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The results of theoretical studies of the thermodynamic, kinetic, and high-frequency properties of the electron gas on 
the surface of a nanotube in a magnetic field in the presence of a longitudinal superlattice are presented. Nano-
dimensions of the motion area lead to energy quantization. Its multiply connected structure in the presence of a magnet-
ic field leads to effects that are derived from the Aharonov–Bohm effect. It is shown that the curvature of a nanotube, 
even in the absence of a magnetic field, causes new macroscopic oscillation effects such as de Haas–van Alphen oscil-
lations, which are associated with the quantization of the transverse electron motion energy and with the root peculiari-
ties of the density of electron states on the nanotube surface. Thermodynamic potentials and heat capacity of the elec-
tron gas on the tube are calculated in the gas approximation. The Kubo formula for the conductivity tensor of the 
electron gas on the nanotube surface is obtained. The Landau damping regions of electromagnetic waves on a tube are 
determined and the beats are theoretically predicted on the graph of the dependence of conductivity on tube parameters. 
In the hydrodynamic approximation, the plasma waves on the surface of a semiconductor nanotube with a superlattice 
are considered. It is shown that optical and acoustic plasmons can propagate along a tube with one kind of carrier. Elec-
tron spin waves on the surface of a semiconductor nanotube with a superlattice in a magnetic field are studied. The 
spectra and areas of collisionless damping of these waves are found. We have shown that the spin wave damping is ab-
sent in these areas if the tubes with a degenerate electron gas have small radius. 

Keywords: nanotubes, superlattice, magnetic field, thermodynamic functions, dynamic conductivity, plasma waves, 
electron spin waves. 
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1. Introduction 

In the sixties of the last century, Moisey Isaakovich 
Kaganov, working on the book [1], could not ignore the 
promising direction in solid state physics – semiconductors 
with superlattices, which was rapidly developing. Super-
lattice is an additional translational symmetry artificially 
created on the surface and in the sample volume. 

The physical properties of materials with an additional 
artificially created periodic structure (superlattice) differ 
significantly from the corresponding properties of homo-
geneous bodies. The additional potential of the superlattice 
modifies the band structure of the base material. Since the 
period of the quantum superlattice d  is much larger than 
the lattice constant, the Brillouin zone is divided into a 
number of minibands. This creates narrow subbands 
(minibands) separated by forbidden regions in the conduc-
tion band and the valence band of the initial crystal. How-
ever, for such periodicity to significantly affect the behav-
ior of quasiparticles (electrons, phonons, magnons), certain 
conditions must be met. First, the average energy of a 
quasiparticle should be comparable with the miniband 
width, and second, the superlattice period should be much 
less than the quasiparticle mean free path l : d l . This 
inequality can be rewritten as /∆ τ  , where ∆ is the 
half-width of the miniband, τ is the relaxation time. 
Superlattices, in which the above conditions are satisfied, 
are called quantum superlattices. 

The idea of creating a quantum superlattice was first ex-
pressed by L. V. Keldysh [2], who proposed to use a power-
ful ultrasonic wave to obtain additional periodic potential. 
The first samples of quantum superlattices were synthesized 
as early as 1971 by the molecular epitaxy method [3, 4]. 
Continuous progress of methods of molecular beam epitaxy 
from metallic-organic compounds made it possible to create 
high-quality heterostructures based on the GaAs-Ga1-xAlxAs 
system [5]. Currently superlattices are the main elements of 
a new technology called band-gap engineering. 

The main results obtained by Moisey Isaakovich in this 
area are published in Refs. 6–10. In Ref. 6 the theory of 
acoustoelectronic interaction in crystals with superlattices 
is developed. Reference 7 contains the calculation of the 
thermodynamic quantities of superlattices in a magnetic 
field: chemical potential, magnetic moment, and sample 
temperature for a nondegenerate and degenerate electron 
gas. Oscillations in temperature are also found in this arti-
cle. They are used as a method for adiabatic cooling of the 
sample. Reference 8 is devoted to the theory of electrical 
conductivity of semiconductors with superlattices in a 
quantizing magnetic field. This paper shows that a change 
in the quantizing magnetic field applied along the axis of a 
one-dimensional superlattice induces metal-dielectric 
phase transitions. Also in this paper, the characteristics of 
the photoconductivity of the superlattice in a quantizing 
magnetic field are calculated. In Ref. 9, the spectrum of 

low-frequency electromagnetic oscillations in a superlattice 
was calculated under the conditions of the quantum Hall 
effect and an assumption was made about the possibility of 
experimental detection of these waves in Hall dielectrics. A 
popular presentation of the basic ideas of the physics of semi-
conductors with superlattices is contained in the book [10]. 

The properties of massive semiconductors with super-
lattices are considered in many publications by domestic 
and foreign authors. Extensive reviews and monographs 
have been written, they describe a number of important 
aspects of superlattice physics [11–17]. 

The advances in modern nanoelectronics are associated 
both with the development of technology and with advanc-
es in fundamental physics, describing the thermodynamic 
and high-frequency properties of nanostructures. Advances 
in physics and the technology of solid-state nanostructures 
have led to the creation of a scientific foundation for their 
widespread use in nanoelectronics [18]. In this regard, the 
techniques and methods well known in the theory of mas-
sive semiconductors with superlattices, being applied to 
nanoobjects, are filled with new content. Solid-state 
nanostructures are nano-sized objects characterized by the 
presence of inhomogeneities of various nature and configu-
rations within semiconductor and dielectric media. The 
range of these nanostructures is quite wide: quantum wires 
[18, 19], quantum dots [18, 20], fullerenes and nanotubes 
[21]. Although these objects differ in their physical nature, 
they are united by their very small size in one or several 
directions. These dimensions are only one or two orders of 
magnitude larger than the characteristic interatomic dis-
tance. Under these conditions, the quantum nature of the 
motion of current carriers manifests itself in an essential 
way. It is well known that the reception, transmission and 
processing of information in monomolecular structures are 
based on quantum processes of charge transfer in them. 
This circumstance leads to the widespread usage in scien-
tific literature of such terms, as quantum computers, quan-
tum information systems. The physical mechanisms, used 
in these structures, are the tunneling effect and the interac-
tion of charged quasiparticles (conduction electrons) with a 
periodic potential, they have also been encountered earlier 
in solid state physics and the theory of massive 
superlattices. However, as applied to nanotubes, the nature 
of these effects significantly changes due to the quasi-one-
dimensional type of conductivity and tube curvature. 
Therefore, the known results, related to 3D macroscopic 
samples, cannot be transferred to nanotubes. Thus, there is 
a need for new fundamental studies of thermodynamic and 
electromagnetic processes in quasi-1D macromolecules in 
general and in nanotubes in particular. 

The purpose of this review article is to summarize 
the results of the authors’ investigations in the field of 
the physical properties of nanotubes with superlattices. 
These studies cover the thermodynamics of nanotubes 
[22], dynamic conductivity [23, 24], collective excitations 
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(plasmons and Landau–Silin spin waves) of the electron 
gas of nanotubes with a longitudinal superlattice [25–34] 
and are based on a unified approach. The approach devel-
oped here uses the analogy between physical processes in 
nanotubes with superlattices and processes in massive 
superlattices, which were studied by M. I. Kaganov [6–10]. 
The review material is presented using a number of im-
portant problems in the physics of nanotubes as examples. 
It should be emphasized that the problems considered as a 
complex, in addition to theoretical and applied interest, 
serve as bright illustration of the general trends in the de-
velopment of modern physics of nanostructures. 

2. Nanotubes with superlattices: classification 
and research development 

2.1. Classification of nanotubes 

Thirty years have passed since the discovery of carbon 
nanotubes by Iijima [35]. However, the interest in these 
nanosystems is so great that in recent years a new direction 
in physics and technology has emerged – carbon nano-
material science. Nanotubes are prepared by rolling up a 
graphene sheet (or two-dimensional heterostructure) into a 
tube. Depending on the rolling-up manner, the tube has 
metallic, semiconductor, or dielectric properties. Many 
articles and reviews have appeared in the world of scien-
tific literature (see, for example, [36–38]), in which the 
properties of nanotubes are studied. They are interesting to 
physicists because nanotubes are dielectric, semiconductor, 
metal, so the methods developed to study these systems are 
transferred to nanotubes and other electron nanosystems on 
curved surfaces [38]. To study their properties, it is neces-
sary to synthesize the methods of quantum mechanics, sta-
tistics and kinetics and Riemannian geometry. A new pa-
rameter appearing in theory (the curvature of the structure) 
contributes to enriching the picture of phenomena in nano-
systems increasing the ways to control their properties. In 
electronic systems on curved surfaces, effects have already 
been discovered that have no analogue in systems with flat 
geometry. These include effects of hybridization of size 
and magnetic quantization of the motion of conduction 
electrons, modification of the electron Hamiltonian [38], 
specific resonances in the scattering of electrons in carbon 
nanotubes [39] and quantum wires [19] by impurity atoms. 

The logic behind the development of solid state physics 
is such that currently the objects of investigations are not 
only three dimensional systems with superlattices [6–17], 
but also low-dimensional systems. Modern technologies 
allow creating not only nanotubes but nanotubes with 
superlattices. Along with flat superlattices [2, 4, 40–45], 
also ones with cylindrical symmetry exist [18]. They are of 
radial and longitudinal types [18, 46]. The radial super-
lattice is a set of coaxial cylinders, while the longitudinal 
one looks like a set of coaxial rings of the same radius. 
The tubes with longitudinal superlattice are prepared by 

lithographic methods. It can be obtained by embedding 
fullerenes or other additives to the nanotube or when the 
nanotube is attached to a substrate for charge exchange 
[47]. In such a system, there exists the periodic potential 
acting upon electrons moving along the tube. 

2.2. Thermodynamics of nanotubes 

The thermodynamic functions of electron gas on a 
nanotube surface have been studied in literature [48–54]. 
In Ref. 51 the geometrical effects in ideal quantum gases 
of electrons, photons and phonons in confined space were 
considered. In Ref. 52 a thermodynamic analysis of the 
boron-nitride nanotubes nucleation on the catalysts surface 
was performed. In Refs. 53, 54 the chemical potential, en-
ergy, pressure and the work function of an electronic gas 
on a conducting carbon nanotube surface under zero tem-
perature are calculated. Within the framework of the 
Hartree–Fock approximation the contact electron-electron 
interaction is taken into account. Analytical form of the 
work function of carbon nanotubes was derived in the pa-
per [54]. At large radii of nanotubes the limit to the work 
function of graphene was done. 

Superlattice at the surface of a carbon nanotube has 
been previously studied [55, 56]. In Ref. 56 authors esti-
mated orbital magnetization of the electron gas at the sur-
face of the nanotube with the superlattice in a magnetic 
field parallel to the axes of the tube and the superlattice. 
Using the model suggested by the authors [56], we calcu-
lated the heat capacity of the degenerate electron gas [22]. 
In Subsections 4.1, 4.2 we present the results of calcula-
tions of such thermodynamic functions of the degenerate 
and nondegenerate electron gas on the semiconductor cy-
lindrical nanotube surface in a longitudinal magnetic field 
as chemical potential, internal energy and heat capacity. 
We employ the effective mass approximation and Poisson 
summation formula for the calculation of the density of 
states [22]. 

2.3. Response function 

Simplified conductivity models are usually used for 
studying electromagnetic waves propagation in the cylin-
drical geometry systems, for example, in nanotubes. The 
metal cylinder conductivity is often believed to be endless, 
and the dielectric permittivity of the matter in which cylin-
der is dipped is considered to be constant or only frequen-
cy dependent. Conductivity’s spatial dispersion is usually 
not taken into account. Nonetheless, the electromagnetic 
field’s nature in the tube, its waveguide characteristics are 
sensitive to the surface currents. Therefore, the electron 
gas conductivity tensor components calculation problem 
with allowance for the spatial and time dispersion is worth 
consideration. In connection with increased interest in cur-
rents within the cylindrical conductors, the authors of 
Ref. 57 have calculated the longitudinal conductivity for 
solid and hollow cylinders without superlattice in magnetic 
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field and considered quantum electromagnetic waves in 
such systems. Exact expressions for all the components of 
the conductivity tensor for degenerate and nondegenerate 
electron gas on the nanotube surface without superlattice 
are presented in Ref. 58. It is worth to be clarified how the 
superlattice affects this tensor. In Section 5.1, the compo-
nents of the dynamic conductivity tensor are calculated 
based on the effective mass model for a nanotube with a 
longitudinal superlattice in a magnetic field. The super-
lattice axis and the magnetic field strength vector are as-
sumed to be parallel to the tube axis. 

The reaction of the electron gas of a nanotube to a weak 
alternating magnetic field is characterized by the tensor of 
dynamic magnetic susceptibility. The components of the 
magnetic susceptibility tensor presented in Subsection 5.2 
will be used to solve the dispersion equation to determine 
the spectrum of Landau–Silin spin waves on a tube with a 
superlattice in Subsection 6.2 [27]. 

2.4. Collective excitations 

Plasma waves on the surface of carbon [35] and semi-
conductor nanotubes [59, 60] were studied in [61–67]. 
Plasmon in the nanotubes are studied mainly in approxima-
tion of random phases [34, 62, 66, 67] and in the hydrody-
namic approximation [65, 68]. In the framework of the 
hydrodynamic approach, the plasma waves on the surface 
of a nanotube with a longitudinal superlattice in Subsection 
6.1 are considered. Not only longitudinal, but also trans-
verse electron currents are taken into account. It was 
shown that both optical and acoustic plasmons can propa-
gate through a tube with one type of carriers [32]. 

Electron spin waves on the surface of a semiconductor 
nanotube with a superlattice in a magnetic field have been 
considered in the Subsection 6.2. These waves in bulk 
conductors were predicted by Landau [69] and Silin [70]. 
Their properties in bulk conductors were considered in 
Refs. 71–73. Subsection 6.2 discusses spin-wave spectra 
on the surface of a nanotube with a superlattice and regions 
of collisionless damping of waves. It is shown that spin 
waves are not damped in small-radius tubes with a degen-
erate electron gas [31]. 

3. Electron energy spectrum and density of states on 
the nanotube surface with superlattice 

3.1. Electron energy spectrum 

The conduction electron energy spectrum in the carbon 
and semiconductor nanotubes has a band nature. A small 
electron density near the band edge permits to use the ef-
fective mass approximation. This approximation allows 
describing the properties of such systems qualitatively and 
often also quantitatively. 

Energy of electron with effective mass *m  on the sur-
face of a cylindrical nanotube with radius a with longitudi-
nal superlattice consists of the energy of rotational motion, 

2 2
*/ 2l m a , and that of longitudinal motion (1 cos )kd∆ − , 

where 0, 1,...l = ±  and k  are projections of electron angular 
moment and momentum, respectively, onto the axis of the 
tube. The expression (1 cos )kd∆ −  is usually used in the 
tight-binding model of electrons in a crystal lattice [1, 7, 8, 
10, 11, 13–15]. Here ∆ and d  are, respectively, amplitude and 
period of modulating potential on the tube surface. If 1kd << , 
this expression becomes 2 / 2k m , where 21/m d∗ = ∆ . Here-
inafter, the Planck’s constant is set to unity. In the magnet-
ic field B, parallel to the tube axis Z, the energy of electron 
rotational motion becomes equal to 2

0 ( )lε + η  [74], where 
2 1

0 (2 )m a −
∗ε =  is the rotational quantum, 0/η=Φ Φ  is the 

ratio of magnetic flux 2a BΦ = π  through the tube cross-
section to the flux quantum, 0 2 /c eΦ = π  (e is the electron 
charge, c is the velocity of light). Taking into consideration 
the spin splitting of levels, we obtain the electron energy 

 ( ) ( )2
0 1 cos ,lk Bl kd Bσε = ε + η + ∆ − + σµ  (3.1) 

where Bµ  is the magnetic moment of an electron, 1σ= ±  
corresponds to two spin orientations. The longitudinal 
effective mass of an electron is supposed to be equal to 
its transversal one. Flux ratio 0/η=Φ Φ  is included in 
Eq. (3.1) in the form of l + η. This allows limiting η to 
0 1≤ η ≤ . The order of miniband location depends on η. If 

1/ 2η < , we have 2
0 1 1 2 ...− + −ε η < ε < ε < ε <  If 1/ 2η >  

then 2
1 0 2 ...− −ε < ε η < ε <  Here the spin level splitting will 

not be taken into consideration. At 1/ 2η <  lower 

miniband is within 2 2
0 0[ , 2 ]ε η ε η + ∆ , and the next is with-

in 1 1[ , 2 ]− −ε ε + ∆ . Energy gap between them is equal to 

0 (1 2 ) 2ε − η − ∆ . Width of the kth gap between ( 1)k + th and 
kth minibands ( 1, 3, ...)k =  is equal to 0 (1 2 ) 2kε − η − ∆. 
Usually in experiments with nanotubes of radius a ~ 10–7–
10–6 cm 0ε ∆ , and the relationship between fluxes in 
different fields is far less than unity, therefore minibands 
don’t overlap. However, with an increase in tube radius 
their overlap is inevitable. 

The effect of Coulomb interaction of electrons on the 
tube onto the energy spectrum to Hartree–Fock approxima-
tion was discussed in Ref. 75. Screening the electron-
electron interactions was studied in Refs. 76, 77. The 
Hartree–Fock correction to the spectrum (3.1) in the model 
of contact interaction of electrons has a usual form gn−σ  
[78], where nσ is the surface density of electrons with spin 
projection σ , g is the Fourier component of electron short-
range interaction energy. In this case, the electron energy 
on the tube with a longitudinal superlattice is [27] 

 ( ) ( )2
0 1 cos .lk Bl kd gn Bσ

−σε = ε + η + ∆ − + + σµ  (3.2) 

The first term in Eq. (3.2) refers to the quantized levels 
of the circular motion of electrons on the tube in the magnet-



Superlattice on the surface of a nanotube 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7 581 

ic field, the second term is the energy of the longitudinal 
motion of the electrons, and the third and fourth terms are 
the exchange shift and the spin splitting of the levels, re-
spectively. The energy spectrum of the longitudinal motion 
of electrons consists of narrow minibands with the widths 
2∆ separated by energy gaps. The minibands can overlap. 
Small-radius tubes correspond to the case with a small 
number of occupied lower minibands. Figure 1 shows 
schematically spectrum (3.1) in the first Brillouin zone 
( / /d k d−π < < π , when two lower spin-split minibands 0± 
( 0,l =  1σ = ± ) overlap. We consider the case of 1/ 2η <  
when the positions of the lower boundaries l

±ε  of the 
minibands satisfy the inequalities 0 0 1 1 ...− + − +

− −ε < ε < ε < ε <  
The miniband overlapping region 0 0[ , 2 ]+ −ε ε + ∆  in Fig. 1 has 
the width 2∆ −Ω with 2g n BΩ = δ + µ , where n n n− +δ = − . 

3.2. Density of electron states 

Electron density of states with the spectrum (3.1) is cal-
culated according to the formula 

 ( ) ( )lk
lk

σ
σ

ν ε = δ ε−ε∑ .  

This equals 

 ( ) ( 2 )
( )

( )( 2 )
l l

l l l

L
d

σ σ

σ σ
σ

Θ ε − ε θ ε + ∆ − ε
ν ε =

π ε − ε ε + ∆ − ε
∑ . (3.3) 

Here 0l l
σ σε = ε , L  is the tube length, Θ is the Heaviside 

function. In the absence of a superlattice, Eq. (3.1) repre-
sents a system of one-dimensional subbands with root sin-
gularities of state density at their boundaries l

σε . Modulat-
ing potential converts this spectrum to minibands 2∆ wide 
with boundaries l

σε  and 2l
σε + ∆ . Figure 2 shows the di-

mensionless density of states 0 / 2A d L= πν ε  (3.3) in the 
two lower minibands of the spectrum (3.1) as a function of 

0/ε ε  for parameters 0.1η = , 0/ 0.1∆ ε = , usually used in 
experiments [56]. 

When 0ε ε , the sum of l  included in (3.3) can be 
substituted with an integral expression. As a result, the 
spectrum of the nanotubes becomes continuous, and densi-
ty of states is now equal to 

 0

0

4 , 2 ,
22

( )
4 2 , 2 ,
2

L K
d

L K
d

  ε
ε < ∆   ∆π ∆ε  ν ε = 

 ∆ ε > ∆   επ ∆εε  

 (3.4) 

where ( )K k  is the complete elliptic integral of the first 
kind with modulus k  [79]. Considering the abovemen-
tioned relationship between m∗ with ∆ and d , we are reas-
sured that (3.4) represents the density of states of a two-
dimensional electron gas with a one-dimensional super-
lattice in the absence of a magnetic field, occupying a band 
with area 2S aL= π . This system can be obtained by cut-
ting the tube along its length and turning it inside out to 
form a surface. If 2ε ∆  from (3.4) the density of states of 
a two-dimensional electron gas in the absence of a 
superlattice is obtained: 0 /m S∗ν = π . 

Poisson formula is used for the calculation of l , includ-
ed in Eq. (3.3), at 0ε ε . Then mon oscν = ν + ν , where 

monν  is the monotonic component of the density of states 
of Eq. (3.3), and oscν  is the oscillating component. The 
latter contains Fourier integral with a finite limits, where 
integrand has a root singularity at the limits of integration. 
Asymptote of the far Fourier component of this integral is 
known [80]. From it we obtained 

 

Fig. 1. Electron energy (3.1) in two overlapping minibands 0± . 
Fig. 2. Density of states (3.3) at the two lowest minibands of the 
spectrum (3.1) for parameter values given in the text. 
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3/4 1/2
0

osc 0
0 0 01

3/4 1/2 1/4
0

osc
0 0 0 01

4 1( ) cos 2 cos 2 , 2 ,
2 4

4 1 2 2( ) cos 2 cos 2 1 cos 2 1
2 4 4

l

l

L l l
d l

L l l l
d l

∞

=

−∞

=

 ε ε Φ ε π   ν ε = π π − ε ε < ∆     π ε ε ∆ Φ ε    

  ε ε Φ ε π ∆ ε ∆ π       ν ε = π π − + − π − +          π ε ε ∆ Φ ε ε ε ε         

∑

∑



0

,

, 2 .

 
   

ε ε ε > ∆

 (3.5) 

_______________________________________________ 

Function (3.5) oscillates with the change in electron energy 
and magnetic flux Φ . The amplitude of oscillations de-
creases with increase in energy proportionally to 1/4−ε . 

4. Thermodynamic quantities of a nanotube with a 
superlattice 

4.1. Degenerate electron gas 

Using density of states (3.4) and (3.5) let us calculate 
the number of electrons N , their energy E , chemical po-
tential µ and heat capacity C . Let us consider degenerate 
gas at the surface of the nanotube with a longitudinal 
superlattice. 

In the case appropriate for nanotubes with a small radi-
us, when at zero temperature electrons partially fill only 
the lower miniband, we obtained 

 

( )( )

0

0

0 0

4 arcsin ,
2

4 1 arcsin
2

1 2 .
2

LN
d

LE
d

−

−−

− −

µ − ε
=
π ∆

 µ − εε = ∆ + − π ∆ ∆ 
− µ − ε ε + ∆ −µ ∆ 

 (4.1) 

Here 2
0−ε = ε η  is the lower limit of spectrum (3.1), 0µ  is 

the Fermi energy. From Eq. (4.1) Fermi energy is found 

 2 lin
0 2 sin .

4
dn

−
π

µ = ε + ∆   

The energy of a completely filled miniband is equal 

 2 1 ,LE
d

−ε∆  = + ∆ 
  

where lin /n N L=  is linear electron density.  
In order to obtain heat capacity of electron gases one 

must perform Sommerfeld expansion [81, 82] of the func-
tions N  and E  of powers of /T µ, where T  is the tempera-
ture (Boltzmann constant equal unity is assumed). This is 
possible if the chemical potential is located far from the 
features of state densities, i.e., the following inequalities 
must be met 

 ,T T− +µ − ε ε −µ  , (4.2) 

where ±ε  are the upper and lower boundaries of the last 
partially filled miniband. Corrections on the order of 2T  in 
expansion of N  and E  are equal 

 
( ) ( )( )

( ) ( )( )

2 3/2
0 0 0

2 3/2
0 0 0 0

,
3

.
3

T

T

LTN
d

LTE
d

−
− − +

−
− + − +

π
 = µ − ε + ∆ µ − ε ε −µ 

π
   = µ ∆ − ε ε −µ µ − ε ε −µ   

 

If 0 2T −µ − ε ∆   then corrections in chemical poten-
tial and energy due to temperature are equal 

 
( )

( )

2 2

0
2

3/2
0

,
12

.
3 2

T

L TE
d

−

−

π
δµ =

µ − ε

π ∆
δ =

∆ µ − ε

 (4.3) 

Eδ  takes into account a term present due to the dependence 
of chemical potential on temperature. From (4.3) we ob-
tained monotonic component of the nanotube’s heat capacity 

 mon
03 2

LTC
d −

π
=

∆ µ − ε
. (4.4) 

Using Eq. (3.4) heat capacity of an electron gas with a 
superlattice in the absence of a magnetic field at low tem-
peratures can be obtained. If 0 2µ < ∆ heat capacity equals 

1
0 0 0 01 1 ,

3 2 2 2 2
mTSC E K

d

−
∗

    µ µ µ µ   = − + −          ∆ ∆ ∆ ∆ ∆        
 

  (4.5) 

where ( )E k  is the complete elliptic integral of the second 
kind [79]. Coefficient at T  in this formula is calculated 
precisely. If 0 2µ ∆ , from Eq. (4.5) standard expression 
for the heat capacity of an electron gas without a 
superlattice is obtained: /3C m TS∗= π , where density of 
states 0ν  is used. In accord with the Pauli principle heat 
capacity (4.4) and (4.5) is proportional to the temperature. 
However, proportionality coefficient is a complex function 
of the 0 /µ ∆  parameter. 

Oscillating components N  and E  at conditions (4.2) 
and 0 0 2ε µ < ∆  are equal 

 
( )1/4

osc 0 0
2

osc 0

4 1
2

N L
E d

ε µ   
= ×   µπ ∆   

  

0
3/2

0 01

1 cos 2 sin 2 ,
4 sinh

l

ll
l l

l

∞

=

   µ λΦ π
× π π − ×    Φ ε λ   
∑  (4.6) 



Superlattice on the surface of a nanotube 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7 583 

where 2 1/2
0 0/( )l lTλ = π ε µ . Functions (4.6) experience os-

cillations similar to de Haas–van Alphen and Aharonov–
Bohm type oscillations with changes in 1/2

0µ  related to elec-
tron density and magnetic flux Φ . The first are due to passage 
of root singularity of state density (3.3) at miniband bounda-
ries through Fermi energy. This brings oscillations in consid-
eration closer to de Haas–van Alphen type oscillations in a 
magnetic field [81, 82]. However nonequidistance of energy 
levels of cross-sectional movement of electrons in the tube 
brings about 1 2

0 0( / )µ ε  in phase with oscillations (4.6). These 
oscillations exist in absence of a magnetic field. Their period 
is equal to 1/ 2m a∗τ = . A measurement of the period allows 
one to obtain effective mass of an electron. Amplitude of os-
cillations decreases with an increase in temperature, as it does 
in the usual case of de Haas–van Alphen effect in a quantizing 
magnetic field [81, 82]. 

From Eq. (4.6) let us obtain the oscillating term of heat 
capacity of a nanotube: 

( )
0

osc 1/4
010 0

4 1 cos 2
2 l

L
C l

ld

∞

=

 µ Φ
= π × Φ∆ ε µ  

∑  

 ( )0

0

1sin 2 1 coth .
4 sinhh l l

l
l

 µ π
× π − −λ λ  ε λ 

 (4.7) 

With an increase in temperature monotonic component 
of heat capacity (4.4) exceeds the oscillating component 
(4.7) if 1/4

0 0 0( / )T > µ µ ε . 
Figure 3 illustrates dependence of the amplitude of the 

main harmonic of the oscillating component of heat ca-
pacity (4.7) 

 
3/41/2

0 0

0

coth 14
sinh2

l l

l

LB
d

 ε µ λ λ − =   ∆ ε λ   
  

on the temperature when 0/ 0.1Φ Φ =  for the values of 
GaAs parameters that are usually used in experiments [83]: 

00.07m m∗ =  (where 0m  is the mass of a free electron), 
610 cma −= , 0 0/ 10µ ε = , 10 μmL = , 1 meV∆ = , d = 3500 

Å. Amplitude of B  reaches its maximum value at tempera-
ture 1/2

0 0( )mT ∝ ε µ  (α denotes proportionality). 

4.2. Non-degenerate electron gas 

At a fixed number of electrons chemical potential of a 
nondegenerate electron gas can be determined from equation 

 ( )exp mk
mk

N σ
σ

 = β µ − ε ∑ , (4.8) 

where β  is the reverse temperature. Sums included in this 
expression are determined precisely. For estimating the 
sum by m  the following formula is used [84] 

( )
2 2

2exp exp cos 2 ,

0
m l

lx m l
x x

x

∞ ∞

=−∞ =−∞

 π π − + υ = − π υ    
>

∑ ∑ . 

The sum by k  is reduced to Bessel’s modified function of 
the first kind [85] 

 ( ) cos
0

0

1 exI x d
π

⋅ φ= φ ⋅
π ∫ .  

As a result, solution of Eq. (4.8) has the form 
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0

1
2 2

0
0 01

1 ln e
2

cosh I 1 2 exp cos2 .B
l

Nd
L

lB l

β∆

−∞

=

 βεµ = ×
β π

   π Φ × βµ ⋅ β∆ + − π     βε Φ      
∑

 

  (4.9) 

This shows that chemical potential undergoes Aharonov–
Bohm type oscillations with a change in magnetic field 
crossing the tube. De Haas–van Alphen type oscillations 
are not present in this case. In the absence of a superlattice 
they were considered in article [86]. 

Energy of an electron gas can be calculated by equation 
[81, 82] 

 ( )ln exp mk
mk

E N σ
σ

∂
= − −βε

∂β ∑ .  

It equals 

 
( )
( )

2

0
0

0

0

2
2

1 2 1 2 th ,B B

NE m

I
B B

I

  Φ= βε + +  β Φ 
′ β∆ + − β∆ − − βµ βµ  

β∆    

 (4.10) 
Fig. 3. Temperature dependence of the amplitude of the oscillat-
ing component of heat capacity (4.7) for parameter values given 
in the text. 
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where 

 
( )

( )

exp
,

exp

m m
m

m
m

m

P
P

−βε
=

−βε

∑
∑

  
2

0
0

m m
 Φ

ε = ε + Φ 
.  

Derivative with respect to the argument of the Bessel func-
tion is marked with a prime (′). 

Heat capacity of an electron gas equals 

( )

( ) ( ) ( ) ( )( )

( )

24 2
2

0
0 0

22
0 0 0

2
2
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2
2

1 2

2 .
cosh

B

B

NC m m

I I I

BI
B

−

  
   Φ Φ  = βε + − + +     Φ Φ      

 ′′ ′+ + β∆ β∆ β∆ − β∆ ×  
  βµ  × β∆ +     βµ    

(4.11) 

Separate terms in Eqs. (4.10) and (4.11) agree with the 
energy term in (3.1). The first term on the right side of 
expression (4.10) represents the average energy of centrip-
etal motion of electrons at the surface of the nanotube, the 
second and third terms are due to longitudinal motion of 
electrons along the tube, and the last term is due to spin 
splitting of energy levels of an electron in a magnetic field. 
It coincides with the energy of a two-level system with 
distance 2 B Bµ  between the levels. Expression (4.11) 
shows that the presence of a magnetic field does not affect 
the heat capacity term present due to electron motion. At 
the same time, modulation does not affect heat capacity 
related to centripetal motion of electrons and spin splitting 
of levels. Using the presentation of a Bessel function as a 
row and its asymptote, “longitudinal” component of heat 
capacity (4.11) is confirmed to be equal to 

( ) ( ) ( ) ( )( ){
( ) }

22
|| 0 0 0

2
0

1 2
2

, 1,
2

, 1.

NC I I I

N
I

N

−

 ′′ ′= + β∆ β∆ β∆ − β∆ ×  

 β∆× β∆ =   
 β∆





 

This result agrees with the classical theory on equipartition 
of energy about degrees of freedom [81]. Its physical 
meaning is obvious. If energy of thermal motion of elec-
trons 1−β  is small compared to the modulating potential 
amplitude, the electrons oscillate slightly in the modulating 
potential gaps. These oscillations make a contribution to 
heat capacity in the amount of N . If 1−β  exceeds modula-
tion amplitude ∆ , the electrons move freely along the 
tube. Contribution of this motion to heat capacity is equal 
to N/2. Thus, term ||C  changes from N  to N/2 as tempera-
ture increases. “Transverse” part of heat capacity depends 
on the magnetic flux. In weak magnetic fields, the ine-
quality holds 0Φ Φ . This allows the dismissal of mag-

netic field influence on the “transverse” component of heat 
capacity C⊥ . Then the following limiting expressions can 
be obtained: 

 
( ) ( )

0
2

0 0 0

2, 1,

exp , 1.

N
C

N⊥

βε= 
βε −βε βε





  

As expected, high temperature limit of C⊥  is in accord 
with the theorem on equipartition of energy about degrees 
of freedom. 

5. Response function of electron gas on a tube 
with superlattice 

5.1. Conductivity tensor 

For the nanotube with superlattice in magnetic field, the 
surface electron gas linear response to an electromagnetic 
wave 0 exp ( )i m qz t= ϕ+ −ωE E  is characterized by con-
ductivity two-dimensional tensor ( , , )m qαβσ ω . Here E is 
the electric field of wave, m is the integer number, q  and 
ω are the wave vector and frequency of the wave, ϕ  and z  
are cylindrical coordinates. The density of surface current 
on the tube is 

 ( ) ( ) ( ), , , , , ,j m q m q E m qα αβ β
β

ω = σ ω ω∑ , (5.1) 

where ( , , )j m qα ω  and ( , , )E m qβ ω  are cylindrical harmon-
ics of j and E vectors. Kubo’s formula for the conductivity 
tensor of electron gas on the surface of the nanotube with 
superlattice is [58]  
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, , i
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dt J m q t J m q

αβ αβ
∗

∞
ω

α β

σ ω = δ +
ω

 + − − ω ∫
, (5.2) 

where n  is surface density of electrons, ( , , )m q tJ  is the 
cylindrical harmonics of current density operator in the 
external magnetic field B. The angle brackets denote the 
average value of the operator commutator. The quantum 
constant was assumed as unity. The components of ( , )m qJ  
vector are 
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m S

+
ϕ + +

∗

+
+ +

∗

 = − + η+ 
 

 = − + 
 

∑

∑
 (5.3) 

where ˆlka  and ˆlka+  are operators of annihilation and creation 
of electrons in lk  state, 2S aL= π  is the surface area for 
the tube with length L . Spin splitting of levels is not con-
sidered in Eq. (5.3). 

From Eqs. (5.2) and (5.3) we obtain the components of 
conductivity tensor: 
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∑

(5.6) 

Here f  is Fermi function, 

 ( ) ( )2
0 1 coslk l kdε = ε + η + ∆ − . (5.7) 

The second term addend in the right part of Eq. (5.7) is 
often used in the theory of semiconductor superlattices 
[7, 8, 10, 11–15]. The real parts of the components ϕϕσ  
and zzσ  are even functions of m and ω, while imaginary 
parts are odd ones. At zero temperature in summation  kΣ
the values k  in the formulas (5.4)–(5.6) are limited to gap 

l lk k k− ≤ ≤ , where 

 01 arccos l
lk

d
ε + ∆ −µ

=
∆

  

is the maximum momentum of the electrons in the miniband l
, 2

0 ( )l lε = ε + η  is the miniband boundaries. If 0q = , at zero 
temperature from the formulas (5.4)–(5.6) we calculate the 
components of dynamical conductivity tensor: 
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 (5.8) 

( ), 0,z mϕσ ω =  
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  (5.9) 

Here 0 [2( ) ]m l m±Ω = ε + η ±  are frequencies of direct transi-
tions of electrons between the miniband boundaries lε  in the 
field of electromagnetic wave. During the transitions, conser-
vation laws for longitudinal components of angular moment, 
momentum, and energy are satisfied. At zero temperature, the 
summation over l  in Eqs. (5.8) and (5.9) is limited by the 
condition 0lε + ∆ −µ ≤ ∆. This means that Fermi energy is 
concentrated within the miniband. The minibands are posi-
tioned in the intervals [ , 2 ]l lε ε + ∆  and have the width 2∆. 
Generally, the semiconductor nanotubes with radius 

7 6(10 –10 ) cma − −
  in magnetic field 510 GB   are used. In 

this case, the electrons of the semiconductor nanotube occupy 
little quantity of bottom minibands, which boundaries at 

1/2η <  satisfy the inequality 2
0 1 1 2 ...− −ε η < ε < ε < ε <  In the 

quantum limit where 1/n ad< π , Fermi energy is concentrated 
in the bottom miniband 0l =  2 2

0 0[ , 2 ]ε η ε η + ∆ . In this case, 
in the absence of spatial dispersion, from Eqs. (5.8) and (5.9) 
we obtain 

____________________________________________________ 
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Here 0 (2 )m m±Ω = ε η± . The superlattice parameters ∆ 
and d  are included in Eqs. (5.10) and (5.11) only via the 
maximum momentum 0k  of electrons in the bottom 
miniband. In the absence of superlattice: ∆ →∞ , 0d → , 

2 1d m−
∗∆ → . Then 1/2[2 ( )]l lk m∗= µ − ε  and the Eqs. (5.10) 

and (5.11) agree with ones obtained in Ref. 58. At 0m = , 
only the imaginary part 2 /e n m∗ω remains in Eqs. (5.10) 
and (5.11), while the real part is zero. This determines the 
electromagnetic wave energy absorbed by electrons. In the 
absence of direct and indirect transitions of electrons, the 
absorption is zero. As the electron density grows, the num-
ber of addends in Eqs. (5.8) and (5.9) increases. If Fermi 
energy is concentrated in the second miniband, the oscilla-
tor forces of electron resonance transitions in Eqs. (5.8) 
and (5.9) are determined by values 0k  and 1k− . These are 
included in Eqs. (5.8) and (5.9) if the minibands are over-
lapped, i. e., 2

0 12 −ε η + ∆ > ε , and Fermi energy is concen-
trated in the overlap area 2

1 0[ , 2 ]−ε ε η + ∆ . Otherwise, the 
overlapping of minibands is absent. Then the maximum 
momentum of electrons 0k  in the completely occupied bot-
tom miniband corresponds to Brillouin zone boundary /dπ . 

In the quantum limit, taking into account the spatial 
dispersion, the real part of conductivity depends on Fermi 
level position in the bottom miniband. If 0µ  is positioned 
in the bottom half of the miniband 2 2

0 0 0( ,ε η < µ < ε η + ∆  
/2 )q d< π  from Eq. (5.6) we obtain 
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∆

. 

The real parts of other components of conductivity tensor 
are obtained from Re zzσ  using substitution of 2( )k −  by 

2 2( /2) /m aη+  in Re ϕϕσ  and by ( /2)/k m a− η+  in Re zϕσ
. 

If the Fermi level is positioned in the upper half of the 
miniband ( 2 2

0 0 0 2ε η + ∆ < µ < ε η + ∆ , /2 /d q dπ < < π ), 
we obtain 
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. 

The real part of conductivity is nonzero in the area of Lan-
dau damping [ , ]− +ω ω  of electromagnetic waves in the 
tube. 

In the quasi-classical case, the quantization of electron 
circular rotation can be neglected. That is possible under 
condition of 0 0ε µ . Substituting the l  summation by 
integrals in Eqs. (5.8) and (5.9), we obtain 
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and Θ  is the Heaviside function. If 0ω >  and 
0 02 /m < µ ε , the Eq. (5.12) become as follows 
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where 2
0 0 0 02 /m m±ω = ε µ ε ± ε . Equations (5.13) and 

(5.14) are 
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where 
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_______________________________________________

0/ ,x = ω ε  0/x± ±= ω ε . The value 1 2
0 0( / )µ ε  in ±ω  is 

equal to the classical angular moment Fak  of Fermi electron 
in the circular orbit ( Fk  is Fermi momentum). In Fig. 4 the 
dependences of aG  [Fig. 4 (a)], and bG  [Fig. 4 (b)] functions 

on x  are shown for parameters 10,m =  0 0 0/ / 100µ ε = ∆ ε =  
typical for semiconductor superlattices. 

At 0 02 /m > µ ε| |  we obtained 
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where now 2
0 0 0 02 /m m±ω = ± ε µ ε + ε| | . Functions 

(5.15) and (5.16) are represented as 
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where 
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∆
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F x x x x

x m − +
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0/ ,x = ω ε  0/x± ±= ω ε . In Fig. 5 the dependences of aF  
[Fig. 5 (a)], and [Fig. 5 (b)] bF  functions on x  are shown 
for parameters 5,m =  0 0 0/ / 4µ ε = ∆ ε =  under condition of 

0 02 /m > µ ε| | . 

Fig. 4. The real part of conductivity (5.13) and (5.14) depending 
on frequency for values of parameters referred in the text under 
condition of 0 02 /m < µ ε . 
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As the real part of conductivity is connected with elec-
tromagnetic field energy absorbed by electrons, the 
Eqs. (5.13)–(5.16) determine the boundaries of Landau 
damping for waves with positive and negative helicity. 
These boundaries are parabolas in the “angular moment – 
frequency” plane. The real part of the conductivity deter-
mines the damping decrement of electromagnetic waves on 
the tube. High-frequency asymptotics of the conductivity 
imaginary part at ±ω Ω  are 

 ( )
2 2

2 2 3 2
2Im l

l

e n e m k l
m m aϕϕ
∗ ∗

σ = + + η
ω π ω ∑ , (5.17) 

 
2 22

0 3
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3zz l
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ε
σ = +

ω π ω ∑ . (5.18) 

If 0 0ε µ , the sums by l  included in Eqs. (5.17) and 
(5.18) are calculated by Poisson formula. Then the 
Eqs. (5.17) and (5.18) for components contain monotonic 

mon( )σ  addends and oscillating osc( )σ  ones. These depend 
on the ratio of Fermi energy to the miniband width. When 

±ω Ω , 0 0ε µ  and 0 2µ < ∆ after integration by parts 

and replacing the integration variable, the oscillating part 
of the sum ( )l

l
J k l= + η∑  in formula (5.17) is equal to 
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∑ ∫ , 

 (2 )/α = ∆ −µ µ .  

Asymptotic of this integral under 0 0µ ε  as is known 
[80]. As a result, the imaginary part of the transverse con-
ductivity (5.17) is equal 
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 (5.19) 

In the case of 0 2µ > ∆ we obtain, 
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  (5.20) 

The Eqs. (5.19) and (5.20) undergoes Aharonov–Bohm 
oscillations under variation of magnetic flux through the 
tube cross-section. The oscillation period is equal to the 
flux quantum 0Φ . Also the oscillations looking like de 
Haas–van Alphen ones exist. They are caused by transition 
of root singularities of electron density of states at the 
miniband boundaries through Fermi boundary due to the 
tube radius variation or changing the electron density. The 
latter is related with Fermi energy as follows 

 
( )

0
2

, 2 ,
2
1 , 2 .

8

dn
m

dn
m

∗

∗

 π ∆
µ ∆

µ = 
 π µ ∆





  

Analyzing the dependence of oscillations (5.19) on 
1/2( )adn  we obtain the period 1/2( )a m −

∗τ = π ∆ . 
If 0 2µ < ∆, only the miniband bottom boundaries lε  

pass through Fermi boundary when the tube parameters 
change. As a result, in Eq. (5.19) the base frequency of 
oscillations is present only. The second addend in Eq. (5.20) 
exists because at 0 2µ > ∆ not only miniband lε  bottom 
boundaries transverse Fermi level but the upper ones 2lε + ∆  
as well. Existence of two oscillation frequencies in 
Eq. (5.20) causes the beats in the plot of conductivity versus 
the tube parameters. They are similar to the beats of plasma 
and spin waves spectra in the tube [26, 27]. If 0∆ µ  the 

Fig. 5. The real part of conductivity from Eqs. (5.15) and (5.16) 
depending on frequency for values of parameters referred in the 
text under condition of 0 02 /m > µ ε . 



Superlattice on the surface of a nanotube 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7 589 

relative difference of conductivity oscillation frequencies and 
amplitudes in Eq. (5.20) is of the order of 0/∆ µ . As this pa-
rameter increases, the beats turn into weak modulations and 
disappear at 0 2µ < ∆. The sum by l  in longitudinal conduc-
tivity (5.18) is calculated by Poisson formula as well. Conse-
quently, the conductivity contains monotonic and oscillating 
components. At 0 2µ > ∆ they are equals 
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0mon
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, (5.21) 
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where 
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 1/2
0( / )b = µ ε ,   2

0/c = ∆ ε . (5.24) 

The integrals (5.23) and (5.24) are not calculated exact-
ly. In Fig. 6 (a), the dependence mon ( )J b  calculated nu-
merically is shown. Solid-, dotted-, and chain-line curves 
correspond to 2 10, 20, 30c = , respectively. The osc ( )J b  
dependence at 1r =  and 2 15c =  is shown in Fig. 6 (b). 

In accordance with formulas (5.21)–(5.24) the mono-
tonic part of the conductivity and the amplitude of the os-
cillating part decrease with frequency nω  increases. 
Figue 6 (b) shows the weak modulations are caused by the 
beats.  

The imaginary part of the transverse conductivity (5.19) 
and (5.20) behaves similarly. It is includes into the disper-
sion equation for the electromagnetic waves spectrum. The 
beats and oscillations obtained here there exist only in the 
quasiclassical case. Their reasons were described above. 
The ratio of the oscillation amplitude of the transverse 
conductivity (5.19) to the amplitude of the oscillation in 
the absence of the superlattice [58] is of order 

1/2
0/ ( / )a d ε ∆ . The longitudinal conductivity oscillations of 

de Haas–van Alphen type exist also in the absence of mag-
netic field. 

5.2. Magnetic susceptibility 

Within the framework of random phase approximation 
[78, 87, 88], circular components of the tensor of dynam-
ical spin susceptibility of an electron gas with the spectrum 
(3.2) on the tube surface are [89–91] 
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 (5.26) 

is the susceptibility of the ideal electron gas with spectrum 
(3.2), xx yxi±χ = χ ± χ , m, q and ω are, respectively, angu-
lar moment, moment and frequency of the spin wave. 

The real and imaginary parts of the component 0
−χ  

(5.26) of electron degenerated gas are 
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 (5.27) 

Fig. 6. Monotonic (a) and oscillating (b) components of longitu-
dinal conductivity (5.21) and (5.22) at 0 2µ > ∆  as the functions of 

1/2
0 0( / )µ ε  for parameter values referred in the text. 



A. M. Ermolaev and G. I. Rashba 

590 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7 

( )

( ) ( )

2
0

2 2

2 2

Im , ,
4 sin

2

sin sin
l l

l l

B

q qk d k d

l q qk d k d

m q
qdad

dx x C dx x C

− +

− +

−

   + −   
   

+ −
   − + − −   
   

µ
χ ω = ×

π ∆

 
 
 × ⋅δ − − ⋅δ −
 
  

∑ ∫ ∫

, 

  (5.28) 
where 
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±
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=

∆   
is the maximum moment of electrons in the miniband with 
( , )l σ = ±  number, 

2 sin
2

C
qd
±

±
ω−Ω

=
∆

,    ( )0 2m l m±Ω = ε + η ± +Ω    (5.29) 

are frequencies of vertical transitions of electrons between 
miniband boundaries [ , 2 ]l l

± ±ε ε + ∆  (where 2
0 ( )l l±ε = ε + η + 

B B gn−σ+σµ + ) with spin-flip transition − → +  under ac-
tion of an alternating field. Sum over l  in (5.27) and (5.28) 
is limited by the condition 0l

±ε + ∆ −µ < ∆ which means 

that Fermi energy is in the miniband ( ),l σ = ± . 

6. Collective excitations on a tube with a superlattice 

6.1. Plasmons 

In the framework of the hydrodynamic approach, using 
the continuity equation for electron liquid and Poisson 
equation for electrical potential, the authors [65, 66] have 
obtained the dispersion equation for the spectrum of sur-
face plasma waves on the tube: 
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where m is the projection of the plasmon angular moment 
on the tube axis z ; ϕϕσ  and zzσ  are components of electron 
gas dynamical conductivity in absentia of spatial dispersion 
( 0qυ ω , 0υ  is the Fermi velocity) in cylindrical coordi-
nates , zϕ ; mI  and mK  are modified Bessel functions. 

The Eq. (6.1) is true also for the tube with a superlattice. 
Substituting Drude expression for conductivity 2 /ie n m∗ω 
into Eq. (6.1), we obtained the known spectrum for 
intraband ( 0m = ) and interband ( 0m ≠ ) plasmons [65–67]: 
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The Eq. (6.2) does not take into account the interband cur-
rent caused by quantum transitions of electrons in the wave 

field between the minibands. Taking that into account, the 
transverse component of dynamical conductivity tensor for 
electron gas on the tube is 
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 (6.3) 

where 0 (2 )m l m±Ω = ε ±  are frequencies of direct transi-
tions of electrons between the minibands. The longitudinal 
conductivity zzσ  is obtained from (6.3) using substitution 

of 
2

2

2
ma l−  ± 

 
 by 2k  and 0z zϕ ϕσ = σ = . In Eq. (6.3) we 

apply the electron energy on the surface of the semicon-
ductor nanotube with a superlattice [26, 74]: 2

0lk lε = ε + 
(1 cos )kd+∆ − . The imaginary part of the interband con-

ductivity has resonance singularities at frequencies ±Ω . 
The Landau attenuation is concentrated in narrow bands 

qdδω ∆  near these frequencies [27].  
In formulas for conductivity, we restrict ourselves to the 

quantum limit where electrons in the degenerated gas oc-
cupy partially only the lower miniband 0l =  with width 2∆ 
and their density does not exceed 1/ adπ . In this case, the 
solution of Eq. (6.1) is defined by the parameter 

2 2
03 /4( )m m akα = . That is connected with forces of oscil-

lators for resonance transitions 0 m→  of electrons between 
the minibands. Here 
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is the maximum momentum of an electron in the miniband 
with 0l = .  

If 1mα < , there exists a series of branches in the plas-
mon spectrum 
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 (6.4) 

where 2
0m mω = ε  are frequencies of electron single-

particle transitions 0 m→ . Figure 7 shows the frequency of 
the wave (6.4) 1 1 10/q q′ω = ω Ω  (solid line) and wave (6.2) 

1 1 10/q q′Ω = Ω Ω  (dashed curve) as a function of x qa=  for 
1m =  and 1 0.75α = . Here 2 1/2

10 (2 / )e n m a∗Ω = π  is the 
limiting frequency for the wave with the spectrum (6.2). 
Parameter values 280.64 10 gm −

∗ = ⋅  (GaAs), 710 cm,a −=  
0 1k a =  are used. Under the condition 1 1α <  the Fermi level 

lies in the upper half of the miniband. If 1mα > , then two 
branches are connected with each 0 m→  transition: 
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 (6.5) 

Figure 8 shows the dependence of the wave frequencies 
(6.5) 10(1, ) (1, ) /q q± ±′ω = ω Ω  (solid and dash-dotted curves) 
and wave (6.2) 1 1 10/q q′Ω = Ω Ω  (dashed curve) as a function 
of x qa=  under 1m =  and 1 3α = . The above mentioned 
values of m∗, a , and 0 0.5k a =  were used. In this case the 
Fermi level lies in the lower half of the miniband. The 
branches (6.4) and +ω  (6.5) are positioned above mω , and 
the branches −ω  (6.5) are below mω . 

In the limit of long waves ( 1qa ) and at 1mα <  from 
Eq. (6.4) we obtain 
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  (6.7) 

The critical frequencies of waves with spectra (6.6) and 
(6.7) are 
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The frequency depolarization shift in Eq. (6.8) contains the 
period and the amplitude of the superlattice modulating 
potential. At 1mα >  the expressions (6.6) and (6.7) are true 
for the upper branch +ω . The bottom branch −ω  has the 
sound spectrum ( , ) mm q c q−ω = , where 
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m m
m m

m

ac k a
m

ω Ω
= α −

ω
 (6.9) 

Optical +ω  and acoustic −ω  branches are connected with 
in-phase and anti-phase density oscillations of electrons 
which participate in longitudinal and transversal motion on 
the tube. 

6.2. Spin waves 

In the random-phase approximation, the dispersion equa-
tion for the spectrum of transverse spin waves on a tube with 
a superlattice in the magnetic field has the form [34] 

 ( )0
21 , , 0.

2 B

g m q±− χ ω =
µ

 (6.10) 

Components ±χ  correspond to spin transversal waves with 
positive (–) and negative (+) helicity. The plus (minus) 
sign in ±χ  corresponds to transverse Landau–Silin spin 
waves [69–72] with a negative (positive) chirality. The 
solution of Eq. (6.10) for a degenerate electron gas de-
pends on the position of the Fermi level 0µ . If the electron 
density n satisfies the inequality 

 ( )0 02
1 ,

2
n k k

a
− +< +

π
 (6.11) 

the Fermi level occurs in the miniband overlapping region 
in Fig. 1. Inequality (6.11) involves 

 0 0
0

1 arccos ,k
d

±
± ε + ∆ −µ
=

∆
  

Fig. 7. The dispersion curves of waves with the spectrum (6.4) 
(solid line) and with the spectrum (6.2) (dashed line) under 1,m =  

1 1α <  are shown. Parameter values are given in the text. 

Fig. 8. The dispersion curves of waves with the spectrum (6.5) 
(solid and dash-dotted curves) and with the spectrum (6.2) 
(dashed line) under 11, 1m = α >  are shown. The parameters 
values are given in the text. 
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which is the maximum electron momentum in the miniband 
0±. If the minibands do not overlap and the level 0µ  is situ-
ated in the second miniband then 0k −  in Eq. (6.11) should be 
replaced by /dπ . 

The graphical analysis of Eq. (6.10) in the case 
0 0 0 2+ −ε < µ < ε + ∆  indicates that each m value, i. e., each 

spin-flip − → +  electron transition 0 m− +→  between the 
minibands 0l =  and l m=  corresponds to two branches of 
the magnon spectrum with a positive chirality. These 
branches are situated between the frequencies of single-
electron transitions between the minibands  

[ ]0 2 .m m±Ω = ε η± +Ω  

In the long-wavelength limit 2 sin
2

qd
±

 
∆ ω−Ω 

 
 , the 

magnon spectrum with a positive chirality reads 

 ( ) 0 2sin ,
2

qdq± ± ±ω = ω +α  (6.12) 

where 

 

( )

( ) ( )( )

( ) ( )

0
0 0

2
0 0

1/22
0 0 0 0

1
2

1 2
2

4

k k

k k

k k k k

− +
± + −

− +
+ − + −

− + + −
+ −

 ω = Ω +Ω −υ − ± 

± Ω −Ω − υ − Ω +Ω +

+ υ − − υ Ω − Ω 

 (6.13) 

are the limiting frequencies of the modes, 

2 ,
2

g
a

υ =
π

 

 
( ) ( )
( ) ( )

2 20 0
0 0

2 20 0
0 0

sin sin
2

k d k d

k d k d

+ −
± + ± −

±
+ −

± + ± −

ω −Ω + ω −Ω
α = ∆

ω −Ω − ω −Ω
.  

  (6.14) 

If the minibands 0− and 0+ do not overlap, 0k −  in Eqs. (6.13) 
and (6.14) must be replaced by /dπ  . The spectrum of neg-
ative-chirality spin waves can be found from Eqs. (6.13) 
and (6.14) by exchanging the spin indices − ↔ +  and a 
sign change of Ω . 

In the case of weak electron-electron interaction ,d ±υ Ω  
we find from Eqs. (6.13) and (6.14) 

 0
0 ,k± ±ω = Ω −υ   (6.15) 

 0

0

sin
2 ,

k d
k d±α = ∆





  (6.16) 

where 0kυ   is the depolarization frequency shift. The upper 
(lower) branch +ω  ( −ω ) of the magnon spectrum has a neg-
ative (positive) chirality. Collisionless damping of spin 
waves is given by the imaginary part of susceptibility 
(5.26). In the case of a degenerate electron gas, it is 

( )
1/22

22 2Im 4 sin
2 2

B

l

qd
ad

−

− +
µ  χ = ∆ − ω−Ω π  

∑ , (6.17) 

where frequency is in the interval 

 2 sin 2 sin ,
2 2

qd qd
+ +Ω − ∆ < ω < Ω + ∆   

( )
1/22

22 2Im 4 sin
2 2

B

l

qd
ad

−

− −
µ  χ = − ∆ − ω−Ω π  

∑ , (6.18) 

where frequency is in the interval 

 2 sin 2 sin
2 2

qd qd
− −Ω − ∆ < ω < Ω + ∆ .  

The Landau damping of spin waves is nonzero in the Ston-
er sectors of the q −ω plane bounded by the curves 

2 sin
2

qd
± ±ω = Ω ± ∆ . Dispersion curves (6.12) are situated 

outside the Stoner sectors, i. e., the spin waves considered 
in this Subsection are undamped. To observe the effects 
associated with these modes the distances between the 
edges 2

0 2k a n±
±υ = π υ  of the Stoner sector and the limiting 

frequencies must exceed both the thermal and impurity 
broadening of the electron energy levels. 

Conclusion 

Superlattice at the surface of a nanotube has a signifi-
cant impact on its properties. It can be obtained by embed-
ding fullerenes or other additives to the nanotube or when 
the nanotube is attached to a substrate for charge exchange 
[47]. In the absence of a superlattice, the tube spectrum in 
a longitudinal magnetic field is a collection of one-dimen-
sional subbands located next to each other and having 
nonequidistant boundaries [22, 26, 27, 34, 86, 89]. Periodic 
modulating potential artificially created at the surface of 
the tube converts the spectrum into a system of minibands, 
the widths of which are determined by the amplitude of the 
modulating potential [22]. In a longitudinal magnetic field 
its amplitude and period depend on the magnetic field 
strength. Energy gaps separating the minibands have 
widths defined by the ratio of the miniband width to the 
magnitude of the rotational quantum and depend on mag-
netic field strength [26, 27]. Density of electronic states 
has a root singularity at miniband borders [22]. As the ra-
dius of the tube increases, the minibands overlap resulting 
in a continuous spectrum [22]. 

In this review, the density of states, chemical potential, 
energy, and heat capacity of a degenerate and non-dege-
nerate electron gas at the surface of a nanotube with metal-
lic conductivity character in a longitudinal magnetic field 
have been presented [22]. We show that abovementioned 
thermodynamic values include monotonic and oscillating 
components. In agreement with Pauli principle monotonic 
heat capacity component of a degenerate electron gas is 
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proportional to the temperature [22]. Heat capacity displays 
de Haas–van Alphen type oscillations due to the passage of 
state density root singularity through the Fermi boundary 
with a change in electron density [22]. These oscillations 
persist in the absence of a magnetic field. Heat capacity 
also displays Aharonov–Bohm type oscillations when 
magnetic field flux through cross-sectional of the tube is 
varied. Heat capacity studies allow observation of the tran-
sition of modulating potential from the localized gaps 
mode to the mode of free motion along the tube [22]. 

The obtained in the present review formulas for the 
conductivity tensor components may be applied for stu-
dying electromagnetic wave propagation in nanotubes 
with superlattices based on AlxGa1–x/GaAS, InGaAs/GaAs, 
InAs/GaAs, GeSi/Si heterojunctions and in carbon nano-
tubes in the regime of metallic conductivity. The real part 
of conductivity determines the wave energy absorbed by 
electrons [24]. In the degenerated electron gas, this is non-
zero in the areas of Landau collisionless damping [24]. 
Knowing the positions of transparency windows for the 
waves, it is possible to improve the waveguide characteris-
tics of nanotubes [21]. The imaginary part of conductivity 
is included into the dispersion equation for electromagnetic 
wave spectrum [32, 65–67]. This has the resonance singu-
larities at frequencies of electron direct transitions between 
minibands. Usually, near these frequencies there exist new 
branches in the wave spectrum and related band transpar-
ency. Observation of conductivity oscillations of de Haas–
van Alphen type allows determining the electron effective 
mass, Fermi momentum, rotational quantum and super-
lattice parameters d  and ∆ [24]. These values are included 
in the oscillation amplitude and period expressions. Re-
vealing the instant of appearing the beats under variation of 
the nanotube parameters gives the opportunity to obtain the 
ratio of Fermi energy to miniband width. 

In the framework of the hydrodynamic approach, the 
plasma waves on the surface of a nanotube with a longitu-
dinal superlattice were discussed [32]. Not only longitudi-
nal electron current but also transversal one has been taken 
into consideration. It has been shown that both optical and 
acoustical plasmons could propagate along the tube with 
one sort of carrier [32]. The results of this review can be 
used in studying the magnetic scattering of neutrons by the 
spin magnetization current of conduction band electrons on 
a tube. The cross-sections of scattering by spin waves and 
Stoner excitations are of interest. This problem was solved 
earlier for a two-dimensional electron gas on a plane [73]. 
The curvature of a cylinder should manifest itself in addi-
tional features of the scattering cross-section. The electron-
electron interaction constant, the amplitude, and period of 
the modulating potential can be found by measuring the 
depolarization frequency shift and group velocity of spin 
waves on a tube [31]. 

The authors are thankful to T. I. Rashba for help during 
the manuscript preparation. 
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Надгратка на поверхні нанотрубки 

A. M. Ermolaev, G. I. Rashba 

Наведено результати теоретичних досліджень термоди-
намічних, кінетичних та високочастотних властивостей елек-
тронного газу на поверхні нанотрубки у магнітному полі при 
наявності повздовжньої надгратки. Нанорозміри області руху 

електронів призводять до квантування енергії, а її неод-
нозв’язність у присутності магнітного поля — до ефектів, які 
є похідними від ефекту Ааронова–Бома. Показано, що кри-
вина нанотрубки навіть у відсутності магнітного поля обу-
мовлює нові макроскопічні осциляційні ефекти типу осциля-
цій де Гааза–ван Альфена, які пов’язані з квантуванням енергії 
поперечного руху електронів та з кореневими особливостями 
густини електронних станів на поверхні нанотрубки. У газо-
вому наближенні розраховано термодинамічні потенціали та 
теплоємність електронного газу на трубці. Отримано формулу 
Кубо для тензора провідності електронного газу на поверхні 
нанотрубки. Визначено області згасання Ландау електромаг-
нітних хвиль на трубці та теоретично передбачено биття на 
графіку залежності провідності від параметрів трубки. У гід-
родинамічному наближенні розглянуто плазмові хвилі на по-
верхні напівпровідникової нанотрубки з надграткою. Пока-
зано, що уздовж трубки з одним сортом носіїв можуть 
розповсюджуватися оптичні та акустичні плазмони. Дослід-
жено електронні спінові хвилі на поверхні напівпровіднико-
вої нанотрубки з надграткою у магнітному полі. Розраховано 
спектри та області без зіткнення згасання цих хвиль. Показано, 
що в цих областях у випадку трубок малого радіуса з вирод-
женим електронним газом згасання спінових хвиль відсутнє. 

Ключові слова: нанотрубки, надгратка, магнітне поле, термо-
динамічні функції, динамічна провідність, 
плазмові хвилі, електронні спінові хвилі.
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