIsL.
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