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The effect of an external magnetic field on phase transitions, magnetic and thermodynamic properties of the 
antiferromagnetic Ising model on a body-centered cubic lattice with competing exchange interactions was stud-
ied using the replica algorithm of the Monte Carlo method. It is shown that a second-order phase transition is ob-
served in the range of magnetic field values 7.0 ≤ H ≤ 10.0, and a first-order phase transition is observed in the 
range 11.0 ≤ H ≤ 13.0. A further increase in the magnetic field strength leads to the suppression of the phase 
transition. 
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1. Introduction 

In condensed matter physics, studies of phase transitions 
(PT), magnetic, critical, and thermodynamic properties of 
spin systems with competing exchange interactions are of 
great interest. The competing exchanges can lead to the 
appearance of frustrations. The physical properties of frus-
trated spin systems are very different from ordinary ones. 
Frustrated spin systems have a rich variety of phases and 
PT’s due to a high degree of degeneracy and high sensitivity 
of such systems to external factors, including a magnetic 
field. The effect of a magnetic field can play an important 
role in the behavior of spin systems with competing ex-
change interactions [1–6]. 

In this paper, we study the effect of a magnetic field on 
the character of PT, the magnetic and thermodynamic 
properties of the antiferromagnetic Ising model on a body-
centered cubic (bcc) lattice with competing exchange in-
teractions. 

The Ising model, including competing exchange interac-
tions, for various types of lattices was theoretically and nu-
merically studied in [7–13]. The magnetic structures of the 
ground state and the phase diagram of the dependence of the 
critical temperature on the magnitude of the interaction 

between the next-nearest neighbors were obtained in [6] by 
the Monte Carlo (MC) method for the Ising model on a bcc 
lattice. The regions of the first- and second-order phase 
transitions in the phase diagram were also determined in 
this work. Theoretical studies [7] and their results are in 
good agreement with the data of numerical simulation [6] 
and show that for the Ising model on a bcc lattice there is a 
PT of the second-order. In [8], this model was analyzed 
from the point of view of the influence of a magnetic field 
in the range of strengths 0.0 ≤ H ≤ 6.0 on the thermody-
namic and magnetic properties of the system. It was re-
vealed that the PT is of the second order in the indicated 
range of the magnetic field strength. Studies of the three-
dimensional antiferromagnetic Ising model on a triangular 
layered lattice under the action of an external magnetic 
field (0.0 ≤ H ≤ 6.0) also revealed a second-order phase 
transition [9]. It was shown that the further increase in the 
magnetic field value lifts the degeneracy of the ground 
state and smears PT in the system. 

Analysis of the literature data shows that an external 
magnetic field affects most of the physical properties of 
spin systems with competing exchange interactions [8, 9]. 
In this connection in the present paper, we have studied an 
influence of a strong magnetic field on the order of PT, 
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the magnetic and thermodynamic properties of the antifer-
romagnetic Ising model on a bcc lattice. The interest in the 
considered model is attracted by the fact that comprehen-
sive studies of the external magnetic field effect on the PT, 
the magnetic and thermodynamic properties of this model 
have not yet been carried out on the basis of modern meth-
ods. The main attention for such systems was paid to models 
based on a square, triangular and hexagonal lattices [14–23]. 
The study of the considered model using modern methods 
and ideas will provide an answer to a number of questions 
related to the type of PT, magnetic and thermodynamic 
properties of spin systems with competing exchange inter-
actions, as well as the influence on them of an external 
magnetic field. 

2. Model and method of investigation 

The Hamiltonian of the antiferromagnetic Ising model 
on a bcc lattice with allowance for the interactions of near-
est and next-nearest neighbors has the following form: 

 H 1 2
, ,

i j i l i
i j i l i

J S S J S S H S
〈 〉

= − ⋅ − ⋅ −∑ ∑ ∑ , (1) 

where J1 and J2 are the exchange constants of the anti-
ferromagnetic type interaction of nearest (J1 = –1) and 
next-nearest (J2 = –1) neighbor spins, Si = ± 1 are Ising 
spins, H is an external magnetic field with strength in units 
|J1|. The normalized magnitude of the magnetic field was 
varied in the range 0.7 ≤ H ≤ 14. The paper presents the 
case r = |J2|/|J1| = 1.0. 

Presently, spin systems with competing exchange inter-
actions, which are specified by microscopic Hamiltonians, 
are being successfully investigated on the basis of the MC 
method [9, 11, 24–28]. Recently, many new variants of MC 
algorithms have been developed. One of the most effective 
before them is the replica exchange MC algorithm [29]. 
That is why we use this algorithm in this study. 

We used a replica exchange algorithm in the following 
form: 

(1) Simultaneously N replicas X1, X2,… XN with tem-
peratures T1, T2,… TN are modeled.  

(2) After performing one MC-step/spin for all replicas, da-
ta exchange between neighboring replicas Xi and Xi+1 is car-
ried out according to the Metropolis scheme with a probability 

( )1
1, for 0,
exp( ), for 0,i iw X X +

∆ ≤
→ =  −∆ ∆ >

 

where 1 1( )(1/ 1/ )i i i iU U T T+ +∆ = − − , Ui and Ui+1 are internal 
replica energies. 

The main advantage of the method is a priory known 
probability of exchange, while for other algorithms the deter-
mination of the probability is often a rather time-consuming 
procedure. 

The calculation was carried out for systems with periodic 
boundary conditions and linear dimensions of the bcc lattice 

L = 12–60 and the total number of spins N = 2×L×L×L. For 
the analysis of the nature and character of the PT, the his-
togram method and the Binder cumulant method were 
used. To bring the system into a thermodynamically equi-
librium state, the initial segment of length τ0 = 4·105 of 
MC-steps/spin was discarded, which is several times longer 
then the non-equilibrium one. The average thermodynamic 
parameters were calculated along the Markov chain up to 
τ = 500τ0 MC-steps/spin. 

3. Results of simulation 

The following expressions were used to plot the tem-
perature dependences of the susceptibility χ and the heat 
capacity C: 
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N

N

NK m m T T

NK m T T

 − <
χ = 

 ≥

 (2) 

 ( )22 2( ) ,C NK U U= −  (3) 

where 1 / ,BK J k T=  U is the normalized internal energy, 
m is the normalized order parameter, and TN is the critical 
temperature. 

The order parameter of the system was calculated using 
the formula: 
 1 2 3 43m m m m m= − − − , (4) 

where 1 2 3 4, , ,m m m m  are sublattice order parameters. 
The following expression was used to calculate the 

magnetization of the system: 

 1
i

i
M S

N
= ∑ . (5) 

Determination of an order of the PT and a value of the 
critical temperature TN was carried out using the method of 
fourth-order Binder cumulants UL. 
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With Ex. (6) the critical temperature TN can be deter-
mined for a second-order PT with high accuracy [10]. 

The temperature dependences of the heat capacity and 
magnetic susceptibility for the case L = 24 at some values of 
the magnetic field strength are shown in Figs. 1 and 2. It can 
be seen from these plots that with an increase of the magnetic 
field strength in the range 7.0 ≤ H ≤ 10.0, the maxima of 
heat capacity and susceptibility shift towards lower tempera-
tures. Simultaneously an increase in the absolute values of 
the peaks is observed. In the range of magnetic field 
strengths 11.0 ≤ H ≤ 13.0, the peaks of heat capacity and 
susceptibility become sharper, as shown in Figs. 1 and 2. 
This allows assuming that the first-order phase transition 



Ising model on a body-centered cubic lattice with competing exchange interactions in strong magnetic fields 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 6 517 

is realized in this range. The shift of the maxima of the heat 
capacity and susceptibility towards lower temperatures can 
be explained by the weakening of the exchange interaction 
between the spins caused by the action of the magnetic field. 
As seen in Fig. 1 at the value of the magnetic field H = 14 
there is no peak on the temperature dependence of the heat 
capacity. This fact indicates the suppression of the PT in 
stronger magnetic fields. 

Figure 3 shows typical dependences of the magnetic or-
der parameter m on the temperature at different values of 
the magnetic field H. It can be seen that with an increase in 
the magnetic field, the abrupt step of the magnetic order 
parameter dependence shifts towards low temperatures. 
This can be explained by the weakening of the exchange 
interactions of the spins caused by the application of a 
magnetic field. In the range of magnetic field values 
11.0 ≤ H ≤ 13.0, the observed decrease of the order param-
eter becomes sharper. Such behavior is typical for a first-
order phase transition. 

Dependencies of magnetization M on the temperature at 
the given values of the magnetic field H are shown in 
Fig. 4. One can see that the system magnetization increases 
with the magnetic field H. From the dependences shown in 
the figure, it can be concluded that in the range of magnet-
ic field values 7.0 ≤ H ≤ 10.0, the magnetization first de-
creases monotonically to a certain temperature preceding the 
phase transition, and then, up to the phase transition tempe-
rature, slightly increases. After that, a slow decrease begins 
due to thermal fluctuations. On the contrary, in the range 
of magnetic field values 11.0 ≤ H ≤ 13.0, the magnetiza-
tion increases with a positive derivative up to the PT tem-
perature. Further dependence is similar to that described 
above. At the value of the magnetic field H = 14, the mag-
netization decreases monotonously with the increasing 
temperature in the entire range. 

The temperature dependences of the Binder cumulant 
UL at H = 8 for different values of L are shown in Fig. 5. 
Here a clearly defined intersection point (TN = 3.120) 

Fig. 1. Dependence of heat capacity C/kB on temperature kBT/|J1|. 

Fig. 2. Dependence of magnetic susceptibility χ on temperature 
kBT/|J1|. 

Fig. 3. Dependence of magnetic order parameter m on tempera-
ture kBT/|J1|. 

Fig. 4. Dependence of magnetization on temperature kBT/|J1|. 
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is seen, which indicates a second-order PT and is a critical 
temperature. Similar dependences of the Binder cumulants 
were calculated for all values of the magnetic field in the 
range 7.0 ≤ H ≤ 14.0. Analysis of the results has shown 
that a second-order phase transition is observed in the 
range 7.0 ≤ H ≤ 10.0. There are no clearly defined intersec-
tion points on the temperature dependences of the Binder 
cumulants UL for the stronger fields 11.0 ≤ H ≤ 14.0. 

For a more detailed analysis of the nature of the PT, we 
used the histogram method of data analysis. In Figs. 6 and 7, 
histograms of energy distribution for a system with linear 
size L = 60 are shown at field values H = 8.0 and 13.0, 
respectively. The graphs are plotted for temperatures close 
to critical. As can be seen, one well-pronounced maximum 
is observed on the dependence of the probability P on the 
energy U at the value of the applied magnetic field 
H = 8.0. The presence of one maximum on the histogram 
testifies in favor of the second-order PT. A similar picture 
is observed for field values in the range 7.0 ≤ H ≤ 10.0. 

For a magnetic field H = 13.0, the histogram exhibits two 
maxima (bimodality), which is evidence in favor of the 
first-order PT. The presence of a double peak on the histo-
gram is a sufficient condition for the FP to be of the first 
order. Bimodality was observed for the range of magnetic 
field values 11.0 ≤ H ≤ 13.0. Thus, our results show that in 
the range of magnetic field values of 7.0 ≤ H ≤ 10.0, the 
antiferromagnetic ordering occurs as a second-order PT, 
and in the range 11.0 ≤ H ≤ 13.0, as the first-order one. 

4. Conclusion 

The study of the antiferromagnetic Ising model on a 
body-centered cubic lattice with competing exchange inter-
actions in an external magnetic field was carried out using 
the replica algorithm of the Monte Carlo method. The range 
of values of the magnetic field strength 7.0 ≤ H ≤ 14.0 is 
considered. It is shown that a second-order phase transition 
occurs in the range of magnetic field values 7.0 ≤ H ≤ 10.0, 
and a first-order one occurs in the range 11.0 ≤ H ≤ 13.0. 
It was found that a further increase in the magnetic field 
strength leads to the suppression of the phase transition. 

The study was carried out with the financial support of the 
Russian Foundation for Basic Research within the frame-
work of scientific projects No. 20-32-90079 – postgraduate 
students and No. 19-02-00153 – a. 
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Модель Ізінга на об’ємно центрованій кубічній 
ґратці з конкурентними обмінними взаємодіями 

в сильних магнітних полях 

K. S. Murtazaev, A. K. Murtazaev, M. K. Ramazanov, 
M. A. Magomedov, A. A. Murtazaeva 

Вплив зовнішнього магнітного поля на фазові переходи, 
магнітні та термодинамічні властивості антиферомагнітної 
моделі Ізінга на об’ємно центровану кубічну гратку з конку-
рентними обмінними взаємодіями вивчали за допомогою 
алгоритму реплік методу Монте-Карло. Показано, що фазо-
вий перехід другого роду спостерігається в діапазоні значень 
магнітного поля 7,0 ≤ H ≤ 10,0, а фазовий перехід першого 
роду спостерігається в діапазоні 11,0 ≤ H ≤ 13,0. Подальше 
пригнічення напруженості магнітного поля призводить до 
заглушення фазового переходу. 

Ключові слова: фазовий перехід, модель Ізінга, магнітне поле, 
метод Монте-Карло. 
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