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Impedance ac diagnostics is regularly used to study the transport phenomena in conducting systems of differ-
rent dimensionalities. A common reason for using ac methods that are more complex than dc methods is the pos-
sibility to exclude the influence on the current-voltage (I–V) characteristic of contact phenomena accompanying 
dc measurements. In some cases (2d  electron systems over helium) dc transport measurements are impossible. 
In weakly doped semiconductors (diluted electrolytes), the situation is less critical, but problems with the ohmic 
properties of the conducting contacts remain. The analysis of the details of the formalism that determines the re-
action of a conducting medium to an external disturbance depends largely on the form of Ohm’s law for a conduc-
tor introduced into the impedance circuit. If there is a reason to define this law by the formula = σj E , where j, 
σ, E  correspond to local values of current density, conductivity, and transport electric field, the structure of 
complex resistance ˆ ( )FZ ω  is considered as a force one. If there is a diffusion component in Ohm’s law then 
the structure of complex resistance ˆ ( )Zµ ω  is considered as an electrochemical one. We describe a standard elec-
trolytic capacitor in series RC with a step load in terms of force or complex electrochemical impedance. Compa-
rison with experiment shows the electrochemical structure of the complex resistance. 

Keywords: transport phenomena, current density, conductivity, electrochemical impedance, Ohm’s law. 
 

 
Introduction 

The behavior of conducting systems of different dimen-
sionalities in an alternating exciting field is regularly stud-
ied using impedance ac diagnostics. A common reason for 
this method, more complicated then methodological possi-
bilities in the dc regime, is the possibility to exclude the in-
fluence of contact phenomena accompanying dc measure-
ments on the current-voltage (I–V) characteristic. In some 
cases (2d  electron systems over helium [1–3]) dc transport 
measurements are impossible. In semiconductor structures, 
the situation is less critical, but problems with the ohmic pro-
perties of the conducting contacts remain [4, 5]. 

The complex resistance ˆ ( )Z ω , which determines the re-
action of a conducting medium to an external perturbation, 
essentially depends on the form of Ohm’s law for a con-

ductor introduced into an impedance circuit. If there are 
reasons for writing it as = σj E, we call the structure of 
complex resistance ˆ ( )FZ ω  the force one. If there is a diffu-
sion component in Ohm’s law, then we call this structure 
of ˆ ( )Zµ ω  electrochemical. 

For weakly doped semiconductors and dilute electro-
lytes, the force interpretation of ohmic conductivity is gen-
erally accepted. Homogeneous electric field E in Ohm’s 
law = σj E does not violate the constancy of the average 
density of charge carriers in the volume of a three-dimen-
sional conducting medium. This property allows linear 
transport calculations, taking the field ( )tE  as the initial 
perturbation (in practice, the perturbation is the potential 
difference ( )gV t  between the control electrodes). The local 
current density ( )tj  caused by the external field is also ho-
mogeneous [5]. Recent measurements of ˆ ( )FZ ω  in dilute 
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colloidal solutions are discussed in [6, 7] (in [6], the Wayne 
Kerr bridge 6425A was used, in [7], it was the LCR meter, 
HP484A at 150 kHzω , at which the imaginary part of 
the impedance disappears). 

Experimental data [8–10] shows that in the mode of 
step loading 0( ) = ( )gV t V tθ  [ ( 0) = 0tθ ≤ , ( > 0) = 1tθ ] the 
characteristic relaxation times ∞τ  are much higher than 
expected outτ  in the force interpretation ˆ ( )FZ ω  [definitions 
of times outτ  and ∞τ  are given below, formulas (3) and (11)]. 
The statement out∞τ τ  also arises in the study of relaxa-
tion phenomena accompanying the loss of stability of a 
charged liquid surface in an external electric field and is 
discussed separately [11]. The experimental behavior of a 
standard electrolytic capacitor in a stepwise loading regime 
in terms of force ˆ ( )FZ ω  or electrochemical ˆ ( )Zµ ω  struc-
tures of complex resistances is considered in this work. 

1. Impedances ˆ ( )FZ ω  and ˆ ( )Zµ ω  for an electrolytic 
capacitor under a stepwise load 

The complex resistance in Ohm’s law ˆ( ) =  ( )gV t Z J t  is 
usually called impedance Ẑ  [12]. If the perturbation ( )gV t  
is harmonic with a frequency ω, the Ohm’s law takes the 
form 
 ˆ( ) = ( ) ( )gV Z Jω ω ω , (1) 

where ˆ ( )Z ω  is the complex impedance of the conducting 
structure. In the general case of nonharmonic perturbations, 
the concept of impedance keeps its meaning as a linear re-
lationship between ( )gV t  and ( )J t . 

А. Let us consider an impedance circuit shown in Fig. 1, 
containing a voltage source 0( ) = ( )gV t V f t  [ 0V  is the ampli-
tude of the disturbance, ( )f t  is the time dependence of this 
perturbation, stepwise or harmonic], external resistances iR  
and a flat capacitor dC  which can be filled with a dilute 
electrolyte. 

The experimental data for the total displacement charges 
0( , )iQ V t  ( = , ,i A B C  in Fig. 2), getting on the capacitor elec-

trodes in Fig. 1 under step perturbation 0( ) = ( )gV t V tθ  al-
lows to verify the theory predictions in zones “1” and “2” 
marked in Fig. 3 and Table 1. Index “i” denotes the values 
of external resistances iR  used when performing the time 
cycles 0 < <t ∞. 

The RC  impedance equation for ( )FQ t  in the “force 
approximation” has the form [12] 

 0 = ( ).F F
g

d

dQ QR V t
dt C

+  (2) 

Here 0R  is one of the resistances iR  of the circuit in Fig. 1, 
1

dC d −∝  is the geometric capacitance of an empty capaci-
tor, d  is the distance between its plates and ( )gV t  is the 
voltage applied to the circuit. The term “force approxima-
tion” introduced above means that the transport component 
(first term) of Eq. (2) follows the Ohm’s law in the form 

0=RE R J , where = /FJ dQ dt . We are looking for a solu-
tion of Eq. (2) first in the case of an empty capacitor, and 

Fig. 1. Circuit diagram with electrolytic capacitor dC  and cali-
brated external resistances iR  (precision resistors of the C2-29 type, 
high-precision with a low-temperature coefficient of resistance) 
for measuring the RC constant by short-circuiting the correspond-
ing resistors. The left side circuit corresponds to charging the 
capacity dC  from the voltage source ( )gV t , the right side one 
corresponds to its discharge (the contact position changes). The 
time-dependent values of the total charge ( )Q t  on the capacitor 
plates are calculated using the data on current flow through the 
reference resistance = 24.9 OhmmR  and their subsequent ADC 
(Analog-to-Digital Converter) processing (the abbreviation is ex-
plained in the text of the work). The obtained values of ( )Q t  are 
presented in Fig. 2. 

Fig. 2. Dependence of the charge ( )Q t  [C] on the logarithm of 
time [s] in the cell Fig. 1 under the stepwise loading of the capaci-
tor with different voltage gates: 0 = 1.2V  (A), 3.3 (B), 5.0 (C) V; 
external circuit resistance is 1592.9 Ohm. Vertical arrows explain 
the Q∞ definition used in the text to construct dimensionless 
quantities. The inset shows the dependence of Q∞ on 0V , empha-
sizing the linearity of the considered relaxation processes in this 
region (nonlinear effects start for this type of capacitors in the 
region 0 > 10 VV ). Each line ( )Q t  at a fixed voltage gate 0V  is 
recorded 4 times in 2 charge-discharge cycles, so the points on 
the graphs belong to 4 curves. The hysteresis of characteristics in 
the charge-discharge cycle was not observed. 
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then its generalization to a filled with dilute electrolyte 
one. Two types of external perturbation of a system with 
a dilute electrolyte are discussed: stepwise and sinusoidal. 
These forms of external perturbation are appropriate for 
showing the difference between two approximations [“force” 
ˆ ( )FZ ω  and “electrochemical” ˆ ( )Zµ ω ] describing the impe-

dance properties of a dilute electrolyte. 
The solution 0 ( )FQ t  of the Eq. (2) defines the impedance 

ˆ ( )FZ t . Without electrolyte it reads 

0 0
0 out out 0( ) = [1 exp ( / )], (0) = 0, = .F d F dQ t C V t Q R C− − τ τ  

  (3) 
To show the difference between the impedances of 

ˆ ( )FZ ω  and ˆ ( )Zµ ω  in a capacitor filled with electrolyte, it is 
convenient to know the relaxation time outτ  (3). 

Filling the capacitor with electrolyte changes the prob-
lem. First, its volume is filled with a dielectric with a con-
stant ε, which is the real part of the dielectric constant of 
the electrolyte at low frequencies (formally, at a frequency 
tending to zero). This almost instantaneous change of ca-
pacity can be easily taken into account by the replacement 

=d d dC C Cε→ ε . Secondly, simultaneously with the volt-
age drop in the outer section of the circuit, a similar pro-
cess occurs in the volume of the electrolyte. Taking it into 
account leads to corrections of the form in /R dQ dt  to 
Eq. (2), where inR  is the internal resistance of the electro-
lyte volume. Third, from the moment the external disturb-
ance ( )gV t  is switched on, the process of its screening by 
electrolyte ions begins, which changes the capacity ( )C t  
with time. With the replacements 0 ( )R R t→  and ( )dC C tε → , 
problem (2) becomes more complicated, turning into a 
system of equations. The definitions that control the behav-
ior of ( )R t  and ( )C t  arise depending on the amplitude of 
the external perturbation ( )gV t . The resulting changes in 
the behavior of ( )FQ t  in comparison with 0 ( )FQ t  (3) give 
an idea about the transport properties of the electrolyte in 
the force approximation. 

The definition of the capacitance ( )C t  has the following 
structure [12]: 

2
2

out
( , )( ) ( ) / 2 = , ( ) = ( ) ( ) ,
8

d
F

g g g
d

dQE x tC t V t dx V t V t R t
dt

+

−

−
π∫



   

  (4) 

where ( , )E x t , ( )gV t  are the electric field distribution and 
perturbation in bulk electrolyte. In the force approxima-
tion, the behavior of ( , )E x t  follows from the definitions 
[10, 11] 

 eff

eff

( ) / [ ( ) 4 ( )] = 0,
= ( ), ( ) = ( ),

F F

F s

d t dt E t t
t en t+ −

σ + σ − πσ

σ σ + σ σ



 (5) 

and using the force approximation simplifications 

Fig. 3. Representation of the function 0( , )iQ V t  (Fig. 2) in the co-
ordinates (ln [1 ( )], )iq t t−  (13), voltage gates 0 = 1.2 VV . External 
resistance value iR : 1 = 1592.9R  (squares), 2 = 1260.9R  (rhombuses), 

3 = 928.9R  (stars), 4 = 569.9R  (triangles) Ohm. The curves indicate 
the formation of two regimes corresponding to the relaxation be-
havior of 0( , )iQ V t  function. Scenario (9) takes place in zone “1”. 
Scenario (11) — in zone “2”. The parameters: i

λτ , iCλ , i
∞τ  are 

obtained by processing the linear parts of the graphs using a nu-
merical procedure for determining the derivatives (see text for the 
details). The corresponding numbers are gathered in the Table 1. 

Table 1. Data processing of Figs. 3 and 4, corresponding to different values of control gates: V0 = 1.2 and 3.3 V [ iR  is the values of 
the external resistances, the times i

λτ  represented by formulae (9), the values of iCλ  determined by the formula = /i i
iC Rλ λτ , the times i

∞τ  
defined by formulae (11)] 

V0 = 1.2 V 

iR , Ohm 569.9 928.9 1260.9 1592.9 
i
λτ , s 1.797 ± 0.015 2.800 ± 0.012 3.817 ± 0.020 4.848 ± 0.029 
i
∞τ , s 17.4 ± 2.1 14.8 ± 1.7 14.2 ± 1.7 15.6 ± 3.8 
iCλ , 10–3 F 3.15 ± 0.03 3.01 ± 0.03 3.03 ± 0.02 3.04 ± 0.02 

V0 = 3.3 V 

iR , Ohm 569.9 928.9 1260.9 1592.9 
i
λτ , s 1.829 ± 0.01о 2.873 ± 0.022 3.905 ± 0.016 4.987 ± 0.045 
i
∞τ , s 43.7 ± 9.7 44.7 ± 8.0 46.8 ± 12.0 51.5 ± 20.0 
iCλ , 10–3 F 3.21 ± 0.02 3.09 ± 0.02 3.10 ± 0.02 3.13 ± 0.03 
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0

(0) = 0, = ( ) , (0) ( 4 ),
d

s s sen j n n x dx j E en± ±
±− δ ∝ − π∫ 

   

  (6) 

1
eff Maxw , ( ) = ( ) / , > 0, ( ) = ( ) .g F sE t V t d t Q t en t S−σ τ ε 

   
  (7) 

In the force scenario of relaxation, the ion current in the 
volume of the capacitor does not depend on coordinates; 
therefore, its value ( )j x  can be taken at any point, for ex-
ample, in the center of the cell, where = 0x , i.e., 

(0) ( = 0)j j x≡ . The external field is screened by the elec-
trolyte ions so the charge density ( )n x±δ  at the edges of the 
cell increases forming so-called accumulation layers with 
surface ion density sn± . S  is the surface of the gate elec-
trodes, effσ  is the effective electrolyte conductivity with 
contributions +σ  and −σ  ions of different charges. Maxwτ  is 
so-called Maxwell relaxation time characterizing the rate 
of relaxation phenomena in bulk electrolyte (see, e.g., [14]). 
The current definition (0) ( 4 )sj E en∝ − π  corresponds to 
the force approximation of relaxation kinetics. 

Equation (5) requires the boundary conditions. Let us 
consider two cases: 

(i) The dependence of voltage on time has the form 
0( ) = ( )gV t V tθ , then the filling of accumulation layers starts. 

(ii) The dependence of voltage on time has the form 
0( ) = exp ( )gV t V i tω , where ω is the excitation frequency. 

The asymptotics of the derivative ( ) /d t dtσ  at large 
times: Maxw/ 1t τ   or 1tω  , in these two cases are quali-
tatively different. 

In the case (i), the charge ( )Q t  is determined by two 
flows: the arrival of charges in the capacitor from the outer 
part of the circuit with the relaxation time out 0= dR Cτ  (3) 
and the internal flows in the cell with electrolyte conduc-
tivity following the law (8) [10, 11]: 

( )

Maxw Maxw
0

= / , (0) = 0, 0
( ( ) / 4 )

tF
F

F
F

d t t
E t

σ
σ

τ σ ≤ ≤ τ
− σ π∫



  (8) 

with a relaxation time of the order of Maxwτ . 
If Maxw outτ τ , the process of filling the capacitor by 

mobile charges is controlled by the time Maxwτ , the func-
tion ( )E t  (7) transforms to 0( ) = / ( )E t E V d→ ε  and for-
mula (8) takes the form 

 Maxw

Maxw

( ) = [1 exp ( / )] / 4 ,
(0) = 0, 0 .

F

F

t E t
t

σ − − τ π

σ ≤ ≤ τ
 (8a) 

Under conditions (8), (8а), the function ( )C t  (4) can be 
approximated by the effective capacity Cλ  having the scale 

/dC C dε
λ ∝ λ, where λ is the Debye screening length 

(we assume d λ , typical for electrolyte capacitor). 

For evaluating Cλ , it is necessary to go beyond the 
force approximation, since formally the force limit for the 
effective capacity ( )C t → ∞  turns out to be divergent. 
Thus, the evolution of ( )FQ t  in the area Maxw t ∞τ ≤ ≤ τ  is 
determined by the expression 

 ( ) = [1 exp ( / )] / 4 , (0) = 0,i
F Ft E t λσ − − τ π σ  (9) 

 out= , / ,i i i
i dR C C C dε

λ λ λ λ ∞τ λ τ τ τ
   .  

Here out
iτ  is the effective relaxation time from (3) taking 

into account the replacement d dC C ε→ , ∞τ  is the time of 
electrochemical relaxation (discussed below, see (11)). The 
relaxation time Maxωτ  does not appear in the equations of 
this scenario, but it determines the transition ( )C t Cλ→ . 

The general definition of the capacitance ( )C t  (4) de-
pends on the filling rate of the accumulation layers at the 
edges of the cell. Under the conditions Maxw out0 ≤ τ τ , 
the capacitance ( )C t  grows rapidly in the interval 

( )dC C t Cλ≤ ≤ . Subsequently, the growth of the capaci-
tance stops, and the time dependence of Eq. (4) is reduced 
to its presence in the factors 2 ( )gV t  on both sides of defini-
tion (4), while the problem of the behavior of the fields 

( , )E x t  from (4) in the volume of the cell is linear in ( )gV t . 
Verification of this important property is presented in the 
inset of Fig. 2. 

The time Maxwτ  is an important parameter for the defini-
tion of ADC regime activity. If, e.g., we have θ-like exi-
tation [regime (i)], the time intervales it∆  into which the 
current experiment time is divided to perform intermediate 
integrations i iQ j dtδ ∝ ∫ , performed by the ADC, is selected 
in our case from considerations of Maxwit∆ τ . Thus start-
ing from the zero moment = 0t , the information about the 
current value of ( )F tσ  is not recorded in the measurements. 

In the case (ii) with an oscillating external voltage 
0( ) = exp ( )V t V i tω , the possibility of converting ( )C t Cλ→ , 

allowing serious simplifications (9), is absent. In each cycle, 
the electrolyte in the cell changes its polarization, as a re-
sult the density ( )sn t  of the accumulation layers fluctuates 
around zero. The situation resembles the problem of the 
frequency dispersion of the dielectric permittivity of polar 
dielectrics [13]. In this case, the case (i) corresponds to 
switching on a permanent electric field in order to deter-
mine the static dielectric constant of a molecular liquid (for 
example, water). The dipole moments of water molecules, 
initially in chaotic positions, are polarized by an external 
electric field within a characteristic time rotτ . This time 
cannot be accurately measured in a stepwise mode. For the 
liquids with polar molecules and Debye screening length [14], 
the experiment leads to estimations: 11

rot 10 s−τ  . This 
time determines the position of the observed frequency dis-
persion of the dielectric constant of polar liquids on the 
frequency axis. 

В. The difference in the behavior of functions 0 ( )FQ t  (3) 
and ( )FQ t  (9) gives an undestanding of the phenomenon of 
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the force relaxation in electrolytes. The predictions can be 
checked for the cells filled with either cryogenic [8] or con-
ventional (pure water) [9, 10] electrolytes with high inter-
nal resistance. 

It becomes evident, that the relaxation process ( )iQ t Q∞→  
is not finished around the times Maxwτ  [or Maxw

i
λτ τ , 

where λτ  is from (9)]. According to Fig. 2 and their special 
representation (for clarity) by Figs. 3 and 4, the processes 
in the “1” zones correspond to the force approximation. 
But the relaxation process does not decay at long times of 
the “1” zones, moving to the “2” zones with the characte-
ristic time out Maxw∞ λτ τ ≥ τ τ . The reasons for this transforma-
tion indicating a significant contribution of the diffusion com-
ponent of flows to the relaxation process are discussed below. 
One of the disadvantages of the force interpretation of re-
laxation process is the simplified concept of the structure of 
the accumulation layers sn± . These two-dimensional for-
mations retain the structure of δ-functions along the edge of 
the cell at all stages of the relaxation process, what was used 
calculating (6) [10, 11]. In fact, the layers must have a finite 
thickness of the order of the Debye length Dλ  for a given 
conducting medium. It seems that the force simplification 
makes sense in any case in the presence of the inequality 

D dλ  , where d is the distance between the capacitor elec-
trodes. This consideration makes sense in electrostatics, but 
it is qualitatively incorrect for an expression for the current 
density containing the derivatives / 0dn dx± ≠ . To avoid 
these divergences, it is necessary to use the “electrochemi-
cal” approximation instead of the “force” one. 

According to the electrochemical approach [10, 11, 15] 

 

1
0

0

| | ( , ) = ,
( ) = | | ( ) ln ( ),

= | | ,

e j t
x e x T n

e n

− ±
± ±

± ±
±

± ±

σ ∇µ

µ ± ϕ +

σ ζ

r
 (10) 

where ±ζ  is the ion mobility. 

The smallness of the fluxes ( )j t±  in the ohmic mode 
agrees with the finiteness of the derivatives / 0dn dx± ≠  if 
the combination ±∇µ  tends to zero near a stationary solu-
tion arising at the end of the relaxation process. The same 
property ensures the finite thickness of the accumulation 
layers. 

The general system of equations that determine the 
properties of the electrochemical impedance ˆ ( )Zµ ω  con-
sists of the continuity equation for the current ( , )j t± r  and 
the Poisson–Debye equation, connecting the local values 
of ( , )n t± r  and the electric potential ( , )tϕ r  together with 
the boundary and initial conditions. 

These conditions should be sufficient to formulate the 
problem of electrolyte relaxation in the cell (Fig. 1) from 
the initial homogeneous state to the final state correspond-
ing to the complete screening of the external perturbation 

0( ) = ( )gV t V tθ  in the central part of the cell by the fields of 
the formed accumulation layers. 

Formulation of this problem and its detailed discussion 
(mainly at the numerical level) is presented in a review 
work [15], an approximate analytical solution is proposed 
in [11]: 

 / = / , ( ) 0dj dt j j t∞− τ → ∞ → , (11) 

 
( ) 0 0

| | ( , ) 1= exp , = ,
d s e se eds d

T T T D
∞

∞
+ + +

Φ ξ τ + ξ ζ ζ ∫ ∫   

 ( , ) = [ ( ) ( )]x s x s∞ ∞ ∞Φ ϕ − ϕ .  

At long times the expression ( , )x s∞Φ  can be simplified by 
replacing ( , ) ( )x t x∞ϕ → ϕ . 

The relation following from dimensional analysis [15] 
and verified numerically in the region / 1eV T ≤  

 Maxw/ /L∞τ τ λ  (12) 

illustrates the role of diffusion in the formation of the time 
∞τ  in comparison with Maxwτ . Obviously, characteristic 

times (12) emphasize the necessity to take into account the 
force and diffusion components in the complex solution of 
problem (10), but the time structure ( )gV∞τ  (11) cannot be 
suggested by the dimensional analysis. 

In the calculations accompanying definitions (11), it was 
noted that they were obtained in agreement with Einstein’s 
rules. Expecting manifestations of the diffusion effect on 
the current density, one could limit ourselves to replacing (8), 
(9) by (11), leaving further formal calculations. But the con-
ductivity of electrolytes is considered a nonlinear function 
of the density of mobile charges since the work of Debye, 
Onsager, Kohlrausch [16–18]. This complication does not 
affect the picture of evolution (6)–(9), since in structure (8) 
only the formula (0) ( 4 )sj E en⊥∝ − π  is important, which 
makes sense without any requirement for the properties of 
conductivity as a function of density. In electrochemistry, 
this part of the formalism becomes critically important. 

Fig. 4. A set of graphs ln [1 ( )]iq t−  with formation of regimes: “1” 
and “2” — at control gate 0 = 3.3 VV . The inset explains the de-
tails of the “1” zone (similar to Fig. 3). The center of the zone “2” is 
oriented towards the saddle points, at which 2 2/id Q dt  changes 
sign (the details are in the Appendix). 
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The force term | |e±σ ∇ϕ  in (10) should be a linear func-
tion of the density of mobile particles. These are Einstein’s 
rules relating the coefficients of mobility and diffusion of 
statistically classical charges. The discord with [16–18] is 
obvious. The details of the relationship between the ˆ ( )FZ ω  
and ˆ ( )Zµ ω  regimes take on a meaning beyond the purely 
“electrolytic” subject. And the correspondence (or not) to 
the observations of the details of formula (11) allows us to 
speak about the fulfillment of Einstein’s rules in far from 
gas conditions. 

С. Let’s process the data 0( , )iQ V t  [where 0( ) = ( )gV t V tθ ] 
in Fig. 2 for comparison with the predictions (3), (9) or (8), 
(11). The “i” index denotes the values of the external re-
sistances used when starting time cycles, < <i tλτ ∞ . For 
short periods of time in zones “1” (Figs. 3 and 4) appears 
the influence of the effective capacity Cλ . The last stage of 
the accumulation layers formation corresponds to zones “2”. 

Processing 0( , )iQ V t  data in coordinates 

 0 0(ln [1 ( )], ), ( ) = ( , ) / ( , )i i i iq t t q t Q V t Q V t− → ∞  (13) 

is shown in Figs. 3 and 4. In these variables the values of 
ln [1 ( )]iq t−  with different external resistances iR  and the 
same capacitance values at short times t  have the form of 
a cluster of straight lines depending on the index “i” with 
the origin at zero. The slope of these lines gives (as ex-
pected) an idea of the time scales =i

iR Cλ λτ , where the 
capacity Cλ  is defined by formulas (9). The quality of the 
estimation of these slopes depends on the observed length 
of the linear segments of the function ln [1 ( )]iq t−  (the 
details of this data processing are discussed in the Appen-
dix). The final results are summarized in the Table 1: 

 pass = 3000 μFdC C Cε
λ  . (14) 

It is easy to see from the data in the Table 1 that the reduc-
tion general equations (2)–(8) to formula (9) does indeed 
take place. The measured values of Cλ  are close to the 
passport value pass = 3000 μFC , which is much higher than 
the nominal geometric capacitance of dC ε . 

At large times when 

 ( ) = (1 ), 0, lni i i iq t q q q− ∆ ∆ → ∆ → −∞ , (15) 

the cluster of lines is gathered into a set of asymptotics: 
ln [1 ( )] lni iq t q− → ∆  uniformly tending to the region of 
small values of the logarithm [times over 50 s (Fig. 3) and 
over 120 s (Fig. 4)]. 

The asymptotics (15) are preceded by the most im-
portant for our work zones “2” in Figs. 3 and 4 (approxi-
mately linear areas in the vicinity of 35 s in Fig. 3 and 80 s 
in Fig. 4; they are marked with dashed ellipses). The times 

∞τ  are gathered in the Table 1. 
Under the conditions D dλ  , accumulation layers are 

practically formed. The resistance of the medium is predo-
minantly diffusional, which characterizes the proximity of 

the electrochemical potential to its stationary value 0∇µ → . 
Internal resistance begins to exceed all input values iR , and 
therefore the times i

∞τ  cease to depend on iR  (unlike the 
zone “1”). From the data of Figs. 3 and 4 one can see the 
predicted by formulae (11) inequality 0/ > 0V∞∂τ ∂ . 

2. Impedances ˆ ( )FZ ω  and ˆ ( )Zµ ω  for the electrolyte 
in a periodic external perturbation 

The Debye–Huckel–Onsager theory [16, 17] contains 
two corrections to the mobilities of (0)

±ζ  ions in an infinitely 
dilute electrolyte: relaxation rel

±ζ  and electrophoretic foret
±ζ . 

2 (0) (0)
(0)rel 1 2

(0) (0)
| | ( )

= , =
( )( )3 (1 )

e z z q z zq
z zT q

+ + − −
± ±

+ − + −

ζ − ζ
ζ −ζ

− ζ + ζε λ +
, (16) 

 (0)foret = / .R± ± ±ζ −ζ λ  (17) 

Here (0)
±ζ  is the ions Stokes mobility with the effective ra-

diuses R±. Formulae (16), (17) are taken from [18], where 
the results of [16, 17] are reproduced using the correlation 
properties of the ion system in a charged liquid. 

Definitions (16), (17) suggest a nonlinear structure of 
electrolyte conductivity = e n± ± ±σ ± ζ  and, on this basis, a 
prerequisite for violating Einstein’s rules in the argument 
of Sec. 1. On the other hand, the entire electrochemical 
literature, represented by the encyclopedic book [5], says 
that formulae (16), (17) correspond to experimental data on 
transport in dilute electrolytes. It remains to assume that 
the discrepancies between the predictions [16, 17], the nu-
merous confirmations of their validity [5] and the contra-
diction of formulae (16), (17) to Einstein’s rules are of a 
methodological nature. One can talk about Ohm’s law in 
the form = e n± ± ±σ ± ζ  but it has to be measured correctly. 

As noted in the Introduction, the dc possibilities for 
transport measurements in dilute electrolytes disappear. 
The ac methods taking into account (16), (17) correspond 
to the force interpretation of the impedance ˆ ( )FZ ω . In fact, 
all impedance circuits provide information about the elec-
trochemical impedance ˆ ( )Zµ ω , for which the diffusion 
component is important, as shown above for the step dis-
turbance example. It remains to verify this for the case 
ˆ ( )Zµ ω  with periodic perturbation. 
А. The case of periodic external perturbation 

0( ) = exp ( )gV t V i tω  corresponds to the operation mode of 
the above mentioned standard devices [6, 7] for measuring 
the ohmic resistance of liquid conductors. Within the frame-
work of approximation (5), in the force approximation for 
ˆ ( )FZ ω  in the region 0eV T  we have 

 * 0 * eff 0 0= [ ], = 4 , = / 4i Eωσ ω σ − σ ω πσ σ π ,  

 * 0
* * 0

*
( ) ( ) = , ( ) = .

( )
i

i
ω σ

ω + ω σ ω ω σ σ ω
ω + ω

 (18) 

The oscillating density ( )σ ω  has a familiar relaxation dis-
persion. Its processing in terms of 
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2
* 0 * 0

2 2 2 2
* *

Re ( ) = , Im ( ) =
ω σ ωω σ

σ ω σ ω −
ω + ω ω + ω

 (19) 

suggests the existence of a relaxation maximum at the fre-
quency *=ω ω . It follows from the requirement 

Im ( ) / = 0∂ σ ω ∂ω . 
The equation of motion of a free charged particle in 

an alternating field is 

 0= exp ( ),dM eE i t
dt

 + ω τ 

v v  (20) 

formally similar to (18), where M  is the effective mass of 
the charged particle, e is its charge, τ is the appropriate 
relaxation time. But the constants included here differ in 
meaning. 

Naturally, solutions (18), (20) are used in different are-
as of physics. The equation of motion (20) is, for example, 
the fundamental one in the description of the details of a 
one-particle Brownian motion [19]. On its basis, there is a 
method for determining the effective mass including the 
temperature dependence of the effective mass of cations (po-
sitive ions) in liquid helium [20]. This phenomena, contain-
ing in the interpretation [21, 22] Stokes’ predictions made 
a century ago (see [23], § 20), was experimentally discovered 
only when studying the dynamic properties of helium ions. 

В. Simplifications (replacing ( , ) ( )j x t j t→  [11]) in the 
derivation of formula (11) can be avoided in the case of 

0eV T  by writing the solution of Eq. (10) with respect to 
( , )n x j+ +  in a more general form: 

 0( , ) = exp en x j n
T+ + +
ϕ + + 

 
  

 
0

1 | | ( , , , )exp ( , )
x e x s t j j s t ds

T T +
+

Φ + + ζ  ∫ , (21) 

 ( , , , ) = [ ( , , ) ( , , )], 0 .x s t j x t j s t j x dΦ ϕ − ϕ ≤ ≤ +   

Taking into account (21) in the limit e Tϕ  for the density 
differences = ( )n n n+ −δ − , we find 

 
0

0
0 0

1 1 12 ( , ) ,

= , = .

xen n j s t ds
T T

n n j j

± ±
+ −

+ − + −

 ϕ
δ + + ζ ζ 

∫

 (22) 

In the general definition (21), all exponentials are expanded 
in terms of the small parameter e Tϕ , in the difference 

= ( )n n n+ −δ −  the terms linear in this parameter are pre-
served. Substituting (22) into the three-dimensional conti-
nuity equation div = 0n± ±+ j  leads to an inhomogeneous 
parabolic equation with respect to the function ( , )y x t : 

2
0

2
1 1 1 ( , )2 ( , ) = , ( , ) = 0e y x tn y x t j d t

t T T x± ±
+ −

  ∂ ϕ ∂
+ + −  ∂ ζ ζ ∂   

, 

  (23) 

 
0

( , ) = ( , )
x

y x t j s t ds±∫   

with inhomogeneity / t∝ ∂ϕ ∂  and two boundary conditions: 
oddness of the function ( , )y x t  and ( = , ) / = 0dy x d t dx± , 
corresponding to no current flowing through the bounda-
ries =x d± . To solve the problem self-consistently, its 
analysis should be continued, complementing (23) with the 
solution of the Poisson equation taking into account (22). 
This problem again reduces to a second-order differential 
equation with constant coefficients linking [as in (23)] the 
functions ( , )y x t  and ( , )x tϕ . General recommendations for 
solving a system of differential equations are to proceed 
from an existing pair of second-order equations to one 
fourth-order equation (see, e.g., [24]). The question of ful-
filling the necessary boundary conditions when following [24] 
remains and is rather complicated. In our case, it is more 
convenient to keep the system of two equations. 

Assuming all functions to be oscillating exp ( )i t∝ ω  and 

 0

( , ) = ( , ) = ( )sin ,
2

( , ) = ( )sin ,
2

x

l
l

l
l

lj s t ds y x t y t x
d

lx t t x
d

±
π 

 
 

π ϕ ϕ  
 

∑∫

∑
 (24) 

| =( , ) / = 0, = 1, 2, 3, ...; ( ) = ( )exp ( )x d l ldy x t dx l t i t±
ω

ϕ ϕ ω ω∑  

we get for ( )ly ω  

 0 2( ) 1 1 12 ( ) = ( / ) ( ),l
l l

e
i n y l d y

T T±
+ −

  ϕ ω
ω + + ω π ω  ζ ζ   

 

or 

 
0 2

2
2 ( ) /

( ) = , = .
( )/ ( / )

l
l

i n e T D Dy D
D Di D l d

± + −

+ −

ω ϕ ω
ω

+ω + π




 (25) 

Here the Fourier components ( )lϕ ω  have still to be deter-
mined. Poisson’s equation with nδ  (22) has the form 

 2
4 1 1= ( , ), = ( , ),ey x t y y x t

T + −

 ϕ π
∆ϕ + + ε ζ ζλ  

   (26) 

2
2 0= , ( , ) = ( , ), ( , ) = ( ).

8 g
T x t x t d t V t

e n+

ε
λ ϕ −ϕ − ϕ ± ±

π
 (27) 

Here ( , )y x t  is from (24), (25). 
The solution (26), (27) formally has the structure 

 0
0

( , ) = sinh ( / ) sinh [2( ) / ] ( , )
2

x

x x x s y s t dsλ
ϕ ω ϕ λ + − λ∫  , 

  (28) 
where the coefficient 0ϕ  is arbitrary and can be obtained 
from the second of the boundary conditions (27): 



Electrochemical impedance in ac diagnostics of weakly conducting media 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7 667 

0
0

sinh ( / ) sinh [2( ) / ] ( , ) = ( )
2

d

gd d s y s t ds V tλ
ϕ λ + − λ∫  . (29) 

Finally, to estimate the coefficients of ( )lϕ ω , we have to 
use the Fourier transform for the function ( . )x tϕ  (24): 

 
0

1( ) = ( , )sin (2 1) .
d

l
xx l dx

d d
π

ϕ ω ϕ ω +∫  (30) 

Here ( , )xϕ ω  is from (28), ( , )y x t  is from (26), ( , )y x t  is from 
(24), [ , ( )]l ly ω ϕ ω  is from (25). Equation (30) looks like non-
uniform integral equation respectively coefficients ( )lϕ ω . 

The partial solution (21)–(30) of the problem of the 
electrolytic capacitor behavior with variable voltage 

0( ) = exp ( )gV t V i tω  on its metal plates [Eq. (30) is not 
solved], allows to see the qualitative difference in the self-
consistent solution details of this problem and the approx-
imation applied in [16, 17]. Scenario (21)–(30) shows that 
what happens in the capacitor volume depends on the po-
tential difference at the control electrodes. The fluxes 

( , )j x t±  (10) in the electrolyte volume, the charge densities 
( , )n x t±  and the self-consistently calculated screening fields 

are spatially inhomogeneous near the capacitor edges, es-
pecially in the limit d λ . The homogeneous part of the 
problem, which occupies the middle part of the capacitor, 
practically does not participate in the transport, being 
screened from external influence by the fields of the accu-
mulating layers. For the formalism [16, 17] without self-
consistent consideration of the external perturbation with 
the final formulae (16), (17) the homogeneity of the exter-
nal field leading to the electrolyte ions motion is essential. 
The transport field is homogeneous in the force scenario of 
ionic relaxation (18), (19), but this approximation is not 
consistent with the data in Figs. 3 and 4, where it can be 
seen that it does not describe the case of dilute electrolytes. 

The agreement of the experimental data [5] with predic-
tions [16, 17] cannot be a serious argument in favor of the 
force scenario of transport phenomena in electrolytes [for-
mulas (16), (17) do not fit with Einstein’s rules]. In the 
electrochemical formalism, the question of how to extract 
mobility data (diffusion coefficients) from impedance mea-
surements remains open [the possibility (19) disappears]. 
To get the answer, it is necessary to solve for the beginning 
the integral equation (30). 

3. Discussion of the results and conclusion 

The impedance formalism allows one to formulate relax-
ation equations for ( )Q t  in two cases: either “force” (3)–(9) 
for ( )FQ t , or ( )Q tµ  (10), (11) for electrochemical one. 
The effective “force” relaxation time (9) turns out to be 
much shorter than the corresponding electrochemical one 

∞τ  from (11). The experimental data (Figs. 3 and 4) con-
firm these predictions. Comparison of the times ∞τ  for 

0 = 1.2V  and 3.3 V suggests that the dependence of ∞τ  on gV  
has an electrochemical character. 

The conductivity of electrolytes is a nonlinear function 
of the mobile charges density. This complication does not 
affect the reasoning (5)–(9) of the force approach, since in 
their structure only the condition (0) ( 4 )sj E en⊥∝ − π  (6) 
is important, but turns out to be unacceptable in the case of 
the electrochemical approach [details around formulae 
(10), (11)]. 

The force component force =j± ±σ∇ϕ is also present in 
the electrochemical determination of the current density, 
and its properties must remain identical in both scenarios. 
However, in the electrochemical approach, this contribu-
tion must be linear with respect to the density of mobile 
charges. This follows from Einstein’s rules relating the 
mobility and diffusion coefficient of statistically classical 
charges. The disagreement with [16–18] is obvious. The 
details of the transition between the ˆ ( )FZ ω  and ˆ ( )Zµ ω  re-
gimes are beyond the scope of electrolyte theory and veri-
fication of the information contained in formula (11) 
serves as a criterion for the existence of Einstein’s rules. 

The work is supported by European Union’s Horison 2020 
research and innovation program under the grant agree-
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Appendix 

Definition of the function ( ) /dQ t dtµ  slope 
in the time zones “1”, “2” (Fig. 3) 

The graphs in Fig. 5 show the standard deviations σ 
(a logarithmic scale) of the function ( )Q tµ  as a function of 
time for the measurements Figs. 3 and 4 with the control 
gate 0 = 1.2  VV . The slope of the plots ln (1 )( )iq t−  (nu-
merical differentiation) was determined by a least-squares 
method with a window of n = 20 measurement points slid-
ing in time. For each point j  a set of measurement points 
[ / 2; / 2]j n j n− +  was created, for which the linear regres-
sion coefficients and the standard deviation σ were calcu-
lated. The points where the standard deviation of σ is min-
imal are taken as the middle of linear sections. The 
minimum values of σ (deviation from the linear mode) are 
observed in the region of < 10 s (zone “1”), the next mini-
mum is in the region of 30–40 s (zone “2”). 

Електрохімічний імпеданс в ac-діагностиці 
слабопровідних систем  

I. Chikina, B. Timofeev, V. Shikin 

Імпедансна ac-діагностика регулярно залучається до до-
слідження транспортних явищ в провідних середовищах різ-
ної мірності. Загальною причиною, яка змушує вдаватися до 
ac-ускладнень на тлі порівняно простих методичних можли-
востей в dc-режимі, є бажання виключити вплив на вольт-
амперні (I–V) характеристики контактних явищ, що супро-
воджують dc-вимірювання. У деяких випадках (2d-електрони 
над гелієм) dc транспортні вимірювання є принципово не-
можливими. У слаболегованих напівпровідниках (розбавле-
них електролітах) ситуація менш критична, але проблеми з 
омічністю контактів зберігаються. Аналіз деталей імпеданс-
ного формалізму, що визначає реакцію провідного середо-
вища на зовнішнє збурення, у значній мірі залежить від форми 
закону Ома для провідника, що впроваджується в імпеданс-
ний ланцюг. Якщо є підстави для його визначення формулою 

= σj E , де j, σ, E  відповідають локальним значенням густи-
ни струму, провідності й транспортного електричного поля, 
структура комплексного опору ˆ ( )FZ ω  вважається силовою. 
При наявності в законі Ома дифузійної складової, мова йде 
про електрохімічний імпеданс ˆ ( )Zµ ω . У даній роботі на про-
стому прикладі — стандартний електролітичний конденсатор 
у послідовному RC ланцюжку при ступінчатому навантажен-
ні — обговорюються можливості опису спостережуваних 
ефектів із залученням ˆ ( )FZ ω  або ˆ ( )Zµ ω . Порівняння з експе-
риментом свідчить на користь ˆ ( )Zµ ω .  

Ключові слова: транспортні явища, густина струму, про-
відність, електрохімічний потенціал, закон 
Ома.

 

Fig. 5. The standard deviations σ  (a logarithmic scale) of the func-
tion ( )Q tµ  as a function of time for the measurements Fig. 3. 
Minima are observed in the region of < 10 s (zone “1”) and in the 
region of 30–40 s (zone “2”). 
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