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The orbital magnetic susceptibility produced by electron states near a crossing point of two band-contact lines 
in a crystal is study theoretically. It is shown that this susceptibility can have an unusual dependence on the Fer-
mi level and can change noticeably with the temperature when the Fermi level is in the vicinity of the crossing 
point. These features of the magnetic susceptibility can be useful in detecting the crossing points in crystal. 
The obtained results explain the well-known temperature dependence of the magnetic susceptibility of V3Si. 
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1. Introduction 

Band-contact lines, i.e., the lines along which two elec-
tron energy bands touch in a Brillouin zone, exist in majo-
rity of crystals with a weak spin-orbit interaction [1–4]. 
For example, such lines were found in Bernal graphite [5], 
beryllium [6, 7], magnesium [7], aluminium [8], LaRhIn5 [9], 
and in the bulk Rashba semiconductors BiTeI and BiTeCl 
(see, e.g., [10]). The band-contact lines (nodal lines) also 
exist in all the topological nodal-line semimetals which are 
intensively studied at present [10–15]. However, the band-
contact lines can cross each other at some points in sym-
metry axes of crystals. The crossing of two band-contact 
lines, which can occur in twofold or fourfold symmetry 
axes, was theoretically studied recently [16]. In particular, 
the crossing of this type takes place in Mackay–Terrones 
crystals [17], ZrB2 [18, 19], V3Si [20, 21], and in the 
ZrSiS-family of the nodal-line semimetals [22–29]. 

Appearance of a new pocket of the Fermi surface or a 
break of its neck are the well-known 1

22 -order electron 
topological transitions of Lifshitz [30–33]. In the Brillouin 
zone, in the vicinity of points of these transitions, the appro-
priate electron band disperses quadratically in the quasi-mo-
mentum p. Appearance of self-intersecting Fermi surfaces 
with changing the chemical potential ζ  is another type of 
the electron topological transition. This transition takes place 
in crystals with the band-contact lines, and it is usually of 
the 1

23  kind [2, 34]. This kind of the transition results 
from the fact that in the vicinity of an isolated band-contact 
line (in a plane perpendicular to it), the two contacting 
bands disperse linearly in the quasi-momentum p [35, 36] 

rather than quadratically. However, in the vicinity of the 
crossing point, the dispersion relation for the two contact-
ing bands essentially changes as compared to the case of 
the isolated band-contact line [16, 21] [see also Eqs. (2) 
and (3) below]. This change leads to the fact that the ap-
pearance of the self-intersecting Fermi surfaces near the 
crossing point is the topological transition different from 
the 1

23 -order one [16, 21]. The characteristic feature of 
this transition is that the Fermi-surface transformation is ac-
companied by an unusual dependence of the magnetic sus-
ceptibility on the chemical potential ζ  [21], 

 
1

cr
0= 1 exp ,

T

−
 ε − ζ  χ ∆χ + + χ  

  
 (1) 

when the magnetic field H  is directed along one of the 
band-contact line at the crossing point. Here the constant 
factor ∆χ  depends on the parameters characterizing this 
point, crε  is the energy of the crossing point, and 0χ  is a 
constant background that is independent of ζ  and of the 
temperature T . This 0χ  is due to the electron states that are 
far away from the crossing point. It should be also noted 
that the first term in formula (1) results from the orbital 
motion of electrons in the crystal. 

In this paper, we develop results of Ref. 21 and present 
a new explanation of the published experimental data on 
the magnetic susceptibility of V3Si. 

2. Electron spectrum near the crossing point 

Neglecting the spin-orbit interaction, the electron ener-
gy spectrum for the two bands “c” and “v” in the vicinity 
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of the crossing point of the two band-contact lines has the 
form [21] 

 2 2
, cr 3 1 1 2 2( ) ( ),c ap B p B p Eε = ε + + + ±p pv  (2) 

 
1/22 2 2 2 2 2

3 1 1 2 2 1 2( ) ( ) ,E a p B p B p p p ′ ′ ′= + + +β p  (3) 

where the 3p  axis in the quasi-momentum space coincides 
with the symmetry axis in which the crossing point occurs; 
the axes 1p  and 2p  are along the tangents to the band-
contact lines at their crossing point; all ip  are measured 
from this point; a, a′ , iB , iB′, β are constant parameters, 
and crε  is the energy of the crossing point. For the four-
fold symmetry axis when 1 2=B B  and 1 2=B B′ ′, the ( )E p  
can contain the term 2 2 2 2

1 2( )p pβ −  instead of 2 2 2
1 2p pβ . 

However, this case reduces to Eq. (3) by the rotation of the 
coordinate axes 1p , 2p  by the angle / 4π . The band-contact 
lines are determined by the condition ( ) = 0E p , and Eq. (3) 
specifies these two lines as follows: 2 = 0p , 2

3 1 1= /p B p a′ ′−  
and 1 = 0p , 2

3 2 2= /p B p a′ ′− , with the point 1 2 3= = = 0p p p  
being their crossing point. 

The parameter a describes the tilt of the spectrum (2) 
along the symmetry axis. At present, we are not aware of a 
noticeable tilt of the spectrum along such an axis for any 
material, i.e., the parameter a seems small for all the known 
crossing points. In this regard, we shall assume below that 

= 0a  in Eq. (2). This assumption simplifies the subsequent 
formulas without imposing fundamental restrictions on the 
results. In the cubic crystal V3Si, the crossing point occurs 
at the highly symmetric point X of its Brillouin zone (X is 
the center of the face of the cubic zone), and in this case 
the symmetry dictates 1 2=B B , 1 2= = 0B B′ ′ , and = 0a  [20]. 

3. Magnetic susceptibility 

When H  is directed along the 1p  axis, the magnetic 
susceptibility χ (per unit volume) produced by the electron 
states in the vicinity of the crossing point is described by 
the formula (1), in which the constant factor ∆χ  has the 
form [21] 

 
2

3 2
1

= ( ),
12

e a f
Bc
′β

∆χ λ
π 

 (4) 

where 2
1 2= 4 /B Bλ β , 

 ( ) = (1 ) ,
2

f λ
λ −λ ∆Φ − ∆ϕ  (5) 

3
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sign= ,
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dE Edk
E k Y E k

∞

−∞
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 (7) 

and 
 2 2 2 2

3 3(1, , ) = (1 ) ( ).Y E k E E k− −λ −   (8) 

In formulas (6) and (7), the integration with respect to the 
dimensionless variable E  is carried out over the region 
defined by the conditions, 

 2 2
3 0,E k− ≥  (9) 

 2
3(1, , ) 0.Y E k ≥  (10) 

It was shown in Ref. 21 that ( ) = 0f λ  at > 1λ , and 
(0) = 2f − π. We now calculate the function ( )f λ  for an 

arbitrary value of λ. Let us define the range of the integra-
tion in formulas (6) and (7) only by condition (9). Then, 
∆Φ  and ∆ϕ are the complex quantities, and condition (10) 
can be taken into account if we take the real part of these 
complex ∆Φ , ∆ϕ. Instead of the variable 3k , let us intro-
duce the variable α in the above integrals: 

 2 2 2 2
3 = sin ,E k E− α   

where 0 / 2≤ α ≤ π . In this case, 2 2= 1 2 ( )Y E c E− + α  with 

 2( ) 1 sin .c α ≡ −λ α   

The integration over E  is carried out explicitly. Ultimately, 
we arrive at 

 
/2

0

( ) = 2 (1 ) Re ( )f d
π 

λ − π −λ −λ  αΛ α  +
  
∫   

 ( )
/2

0

2(1 )Re ( ) 1 ( ) ,d c
π 

+ − λ  α α − Λ α 
  
∫  (11) 

where 

 
( ) 11( ) ln .

( ) ( ) 1
c

c c
α +

Λ α ≡
α α −

  

Calculating the integrals in Eq. (11) numerically, we obtain 
the function ( )f λ  shown in Fig. 1. Interestingly, this func-
tion exhibits the jump at = 1λ . As was mentioned in 
Ref. 21, the cases < 1λ  and > 1λ  differ in the character of 

Fig. 1. The function ( )f λ  calculated with Eq. (11). 
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the transformation of the Fermi surface when the Fermi 
level ζ  crosses the energy crε . We now discuss the differ-
ence between the cases < 1λ  and > 1λ  in more detail. 

At < 1λ , the electron topological transition at cr=ζ ε  is 
the break of the neck connecting the four tube-like surfaces 
of the band “v” and the concurrent appearance of the new 
pocket of the band “c” [16] (Fig. 2). On the other hand, at 

> 1λ , synchronously with the appearance of the new pocket 
of the band “c”, the two separate surfaces of the band “v” 
merge at cr=ζ ε , i.e., the neck of the joint surface is pro-
duced (Fig. 3). In other words, for < 1λ  and > 1λ , the two 
different topological transitions occur although the self-in-
tersecting surfaces appear for both of them. This explains 
the jump in the function ( )f λ . 

To clarify the zero value of ( )f λ  at > 1λ , compare de-
pendences of the density of state on the Fermi level ζ  for 

various electron topological transitions. Let the Fermi sur-
face of an electron energy band “i” exhibit a transforma-
tion when the Fermi level ζ  crosses the energy of the transi-
tion, cε . Then, the density of electron states of this band, 

( )iν ζ , can be represented in the form [30–33] 

 spsm( ) = ( ) ( ),i i iν ζ ν ζ + ν ζ  (12) 

where sm ( )iν ζ  is a smooth function of ζ  in the vicinity of 
the energy cε , and sp ( )iν ζ  is the specific part of the density 
of states that differs from zero only above (or below) cε . 
In the case of the 1

22 -order transition, one has 
sp 1/2( ) | |i cν ζ ∝ ζ − ε  when a new pocket of the Fermi sur-

face appears or its neck breaks. In the case of the 1
23 -order 

transition, the two bands “c” and “v” contacting along the 
line have the common transition energy cε , and iν  for each 

Fig. 2. The Fermi surface at 0 < < 1λ  for cr < 0ζ − ε  (a) and 

cr > 0ζ − ε  (b). For definiteness, we assume that 1 2= > 0B B  here. 
The central part of the self-intersecting Fermi surface in (b) cor-
responds to the electrons in the band “c”, whereas its other parts, 
as well as the surface shown in (a), are produced by the holes of 
the band “v”. 

Fig. 3. The Fermi surface at > 1λ  for cr < 0ζ − ε  (a) and 

cr > 0ζ − ε  (b). As well as in Fig. 2, 1 2= > 0B B  here, and only 
the cental part of the self-intersecting Fermi surface shown in (b) 
corresponds to the electrons in the band “c”. 
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of these two bands has the form of Eq. (12) with 
sp sp 3/2( ) = ( ) | |c cν ζ ν ζ ∝ ζ − εv  [2, 34]. These sp

cν , spνv  differ 
from zero when the self-intersecting Fermi surface ap-
pears. For the transition at the crossing point of the two 
band-contact lines, one has cr=cε ε , and at < 1λ , the total 
specific part of the density of state for the bands “c” and “v”, 

sp sp( ) ( )cν ζ + ν ζv , differs from zero when the self-intersec-
tion of the surface occurs. On the other hand, at > 1λ , we 
obtain that sp sp( ) = ( )cν ζ −ν ζv , and the total density of states 
for the two bands, ( ) ( )cν ζ + ν ζv , is a smooth function 
above and below the energy cr=cε ε  (with the infinite deri-
vative at this energy). In other words, although the topo-
logical transitions occur for each of the bands at > 1λ , the 
appropriate specific parts of ν compensate each other. 
In spite of the fact that the orbital magnetic susceptibility χ 
is not proportional to the density of state, our results show 
that the zero value of ∆χ  at > 1λ  can be interpreted as a si-
milar compensation of the appropriate contributions to the 
susceptibility. Formula (1) also demonstrate that the mag-
netic susceptibility can be the effective probe of the topo-
logical transition occurring at cr=ζ ε  since ∆χ  is not small 
as compared to 0χ , and this ∆χ  is independent of the tem-
perature. 

4. Susceptibility of V3Si 

The magnetic susceptibility χ of V3Si above the tem-
perature of its superconducting transition was measured 
many years ago, and essential temperature dependence of χ 
was discovered [37, 38]; see Fig. 4. Gorkov [20] suggested 
that the chemical potential in V3Si lies near a degeneracy 
energy of two bands at the X point of the Brillouin zone of 

this cubic crystal, and these bands are described by formu-
las (2) and (3) (with 1 2=B B , 1 2= = = 0B B a′ ′ ). He obtain-
ed that χ should logarithmically depends on temperature T  
in this case. However, this explanation of the temperature 
dependence of χ meets with difficulties since the logarith-
mic term in the susceptibility is expected to be small [20, 39]. 
Moreover, the calculation of the magnetic susceptibility 
in Ref. 20 was not complete because only the linear terms 
with respect to H  were taken into account in the Hamilto-
nian of electrons in the magnetic field. In the calculation of 
the magnetic susceptibility, = (1/ ) /H Hχ − ∂Ω ∂ , the elec-
tron thermodynamic potential Ω  is found in the second 
order in H . Hence, for the correct calculation of χ, it is ne-
cessary to take into account both the linear and quadratic 
terms in the electron Hamiltonian. In this case, the calcula-
tion of χ leads to formula (1), since the X point is the 
crossing point of the two band-contact lines (the directions 
of these lines coincide with X-R lines in the Brillouin zone 
of V3Si, Fig. 4). 

For the crossing point with 1 2=B B B≡  and 
1 2= = = 0B B a′ ′ , the factor ∆χ  in formula (1) does not de-

pend on the direction of the magnetic field in the 1–2 plane. 
On the other hand, the magnetic susceptibility is practically 
independent of ζ  and T  when H  is along the 3 axis [21]. 
Taking into account that there are six X points in the Bril-
louin zone of V3Si, we find that the magnetic susceptibility 
of this cubic crystal, as expected, does not depend on the 
direction of H  and is described by formula (1) with the 
following ∆χ : 

 
2

3 2
2= ( ),

3
e a f

c
′

∆χ λ
π λ

 (13) 

where we have taken into account that 2 2= 4 /Bλ β  now. 
Since this λ is positive, the factor ∆χ  is nonzero and nega-
tive only if < 1λ , Fig. 1. Moreover, we shall see below that 
λ seems small in V3Si, i.e., ( ) 2f λ − π  in Eq. (13). 

In the experiments [37, 38], the magnetic susceptibility 
decreases with increasing T . Then, according to formula (1), 
we should assume that cr > 0ε − ζ , i.e., the chemical poten-
tial lies below crε . The parameter a′  can be estimated from 
the band-structure calculations along the Γ-X axis of V3Si. 
Taking 0.472 nm as the linear size of the cubic cell of this 
crystal [40], we obtain the crude estimate, 52 10 m/sa′ ≈ ⋅ , 
from Fig. 4 of Ref. 41. Then, 71.05 10 ( ) /f−∆χ ≈ ⋅ λ λ , 
and the parameter λ can be found from a fit of dependence (1) 
to the appropriate experimental data. 

Figure 4 shows our fit of the magnetic susceptibility cal-
culated with formulas (1), (13) to the experimental data of 
Ref. 38. (These data have been recalculated per unit volume, 
using the following values for V3Si: 1 mole = 180.91 g and 
the density 3= 5.7 g/cmρ .) This fit gives 5

0 1.54 10−χ ≈ ⋅ , 
cr 122ε − ζ ≈  K and 51.36 10−∆χ ≈ − ⋅ . The obtained value 

of ∆χ  corresponds to 32.4 10−λ ≈ ⋅  if 52 10 m/sa′ ≈ ⋅ . Note 
that the value of crε − ζ  is small as compared to that found 

Fig. 4. The temperature dependence of magnetic susceptibility χ  
of V3Si according to formulas (1) and (13) (the solid line). Here 

5
0 1.54 10−χ ≈ ⋅ , cr 122ε − ζ ≈  K, 51.36 10−∆χ ≈ − ⋅ ; at 5= 2 10a′ ⋅  

m/s this value of ∆χ corresponds to 0.0024λ ≈ . The cycles mark 
the experimental data [38] which have been recalculated per unit 
volume of the sample. Inset: The Brillouin zone of V3Si and its 
characteristic points. 
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in the band structure calculations ( 24
 mRy) [41, 42]. 

However, the error of these calculation is just of the order 
of 20 mRy [42]. 

Let us discuss the possibility of a large value of 
cr| |ζ − ε  in more detail. Since the contribution of the elec-

tron states near the X points to the susceptibility cannot 
explain its noticeable temperature dependence if crε  is far 
from the Fermi level, we now consider another possible 
explanation of this dependence. This explanation was sug-
gested many years ago [43, 44], and it is based on exist-
ence of a peak in the dependence of the density of electron 
states ν on the energy ε near the Fermi level ζ . According 
to Fig. 12a of Ref. 41, this peak really exists. In the vicini-
ty of the peak, we find that the density of states is well 
approximated by the function (Fig. 5) 

 
1/6

1/5

235.08( ) = , 0.439,
(0.57 )

134.45( ) = , 0.439,
( 0.428)

ν ε ε ≤
− ε

ν ε ε ≥
ε −

 (14) 

where ε is measured in mRy, and ν in states per Ry and 
the crystal cell. The zero value of ε is chosen in Ref. 41 so 
that = 1.8 mRyζ − . Neglecting a small shift of ζ  with the 
temperature T , we obtain the following expression for the 
spin magnetic susceptibility produced by the peak in the 
density of states, 

 2
2
( )( ) = ,

4 cosh [( ) / 2]B
dT

T
ν ε ε

χ µ
ε − ζ∫  (15) 

where Bµ  is the Bohr magneton. In Fig. 5 we show ( )Tχ  
calculated according to Eqs. (14) and (15), with the con-
stant term 6= 8.05 10−χ ⋅  being added to ( )Tχ  for the cal-
culated magnetic susceptibility to coincide with experi-
mental data at low temperatures. This additional term may 
be ascribed to an orbital magnetic susceptibility associated 
with filled electron bands. It is clear from Fig. 5 that the peak 
in density of states cannot explain the experimental tem-
perature dependence of the magnetic susceptibility. This result 
supports our assumption that the temperature dependence 
of the magnetic susceptibility of V3Si is due to the crossing 
of the band-contact lines in the vicinity of the Fermi level. 
The spin susceptibility described by Eq. (15) can be con-
sidered as a part of the background term 0χ . 
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Магнітна сприйнятливість кристалів з перетином 
ліній контакту зон 

G. P. Mikitik, Yu. V. Sharlai 

Теоретично досліджено орбітальну магнітну сприйнятли-
вість, пов’язану з електронними станами коло точки перетину 
двох ліній контакту зон в кристалі. Показано, що ця сприй-
нятливість може мати незвичну залежність від рівня Фермі, 
та може значно змінюватися з температурою, якщо рівень 
Фермі знаходиться поблизу точки перетину. Ці особливості 
магнітної сприйнятливості можуть бути корисними при де-
тектуванні точок перетину в кристалі. Отримані результати 
пояснюють відомі температурні залежності магнітної сприй-
нятливості у V3Si. 

Ключові слова: магнітна сприйнятливість, електронні топо-
логічні переходи, перетин ліній контакту 
зон, V3Si.
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