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The results of theoretical studies of the thermodynamic, kinetic, and high-frequency properties of the electron gas on
the surface of a nanotube in a magnetic field in the presence of a longitudinal superlattice are presented. Nano-
dimensions of the motion area lead to energy quantization. Its multiply connected structure in the presence of a magnet-
ic field leads to effects that are derived from the Aharonov—Bohm effect. It is shown that the curvature of a nanotube,
even in the absence of a magnetic field, causes new macroscopic oscillation effects such as de Haas—van Alphen oscil-
lations, which are associated with the quantization of the transverse electron motion energy and with the root peculiari-
ties of the density of electron states on the nanotube surface. Thermodynamic potentials and heat capacity of the elec-
tron gas on the tube are calculated in the gas approximation. The Kubo formula for the conductivity tensor of the
electron gas on the nanotube surface is obtained. The Landau damping regions of electromagnetic waves on a tube are
determined and the beats are theoretically predicted on the graph of the dependence of conductivity on tube parameters.
In the hydrodynamic approximation, the plasma waves on the surface of a semiconductor nanotube with a superlattice
are considered. It is shown that optical and acoustic plasmons can propagate along a tube with one kind of carrier. Elec-
tron spin waves on the surface of a semiconductor nanotube with a superlattice in a magnetic field are studied. The
spectra and areas of collisionless damping of these waves are found. We have shown that the spin wave damping is ab-
sent in these areas if the tubes with a degenerate electron gas have small radius.

Keywords: nanotubes, superlattice, magnetic field, thermodynamic functions, dynamic conductivity, plasma waves,
electron spin waves.
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1. Introduction

In the sixties of the last century, Moisey Isaakovich
Kaganov, working on the book [1], could not ignore the
promising direction in solid state physics — semiconductors
with superlattices, which was rapidly developing. Super-
lattice is an additional translational symmetry artificially
created on the surface and in the sample volume.

The physical properties of materials with an additional
artificially created periodic structure (superlattice) differ
significantly from the corresponding properties of homo-
geneous bodies. The additional potential of the superlattice
modifies the band structure of the base material. Since the
period of the quantum superlattice d is much larger than
the lattice constant, the Brillouin zone is divided into a
number of minibands. This creates narrow subbands
(minibands) separated by forbidden regions in the conduc-
tion band and the valence band of the initial crystal. How-
ever, for such periodicity to significantly affect the behav-
ior of quasiparticles (electrons, phonons, magnons), certain
conditions must be met. First, the average energy of a
quasiparticle should be comparable with the miniband
width, and second, the superlattice period should be much
less than the quasiparticle mean free path /: d < /. This
inequality can be rewritten as A>> i/ 1, where A is the
half-width of the miniband, T is the relaxation time.
Superlattices, in which the above conditions are satisfied,
are called quantum superlattices.

The idea of creating a quantum superlattice was first ex-
pressed by L. V. Keldysh [2], who proposed to use a power-
ful ultrasonic wave to obtain additional periodic potential.
The first samples of quantum superlattices were synthesized
as early as 1971 by the molecular epitaxy method [3, 4].
Continuous progress of methods of molecular beam epitaxy
from metallic-organic compounds made it possible to create
high-quality heterostructures based on the GaAs-Ga,  Al,As
system [5]. Currently superlattices are the main elements of
a new technology called band-gap engineering.

The main results obtained by Moisey Isaakovich in this
area are published in Refs. 6-10. In Ref. 6 the theory of
acoustoelectronic interaction in crystals with superlattices
is developed. Reference 7 contains the calculation of the
thermodynamic quantities of superlattices in a magnetic
field: chemical potential, magnetic moment, and sample
temperature for a nondegenerate and degenerate electron
gas. Oscillations in temperature are also found in this arti-
cle. They are used as a method for adiabatic cooling of the
sample. Reference 8 is devoted to the theory of electrical
conductivity of semiconductors with superlattices in a
quantizing magnetic field. This paper shows that a change
in the quantizing magnetic field applied along the axis of a
one-dimensional superlattice induces metal-dielectric
phase transitions. Also in this paper, the characteristics of
the photoconductivity of the superlattice in a quantizing
magnetic field are calculated. In Ref. 9, the spectrum of

low-frequency electromagnetic oscillations in a superlattice
was calculated under the conditions of the quantum Hall
effect and an assumption was made about the possibility of
experimental detection of these waves in Hall dielectrics. A
popular presentation of the basic ideas of the physics of semi-
conductors with superlattices is contained in the book [10].

The properties of massive semiconductors with super-
lattices are considered in many publications by domestic
and foreign authors. Extensive reviews and monographs
have been written, they describe a number of important
aspects of superlattice physics [11-17].

The advances in modern nanoelectronics are associated
both with the development of technology and with advanc-
es in fundamental physics, describing the thermodynamic
and high-frequency properties of nanostructures. Advances
in physics and the technology of solid-state nanostructures
have led to the creation of a scientific foundation for their
widespread use in nanoelectronics [18]. In this regard, the
techniques and methods well known in the theory of mas-
sive semiconductors with superlattices, being applied to
nanoobjects, are filled with new content. Solid-state
nanostructures are nano-sized objects characterized by the
presence of inhomogeneities of various nature and configu-
rations within semiconductor and dielectric media. The
range of these nanostructures is quite wide: quantum wires
[18, 19], quantum dots [18, 20], fullerenes and nanotubes
[21]. Although these objects differ in their physical nature,
they are united by their very small size in one or several
directions. These dimensions are only one or two orders of
magnitude larger than the characteristic interatomic dis-
tance. Under these conditions, the quantum nature of the
motion of current carriers manifests itself in an essential
way. It is well known that the reception, transmission and
processing of information in monomolecular structures are
based on quantum processes of charge transfer in them.
This circumstance leads to the widespread usage in scien-
tific literature of such terms, as quantum computers, quan-
tum information systems. The physical mechanisms, used
in these structures, are the tunneling effect and the interac-
tion of charged quasiparticles (conduction electrons) with a
periodic potential, they have also been encountered earlier
in solid state physics and the theory of massive
superlattices. However, as applied to nanotubes, the nature
of these effects significantly changes due to the quasi-one-
dimensional type of conductivity and tube curvature.
Therefore, the known results, related to 3D macroscopic
samples, cannot be transferred to nanotubes. Thus, there is
a need for new fundamental studies of thermodynamic and
electromagnetic processes in quasi-1D macromolecules in
general and in nanotubes in particular.

The purpose of this review article is to summarize
the results of the authors’ investigations in the field of
the physical properties of nanotubes with superlattices.
These studies cover the thermodynamics of nanotubes
[22], dynamic conductivity [23, 24], collective excitations
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(plasmons and Landau-Silin spin waves) of the electron
gas of nanotubes with a longitudinal superlattice [25—34]
and are based on a unified approach. The approach devel-
oped here uses the analogy between physical processes in
nanotubes with superlattices and processes in massive
superlattices, which were studied by M. 1. Kaganov [6—10].
The review material is presented using a number of im-
portant problems in the physics of nanotubes as examples.
It should be emphasized that the problems considered as a
complex, in addition to theoretical and applied interest,
serve as bright illustration of the general trends in the de-
velopment of modern physics of nanostructures.

2. Nanotubes with superlattices: classification
and research development

2.1. Classification of nanotubes

Thirty years have passed since the discovery of carbon
nanotubes by Iijima [35]. However, the interest in these
nanosystems is so great that in recent years a new direction
in physics and technology has emerged — carbon nano-
material science. Nanotubes are prepared by rolling up a
graphene sheet (or two-dimensional heterostructure) into a
tube. Depending on the rolling-up manner, the tube has
metallic, semiconductor, or dielectric properties. Many
articles and reviews have appeared in the world of scien-
tific literature (see, for example, [36-38]), in which the
properties of nanotubes are studied. They are interesting to
physicists because nanotubes are dielectric, semiconductor,
metal, so the methods developed to study these systems are
transferred to nanotubes and other electron nanosystems on
curved surfaces [38]. To study their properties, it is neces-
sary to synthesize the methods of quantum mechanics, sta-
tistics and kinetics and Riemannian geometry. A new pa-
rameter appearing in theory (the curvature of the structure)
contributes to enriching the picture of phenomena in nano-
systems increasing the ways to control their properties. In
electronic systems on curved surfaces, effects have already
been discovered that have no analogue in systems with flat
geometry. These include effects of hybridization of size
and magnetic quantization of the motion of conduction
electrons, modification of the electron Hamiltonian [38],
specific resonances in the scattering of electrons in carbon
nanotubes [39] and quantum wires [19] by impurity atoms.

The logic behind the development of solid state physics
is such that currently the objects of investigations are not
only three dimensional systems with superlattices [6—17],
but also low-dimensional systems. Modern technologies
allow creating not only nanotubes but nanotubes with
superlattices. Along with flat superlattices [2, 4, 40—45],
also ones with cylindrical symmetry exist [18]. They are of
radial and longitudinal types [18, 46]. The radial super-
lattice is a set of coaxial cylinders, while the longitudinal
one looks like a set of coaxial rings of the same radius.
The tubes with longitudinal superlattice are prepared by

lithographic methods. It can be obtained by embedding
fullerenes or other additives to the nanotube or when the
nanotube is attached to a substrate for charge exchange
[47]. In such a system, there exists the periodic potential
acting upon electrons moving along the tube.

2.2. Thermodynamics of nanotubes

The thermodynamic functions of electron gas on a
nanotube surface have been studied in literature [48—54].
In Ref. 51 the geometrical effects in ideal quantum gases
of electrons, photons and phonons in confined space were
considered. In Ref. 52 a thermodynamic analysis of the
boron-nitride nanotubes nucleation on the catalysts surface
was performed. In Refs. 53, 54 the chemical potential, en-
ergy, pressure and the work function of an electronic gas
on a conducting carbon nanotube surface under zero tem-
perature are calculated. Within the framework of the
Hartree—Fock approximation the contact electron-electron
interaction is taken into account. Analytical form of the
work function of carbon nanotubes was derived in the pa-
per [54]. At large radii of nanotubes the limit to the work
function of graphene was done.

Superlattice at the surface of a carbon nanotube has
been previously studied [55, 56]. In Ref. 56 authors esti-
mated orbital magnetization of the electron gas at the sur-
face of the nanotube with the superlattice in a magnetic
field parallel to the axes of the tube and the superlattice.
Using the model suggested by the authors [56], we calcu-
lated the heat capacity of the degenerate electron gas [22].
In Subsections 4.1, 4.2 we present the results of calcula-
tions of such thermodynamic functions of the degenerate
and nondegenerate electron gas on the semiconductor cy-
lindrical nanotube surface in a longitudinal magnetic field
as chemical potential, internal energy and heat capacity.
We employ the effective mass approximation and Poisson
summation formula for the calculation of the density of
states [22].

2.3. Response function

Simplified conductivity models are usually used for
studying electromagnetic waves propagation in the cylin-
drical geometry systems, for example, in nanotubes. The
metal cylinder conductivity is often believed to be endless,
and the dielectric permittivity of the matter in which cylin-
der is dipped is considered to be constant or only frequen-
cy dependent. Conductivity’s spatial dispersion is usually
not taken into account. Nonetheless, the electromagnetic
field’s nature in the tube, its waveguide characteristics are
sensitive to the surface currents. Therefore, the electron
gas conductivity tensor components calculation problem
with allowance for the spatial and time dispersion is worth
consideration. In connection with increased interest in cur-
rents within the cylindrical conductors, the authors of
Ref. 57 have calculated the longitudinal conductivity for
solid and hollow cylinders without superlattice in magnetic
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field and considered quantum electromagnetic waves in
such systems. Exact expressions for all the components of
the conductivity tensor for degenerate and nondegenerate
electron gas on the nanotube surface without superlattice
are presented in Ref. 58. It is worth to be clarified how the
superlattice affects this tensor. In Section 5.1, the compo-
nents of the dynamic conductivity tensor are calculated
based on the effective mass model for a nanotube with a
longitudinal superlattice in a magnetic field. The super-
lattice axis and the magnetic field strength vector are as-
sumed to be parallel to the tube axis.

The reaction of the electron gas of a nanotube to a weak
alternating magnetic field is characterized by the tensor of
dynamic magnetic susceptibility. The components of the
magnetic susceptibility tensor presented in Subsection 5.2
will be used to solve the dispersion equation to determine
the spectrum of Landau—Silin spin waves on a tube with a
superlattice in Subsection 6.2 [27].

2.4. Collective excitations

Plasma waves on the surface of carbon [35] and semi-
conductor nanotubes [59, 60] were studied in [61-67].
Plasmon in the nanotubes are studied mainly in approxima-
tion of random phases [34, 62, 66, 67] and in the hydrody-
namic approximation [65, 68]. In the framework of the
hydrodynamic approach, the plasma waves on the surface
of a nanotube with a longitudinal superlattice in Subsection
6.1 are considered. Not only longitudinal, but also trans-
verse electron currents are taken into account. It was
shown that both optical and acoustic plasmons can propa-
gate through a tube with one type of carriers [32].

Electron spin waves on the surface of a semiconductor
nanotube with a superlattice in a magnetic field have been
considered in the Subsection 6.2. These waves in bulk
conductors were predicted by Landau [69] and Silin [70].
Their properties in bulk conductors were considered in
Refs. 71-73. Subsection 6.2 discusses spin-wave spectra
on the surface of a nanotube with a superlattice and regions
of collisionless damping of waves. It is shown that spin
waves are not damped in small-radius tubes with a degen-
erate electron gas [31].

3. Electron energy spectrum and density of states on
the nanotube surface with superlattice

3.1. Electron energy spectrum

The conduction electron energy spectrum in the carbon
and semiconductor nanotubes has a band nature. A small
electron density near the band edge permits to use the ef-
fective mass approximation. This approximation allows
describing the properties of such systems qualitatively and
often also quantitatively.

Energy of electron with effective mass m. on the sur-
face of a cylindrical nanotube with radius a with longitudi-
nal superlattice consists of the energy of rotational motion,

1> /2m.a*, and that of longitudinal motion A(1—coskd),
where [ =0,%1,... and k are projections of electron angular
moment and momentum, respectively, onto the axis of the
tube. The expression A(l—coskd) is usually used in the
tight-binding model of electrons in a crystal lattice [1, 7, 8,
10, 11, 13-15]. Here A and d are, respectively, amplitude and
period of modulating potential on the tube surface. If kd <<1,
this expression becomes k2 /2m, where m, =1/ Ad 2. Here-
inafter, the Planck’s constant is set to unity. In the magnet-
ic field B, parallel to the tube axis Z, the energy of electron
rotational motion becomes equal to &, (/+m)> [74], where
&y = (2m,a*)7! is the rotational quantum, n=®/® , is the
ratio of magnetic flux ® = na’B through the tube cross-
section to the flux quantum, ®,=2nc/e (e is the electron
charge, c is the velocity of light). Taking into consideration
the spin splitting of levels, we obtain the electron energy
slkc:so(l+n)2+A(1—coskd)+cmBB, (3.1
where 1 is the magnetic moment of an electron, =11
corresponds to two spin orientations. The longitudinal
effective mass of an electron is supposed to be equal to
its transversal one. Flux ratio n=®/® is included in

Eq. (3.1) in the form of /+m. This allows limiting 1 to
0 <n<1. The order of miniband location depends on m. If

n<1/2, we have g’ <& <g, <&, <.. If n>1/2

then €_; < 80n2 <¢&_, <... Here the spin level splitting will

not be taken into consideration. At m<1/2 lower

miniband is within [g,n?,&,m? +2A], and the next is with-
in [e_;,e_; +2A]. Energy gap between them is equal to
€9(1-2n)—2A. Width of the kth gap between (& +1)th and
kth minibands (k=1,3,...) is equal to gyk(1—-2n)—-2A.
Usually in experiments with nanotubes of radius a ~ 107-
10° cm €y > A, and the relationship between fluxes in
different fields is far less than unity, therefore minibands
don’t overlap. However, with an increase in tube radius
their overlap is inevitable.

The effect of Coulomb interaction of electrons on the
tube onto the energy spectrum to Hartree—Fock approxima-
tion was discussed in Ref. 75. Screening the electron-
electron interactions was studied in Refs. 76, 77. The
Hartree—Fock correction to the spectrum (3.1) in the model
of contact interaction of electrons has a usual form gn_;
[78], where n is the surface density of electrons with spin
projection G, g is the Fourier component of electron short-
range interaction energy. In this case, the electron energy
on the tube with a longitudinal superlattice is [27]

el =& (l+n)2 +A(1—-coskd)+gn_g +opgB. (3.2)

The first term in Eq. (3.2) refers to the quantized levels
of the circular motion of electrons on the tube in the magnet-
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+
€0k

—n/d k +n/d

Fig. 1. Electron energy (3.1) in two overlapping minibands 0*.

ic field, the second term is the energy of the longitudinal
motion of the electrons, and the third and fourth terms are
the exchange shift and the spin splitting of the levels, re-
spectively. The energy spectrum of the longitudinal motion
of electrons consists of narrow minibands with the widths
2A separated by energy gaps. The minibands can overlap.
Small-radius tubes correspond to the case with a small
number of occupied lower minibands. Figure 1 shows
schematically spectrum (3.1) in the first Brillouin zone
(-n/d <k<mn/d, when two lower spin-split minibands 0*
(=0, oc=41) overlap. We consider the case of n<1/2
when the positions of the lower boundaries € of the
minibands satisfy the inequalities &, <gj <& ; <&l <..
The miniband overlapping region [g;,&; +2A] in Fig. 1 has
the width 2A —Q with Q = gén+2pB, where Sn=n_—n,.

3.2. Density of electron states

Electron density of states with the spectrum (3.1) is cal-
culated according to the formula

v(g)= Z d(e—gys)-

lko

This equals

O(e—¢€7)0(e} +2A—¢)

(3.3)
\/(a —&7 )ef +2A—¢)

v(e) = %Z
o

Here €] =¢€j, L is the tube length, © is the Heaviside
function. In the absence of a superlattice, Eq. (3.1) repre-
sents a svstem of one-dimensional subbands with root sin-
gularities of state density at their boundaries €. Modulat-
ing notential converts this spectrum to minibands 2A wide
with boundaries €] and €] +2A. Figure 2 shows the di-

—
(O8)
T

12+

T

11

1 1 1 1 1 1
0 0.5 1.0 1.5 2.0 2.5

elg,

Fig. 2. Density of states (3.3) at the two lowest minibands of the
spectrum (3.1) for parameter values given in the text.

mensionless density of states 4 =mnvde, /2L (3.3) in the
two lower minibands of the spectrum (3.1) as a function of
e/ g, for parameters n=0.1, A/g, =0.1, usually used in
experiments [56].

When £ g, the sum of / included in (3.3) can be
substituted with an integral expression. As a result, the
spectrum of the nanotubes becomes continuous, and densi-
ty of states is now equal to

4—LK ( \/E ], £<2A,
nd\2Ag,, 2A
4—LK ( \/g J, £>2A,
nd\[2Aeg, €
where K(k) is the complete elliptic integral of the first
kind with modulus &k [79]. Considering the abovemen-
tioned relationship between m, with A and d, we are reas-
sured that (3.4) represents the density of states of a two-
dimensional electron gas with a one-dimensional super-
lattice in the absence of a magnetic field, occupying a band
with area S =2mnal. This system can be obtained by cut-
ting the tube along its length and turning it inside out to
form a surface. If ¢ < 2A from (3.4) the density of states of
a two-dimensional electron gas in the absence of a
superlattice is obtained: v, =m,S /.

Poisson formula is used for the calculation of /, includ-
ed in Eq.(3.3), at e>¢,. Then v=v_,, +V.. Where
Vo 18 the monotonic component of the density of states
of Eq. (3.3), and v, is the oscillating component. The
latter contains Fourier integral with a finite limits, where
integrand has a root singularity at the limits of integration.

Asymptote of the far Fourier component of this integral is
known [80]. From it we obtained

(3.4)
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vOSC (8) =

304 112 w
vosc(8)=4_L(8_0j [ij Z%coshcl;%{cos[%cl

nde \ € 0

E>g), £>2A

Function (3.5) oscillates with the change in electron energy

and magnetic flux ®@. The amplitude of oscillations de-
1/4

creases with increase in energy proportionally to €~
4. Thermodynamic quantities of a nanotube with a
superlattice

4.1. Degenerate electron gas

Using density of states (3.4) and (3.5) let us calculate
the number of electrons N, their energy E, chemical po-
tential p and heat capacity C. Let us consider degenerate
gas at the surface of the nanotube with a longitudinal
superlattice.

In the case appropriate for nanotubes with a small radi-
us, when at zero temperature electrons partially fill only
the lower miniband, we obtained

N= 4—Larcsin Ho —&- ,
mid 2A

E:ﬂA 1+5= |aresin  [Fe 5= — 4.1)
nid A 2A

1

X (mo—e_)(e_ +2A—u0)}.

Here ¢_ = 801]2 is the lower limit of spectrum (3.1), p is
the Fermi energy. From Eq. (4.1) Fermi energy is found

. Tdny;
o = &_+2Asin? —1n

The energy of a completely filled miniband is equal

oA )
d A

where nj;,, = N/L is linear electron density.

In order to obtain heat capacity of electron gases one
must perform Sommerfeld expansion [81, 82] of the func-
tions N and E of powers of T'/u, where T is the tempera-
ture (Boltzmann constant equal unity is assumed). This is
possible if the chemical potential is located far from the
features of state densities, i.e., the following inequalities
must be met

T<p-e, T<e -y, (4.2)

where €, are the upper and lower boundaries of the last
partially filled miniband. Corrections on the order of 72 in
expansion of N and E are equal

3/4 12 o
AL (S_OJ (ij Zicos%clgcos oml | &=L , &g KE<2A,
ndey \ € 2A) S Ji D, g, 4

~1/4
\/E—£]+(1—2—Aj 005(2751\/@4-2}], (3.5)
g 4 € €9 e/ 4

r= %;2 (o —&_ +A)|:(Ho —e )(& —no )}73/2 )
Er = fgas (e, —po)][(0— )(e. —0)]

If T <y —¢&_ < 2A then corrections in chemical poten-
tial and energy due to temperature are equal

5 2T
M=
12(py —¢_)
. 4.3)
nLAT
OF = 3/2 :
3d(24) Mo —&_

OF takes into account a term present due to the dependence
of chemical potential on temperature. From (4.3) we ob-
tained monotonic component of the nanotube’s heat capacity

nlT
Cron = ——————. (4.4)
" 3d2AJuy -6

Using Eq. (3.4) heat capacity of an electron gas with a
superlattice in the absence of a magnetic field at low tem-
peratures can be obtained. If 1, < 2A heat capacity equals

o- B (-2 (LB} )

(4.5)

where E(k) is the complete elliptic integral of the second
kind [79]. Coefficient at T in this formula is calculated
precisely. If p, < 2A, from Eq. (4.5) standard expression
for the heat capacity of an electron gas without a
superlattice is obtained: C =7nm,TS/3, where density of
states v, is used. In accord with the Pauli principle heat
capacity (4.4) and (4.5) is proportional to the temperature.
However, proportionality coefficient is a complex function
of the py/A parameter.

Oscillating components N and E at conditions (4.2)
and g, < i < 2A are equal

[Noscj 4(80M0 )]/4L( 1 j
= X
Eosc Tl',deZA Ho

- A
szcos 2012 |sin| 2m [Ho T | L
—~ 32 D, gy 4 ) sinh),

(4.6)

582 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7



Superlattice on the surface of a nanotube

where A, = nIT /(Souo)” 2. Functions (4.6) experience os-

cillations similar to de Haas—van Alphen and Aharonov—

Bohm type oscillations with changes in ulo/ 2 related to elec-

tron density and magnetic flux @ . The first are due to passage
of root singularity of state density (3.3) at miniband bounda-
ries through Fermi energy. This brings oscillations in consid-
eration closer to de Haas—van Alphen type oscillations in a
magnetic field [81, 82]. However nonequidistance of energy
levels of cross-sectional movement of electrons in the tube
brings about (1, /80)1/ 2 in phase with oscillations (4.6). These

oscillations exist in absence of a magnetic field. Their period
is equal to T =1/4/2m,a. A measurement of the period allows

one to obtain effective mass of an electron. Amplitude of os-
cillations decreases with an increase in temperature, as it does
in the usual case of de Haas—van Alphen effect in a quantizing
magnetic field [81, 82].

From Eq. (4.6) let us obtain the oscillating term of heat
capacity of a nanotube:

4poL > [ ) j
C os| 2m/— |x
o d~2A (ggpg) 1/ z @,

xsin| 2n/ [F0 T - ! (12, coth, ).
€y 4 Jsinhh},

With an increase in temperature monotonic component
of heat capacity (4.4) exceeds the oscillating component
(A7) if T > py(ug/ep)?.

Figure 3 illustrates dependence of the amplitude of the
main harmonic of the oscillating component of heat ca-
pacity (4.7)

1/2 3/4
po AL S_oj o
2d A €

4.7)

A;cothh, -1
sinh },

120

80

40

10

Fig. 3. Temperature dependence of the amplitude of the oscillat-
ing component of heat capacity (4.7) for parameter values given
in the text.

on the temperature when ®©/®, =0.1 for the values of
GaAs parameters that are usually used in experiments [83]:
m, =0.07m, (where m, is the mass of a free electron),
a=10"cm, p,/e, =10, L=10um, A=1meV, d = 3500
A. Amplitude of B reaches its maximum value at tempera-
ture”), oc (gouo)l/ 2 (o denotes proportionality).

4.2. Non-degenerate electron gas

At a fixed number of electrons chemical potential of a
nondegenerate electron gas can be determined from equation

N=>Y exp[B(L—g,u5)]

mkc

(4.8)

where 3 is the reverse temperature. Sums included in this
expression are determined precisely. For estimating the
sum by m the following formula is used [84]

®© 0 272
z exp[_x(m+u)2J:\/£Z exp[—’t ! )COSZTEIU,
x x :

m=—w

x>0

The sum by k is reduced to Bessel’s modified function of
the first kind [85]
T
= ljdd) .gxcosh
To

As a result, solution of Eq. (4.8) has the form

RN /BSO i
B |2L

1
o 272
x{coshBuBB I, (BA)(I + 2Zexp[— T{;gl jcos2nl§ﬂ )

I=1 0 0

(4.9)

This shows that chemical potential undergoes Aharonov—
Bohm type oscillations with a change in magnetic field
crossing the tube. De Haas—van Alphen type oscillations
are not present in this case. In the absence of a superlattice
they were considered in article [86].

Energy of an electron gas can be calculated by equation
[81, 82]

E= —Nailn D" exp(—Be g ) -

mkc

It equals

(4.10)
A)
A)

} —2BppBthBugB ¢,
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where

me exp(_Bgm )

<Pm> - ’”Z exp(—Pe,, )

2
()
€, =& m+¢TO .

Derivative with respect to the argument of the Bessel func-
tion is marked with a prime ().
Heat capacity of an electron gas equals

N o) o\’
) 2 Bl B 2
(Beo) (er(DO] {m+®0] +

+1+2(5A)2[Ig(ﬁA)JO(BA)—(J(;(BA))z]x @.11)

2
v -2 PupB
[]0 (BA)] +2(costhBBJ

Separate terms in Egs. (4.10) and (4.11) agree with the
energy term in (3.1). The first term on the right side of
expression (4.10) represents the average energy of centrip-
etal motion of electrons at the surface of the nanotube, the
second and third terms are due to longitudinal motion of
electrons along the tube, and the last term is due to spin
splitting of energy levels of an electron in a magnetic field.
It coincides with the energy of a two-level system with
distance 2uzB between the levels. Expression (4.11)
shows that the presence of a magnetic field does not affect
the heat capacity term present due to electron motion. At
the same time, modulation does not affect heat capacity
related to centripetal motion of electrons and spin splitting
of levels. Using the presentation of a Bessel function as a
row and its asymptote, “longitudinal” component of heat
capacity (4.11) is confirmed to be equal to

¢, =2 {re2(pay [ 3 (pa) o (p) - (15 pa) |

N
o[ 3=

N,BA>1.

This result agrees with the classical theory on equipartition
of energy about degrees of freedom [81]. Its physical
meaning is obvious. If energy of thermal motion of elec-
trons B’l is small compared to the modulating potential
amplitude, the electrons oscillate slightly in the modulating
potential gaps. These oscillations make a contribution to
heat capacity in the amount of N . If B_l exceeds modula-
tion amplitude A, the electrons move freely along the
tube. Contribution of this motion to heat capacity is equal
to N/2. Thus, term C changes from N to N/2 as tempera-
ture increases. “Transverse” part of heat capacity depends
on the magnetic flux. In weak magnetic fields, the ine-
quality holds ® <« @, . This allows the dismissal of mag-

netic field influence on the “transverse” component of heat
capacity C, . Then the following limiting expressions can
be obtained:

{ N/2, Bg, <1,
¢, = 2
N(Bgo) exp(—ﬁso),

As expected, high temperature limit of C, is in accord
with the theorem on equipartition of energy about degrees
of freedom.

Bey >1.

5. Response function of electron gas on a tube
with superlattice

5.1. Conductivity tensor

For the nanotube with superlattice in magnetic field, the
surface electron gas linear response to an electromagnetic
wave E =E, expi(m@+gz—ot) is characterized by con-
ductivity two-dimensional tensor Gaﬁ(m,q,m). Here E is
the electric field of wave, m is the integer number, ¢ and
o are the wave vector and frequency of the wave, ¢ and z
are cylindrical coordinates. The density of surface current
on the tube is

Ja(m.q,0 (.1

ZGOLB m q,®

EB (m9 qn (0)5

where j, (m,q,®) and Eg (m,q,®) are cylindrical harmon-
ics of j and E vectors. Kubo’s formula for the conductivity
tensor of electron gas on the surface of the nanotube with
superlattice is [58]

*

. (52)

+i]cdteimt <[ja (m.q.t),.J (_m,—q,o)]>

where n is surface density of electrons, J(m,q,t) is the
cylindrical harmonics of current density operator in the
external magnetic field B. The angle brackets denote the
average value of the operator commutator. The quantum
constant was assumed as unity. The components of J(m,q)
vector are

Jo = ma\fz‘,(l“ﬁ jaﬁcﬁ(um)(mq)s

(5.3)
(k + jalka (1+m)(k+q)°

J. m\/‘

where d;, and aj; are operators of annihilation and creation
of electrons in |lk> state, S = 2nal is the surface area for
the tube with length L . Spin splitting of levels is not con-
sidered in Eq. (5.3).

From Egs. (5.2) and (5.3) we obtain the components of
conductivity tensor:
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e’n £
Cpp =1—— Z e )%
il m RIONY

m,.®

2 2
m m
[+n+— l+m-— (5.4)
) ( " 2) ( ! 2)
s,k—s(,+m)(k+q)+o)+i0 &(1-m)(k—q) ~ Elk +o0+i0 |
6, =0 €
” macoSzf )
m q
l+n+— || k++ l+n—" | k=% (5.5)
X(”z)( 2j (”J( 2)
glk_8(1+111)(k+q)+m+i0 &(1-m)(k—q) " Elk +o+i0 |
2n
o, = €
= m(D m 208 Zf )
2 2
(kﬂj (k—qj (5.6)
“ 2 2
Slk_8(1+m)(k+q)+0)+i0 8(lfm)(k7q)_81k+0)+i0
Here f is Fermi function,
en =& (1+n)° +A(1-coskd). (5.7)

The second term addend in the right part of Eq. (5.7) is
often used in the theory of semiconductor superlattices
[7,8, 10, 11-15]. The real parts of the components &
and G,
parts are odd ones. At zero temperature in summation X,
the values k in the formulas (5.4)—(5.6) are limited to gap
—k; < k < k;, where

1 +A-
k= ~arccos L Ho
d A

90
are even functions of m and ®, while imaginary

is the maximum momentum of the electrons in the miniband /
, € =¢gy(l+ n)? is the miniband boundaries. If ¢ = 0, at zero
temperature from the formulas (5.4)-(5.6) we calculate the
components of dynamical conductivity tensor:

Rec =
wm;a’m

00 = 22"03 Kn +%j2 8(@—80m(2n+m))—(n_%f g(m_gom(Zn_m))(n_%j

Reo,, (m,0)=

2 2
>3 Zk{(l+n+2j X

TmLa s m
m 2
><8(03—Q+)—[l+n—?j 8(0)—(2)},
e’n e 5.8
Imcw(m,co)z 55 (5-8)

m,® Tmia’o

Gy (m,®)=0,
3Ttm amzkl [8 w_Qf)]’

2 2
en e 1 1
Imo_ (m,m)= + E kP - .

= (m.o) mo 3nimlian? l|:OJ—Q+ m—Q_}

Reo_, (m,o

(5.9)

Here Q, =g m[2(/ +m)xm] are frequencies of direct transi-
tions of electrons between the miniband boundaries €, in the
field of electromagnetic wave. During the transitions, conser-
vation laws for longitudinal components of angular moment,
momentum, and energy are satisfied. At zero temperature, the
summation over [ in Egs. (5.8) and (5.9) is limited by the
condition |8, +A- u0| < A. This means that Fermi energy is
concentrated within the miniband. The minibands are posi-
tioned in the intervals [g;,€; +2A] and have the width 2A.
Generally, the semiconductor nanotubes with radius
a~(107-107°) cm in magnetic field B ~10°G are used. In
this case, the electrons of the semiconductor nanotube occupy
little quantity of bottom minibands, which boundaries at
N <1/2 satisfy the inequalityson2 <& <g <& <..Inthe
quantum limit where n < 1/mad , Fermi energy is concentrated
in the bottom miniband / = 0 [gyn?,€m* +2A]. In this case,
in the absence of spatial dispersion, from Egs. (5.8) and (5.9)
we obtain

2

S(w—som(2n—m))},

2 2
m _m (5.10)
Imo e’n e’k, ETH' 2) 3 (n 2)
90~ mo mmlaio| o- som(2n+m) m—aom(Zn—m) ’
e’k}
Reo,, =%[S(w—aom@n+m))—6(co—80m(2n—m))} .
e’n Zkg 1 1 '
Imo,, = - .
mo 3n’mlao| o—gum(2n+m) o-gum(2n-m)
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Here Q, =¢gym(2n*m). The superlattice parameters A
and d are included in Egs. (5.10) and (5.11) only via the
maximum momentum £k, of electrons in the bottom
miniband. In the absence of superlattice: A — o0, d =0,
d?A — m;". Then k; =[2m,(u—¢,)]"? and the Egs. (5.10)
and (5.11) agree with ones obtained in Ref. 58. At m =0,
only the imaginary part e’n/m,® remains in Egs. (5.10)
and (5.11), while the real part is zero. This determines the
electromagnetic wave energy absorbed by electrons. In the
absence of direct and indirect transitions of electrons, the
absorption is zero. As the electron density grows, the num-
ber of addends in Egs. (5.8) and (5.9) increases. If Fermi
energy is concentrated in the second miniband, the oscilla-
tor forces of electron resonance transitions in Egs. (5.8)
and (5.9) are determined by values k, and k_,. These are
included in Egs. (5.8) and (5.9) if the minibands are over-
lapped, i. e.,sonz +2A>¢_;, and Fermi energy is concen-
trated in the overlap area [&_;,g,n” +2A]. Otherwise, the
overlapping of minibands is absent. Then the maximum
momentum of electrons k, in the completely occupied bot-
tom miniband corresponds to Brillouin zone boundarym/d .

In the quantum limit, taking into account the spatial
dispersion, the real part of conductivity depends on Fermi
level position in the bottom miniband. If p is positioned
in the bottom half of the miniband (801’]2 <My < 80112 +A,
q <m/2d) from Eq. (5.6) we obtain

T N) -1/2
k . 5 qd
Reczz:#{4Azsm2q——(m—9+)2} ,
2mm; ado® 2
where
_ 1 . |0~)_Q+|
k =—aresin—— -, O_<0<o,,
2Asin 2%
2
. qd . qd d
o, =Q, J_r2As1nq7(oc0 sm%h/l—a(z) cosq?j,
2
_EoM +A-H,
oy =—""7"7T-—"".
A

The real parts of other components of conductivity tensor
are obtained from Reoc_ using substitution of (k7)* by
(m+m/2)*/a* in Reo,, andby k™ (n+m/2)/a in Rea,,

If the Fermi level is positioned in the upper half of the

miniband (801’]2 +A<py < 801’]2 +2A,1/2d <q<m/d),
we obtain
27432 -1/2
Reo.. :MPM sinzﬂ—(m—QJr)z} ,
2mm’ado 2

where

T _
k*z;—k ,0_<O<o,,

. qd . qd d
0, =Q, izAsm%Uadsm%hll—aé cosq?j.

The real part of conductivity is nonzero in the area of Lan-
dau damping [w_,®,] of electromagnetic waves in the
tube.

In the quasi-classical case, the quantization of electron
circular rotation can be neglected. That is possible under
condition of g, < . Substituting the / summation by
integrals in Eqgs. (5.8) and (5.9), we obtain

2
Reo, :%Ugg —k_1),
8m? (agq|m) (5.12)
2
Reo,, = z (k31+ _kfl-)’

6nm?ag, |m| ®

where

2
1 €, +A— ® m
ki:—arccosiTuO, €, =g, F—1,

d 2me, 2
I (mo)=0| ——z2 Folg| Fo__© 7
N 2me, 2 £ gy 2megy 2
and © is the Heaviside function. If ®>0 and

|m| <24ly/ey , the Eq. (5.12) become as follows

o (k,—k_), 0<o<o_,

Recwzﬁ k,, o_<o<o,,
8mm, (aao |m|) 0, 0>o,,
(5.13)
S
5 + K ) O<o<o_,
Reo, =2e— K2, o_<o<o,,
6Tcm*a80|m|o)
0, 0>0,,
(5.14)

where ©, =280|m|1/u0/80 +g,m* . Equations (5.13) and
(5.14) are

62

Reo,, = G,,
" 8um2el (alm|)'d "

2
Reo,, =——5——F—=G
zz b>
6nm385a|m|d3
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where

2
€0 (X—(Ho /80))
x| arccos—————
4m*A

2
€0 (X_Ho /80))
xarccos——————,
dm-A

0,

4m*A

=

G, (x) 2y’
X _
VN ccos 20 (x= (1o /o)) ’
4m’A

=

0,

x=0w/g,, x,=wm,/g,. The value (po/ao)l/2 in o, is
equal to the classical angular moment ak, of Fermi electron
in the circular orbit (k, is Fermi momentum). In Fig. 4 the
dependences of G, [Fig. 4 (a)], and G, [Fig. 4 (b)] functions
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Fig. 4. The real part of conductivity (5.13) and (5.14) depending
on frequency for values of parameters referred in the text under
condition of ‘m‘ <21e/eg -

—arccos

2
go(x+po/€)) 0crex
4m>A ’ ”
X <x<x,,
x>x

+

4m*A

2\3 23
€ - /g € + /
l {arccos O(X (ko 0)) ] —(arccos O(X (ko 80)) J , 0<x<x_,

X_<x<x,,

xX>X

on x are shown for parameters m =10, L,/g, = Alg; =100
typical for semiconductor superlattices.

At|m|>2,/u,/e, we obtained

2 > —

e’
Recwzﬁ k., o_<o<o,, (5.15)
8mm? (ag, |m|) 0, oso,

) 0, O<o<ao_,
ReG,. =— Bo <o<o,, (5.16)

6 2

m; ag, |m|oo 0, o>o,,
where now @, =+ 2g, |m|lly/e, +&ym*. Functions
(5.15) and (5.16) are represented as

2

e
Recyy =———
°® 3 ta
8mm?el (a|m|) d
2
e
Rec,, =

2.2 3°b
6mm, 80a|m|d
where

2
2
ao(x—m )

F (x):xarccos , X_<x<Xx
— + 9
“ 4m*A
0T
| 6 (x-m)
Fj, (x) =—| arccos 5 , X_<x<Xx,,
by 4dm-A

x=0w/g,, X, =0,/¢,. In Fig. 5 the dependences of F,
[Fig. 5 (a)], and [Fig. 5 (b)] F, functions on x are shown

for parameters m =35, p,/e, = Ale, =4 under condition of

|m|>2p,le, .
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Fig. 5. The real part of conductivity from Egs. (5.15) and (5.16)
depending on frequency for values of parameters referred in the
text under condition of ‘m‘ > 241,/ -

As the real part of conductivity is connected with elec-
tromagnetic field energy absorbed by electrons, the
Egs. (5.13)—(5.16) determine the boundaries of Landau
damping for waves with positive and negative helicity.
These boundaries are parabolas in the “angular moment —
frequency” plane. The real part of the conductivity deter-
mines the damping decrement of electromagnetic waves on
the tube. High-frequency asymptotics of the conductivity
imaginary part at ® > Q| are

2
en 2¢*m
mog, =2 e Zk, [+7), (5.17)
2
en 2e gom’
Imo_, = 03 Zk, (5.18)

m,m 3nmaoo

If €, < g, the sums by / included in Egs. (5.17) and
(5.18) are calculated by Poisson formula. Then the
Egs. (5.17) and (5.18) for components contain monotonic
(6™") addends and oscillating (6°°) ones. These depend
on the ratio of Fermi energy to the miniband width. When
0>Q,, g, <, and p, <2A after integration by parts

and replacing the integration variable, the oscillating part
of the sum J = Zk, (I+m) in formula (5.17) is equal to
1

] ¥? COS(zTCV Hyj
€

= — d )
Jose ﬁd\/;rl sm27trn_([ y\/(l_yz)(y2+a2)
=J(2A-p)/u.

Asymptotic of this integral under p, > ¢, as is known
[80]. As a result, the imaginary part of the transverse con-
ductivity (5.17) is equal

1/4 1/2
ezn 23/2 2 " "
Imcsw 3.2 35 2 N
mo wm;a’do”\ g A

- sin 27 TR
XZTcos[%cr ——ZJ

= &)

(5.19)

In the case of 1, > 2A we obtain,

2 3/2 52 /4 V2 o .
2 2

Imc,, = =2 3,23 —| £ (Ej ZSIII 3/TzEm><
mo mmidide®| s, A r

r=l1

3/4
x| cos| 2mr [ I 14 n-24 cos| 2mr ﬂ+£ )
g, 4 u o 4

(5.20)

The Egs. (5.19) and (5.20) undergoes Aharonov—Bohm
oscillations under variation of magnetic flux through the
tube cross-section. The oscillation period is equal to the
flux quantum @. Also the oscillations looking like de
Haas—van Alphen ones exist. They are caused by transition
of root singularities of electron density of states at the
miniband boundaries through Fermi boundary due to the
tube radius variation or changing the electron density. The
latter is related with Fermi energy as follows

Edn /A, Q< 2A,
2 m,
1

—(mfn)2 , B> 2A

m,

Mo =

Analyzing the dependence of oscillations (5.19) on
(adn)"? we obtain the period T= (na@)_l/z.

If py <2A, only the miniband bottom boundaries ¢,
pass through Fermi boundary when the tube parameters
change. As a result, in Eq. (5.19) the base frequency of
oscillations is present only. The second addend in Eq. (5.20)
exists because at p, >2A not only miniband g, bottom
boundaries transverse Fermi level but the upper ones g; +2A
as well. Existence of two oscillation frequencies in
Eq. (5.20) causes the beats in the plot of conductivity versus
the tube parameters. They are similar to the beats of plasma
and spin waves spectra in the tube [26, 27]. If A< p,, the
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relative difference of conductivity oscillation frequencies and
amplitudes in Eq. (5.20) is of the order of A/p,. As this pa-
rameter increases, the beats turn into weak modulations and
disappear at 1, < 2A. The sum by / in longitudinal conduc-
tivity (5.18) is calculated by Poisson formula as well. Conse-
quently, the conductivity contains monotonic and oscillating
components. At |1, > 2A they are equals

2 2. 2
mon _ €1 2e“gym
Imo2™" = p + ' d Jmons  (5.21)
2e’g,m? &
Imo% =——0——%"cos2mm-J}., (5.22)
2.2 33 osc
3nmyaw’d’ o

where

b 2 22, 2%
Jimon () =2 I dx(arccosxb—zwj , (5.23)

Vb2 22 ¢
b 2 22, 2\
Jie (b)=4 j dxcos(2nrx)(arccosM—ZHJ ,
Vb2 22 ¢

b=(uley)"?, c*=Al,. (5.24)
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(a)
50
401
\.

300

Jmon

JOSC

710 1 1 1 1 1 1
5 10 15 20 5 25 30 35 40

Fig. 6. Monotonic (a) and oscillating (b) components of longitu-
dinal conductivity (5.21) and (5.22) at p, > 2A as the functions of
(Mo /80)”2 for parameter values referred in the text.

The integrals (5.23) and (5.24) are not calculated exact-
ly. In Fig. 6 (a), the dependence J,,(b) calculated nu-
merically is shown. Solid-, dotted-, and chain-line curves
correspond to ¢* =10, 20, 30, respectively. The J. (b)
dependence at 7 =1 and ¢? =15 is shown in Fig. 6 (b).

In accordance with formulas (5.21)—(5.24) the mono-
tonic part of the conductivity and the amplitude of the os-
cillating part decrease with frequency ®, increases.
Figue 6 (b) shows the weak modulations are caused by the
beats.

The imaginary part of the transverse conductivity (5.19)
and (5.20) behaves similarly. It is includes into the disper-
sion equation for the electromagnetic waves spectrum. The
beats and oscillations obtained here there exist only in the
quasiclassical case. Their reasons were described above.
The ratio of the oscillation amplitude of the transverse
conductivity (5.19) to the amplitude of the oscillation in
the absence of the superlattice [58] is of order
ald (SO/A)I/ 2 The longitudinal conductivity oscillations of
de Haas—van Alphen type exist also in the absence of mag-
netic field.

5.2. Magnetic susceptibility

Within the framework of random phase approximation
[78, 87, 88], circular components of the tensor of dynam-
ical spin susceptibility of an electron gas with the spectrum
(3.2) on the tube surface are [§9-91]

-1
2e (moq,0) =" (m,q,m){l—%x‘i (m,q,w)} ., (5.25)
B
where
2 =)~ +
Xg (m’q,(()) _ ZHB f(8(1+m)(k+q)+) f(glk_) (526)

S T Ot 8t ~E(m)(kq)z T10

is the susceptibility of the ideal electron gas with spectrum
(32), %+ =Xxx TiX x> m, q and © are, respectively, angu-
lar moment, moment and frequency of the spin wave.
The real and imaginary parts of the component X?
(5.26) of electron degenerated gas are
2
Rey’ (m,q,w)zu—de
4nzaazAsinq’7

30
2

I dx-(C_ —sinx)_1 -

—k*—g)d
( t2

(5.27)

XZP
1
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W2
Imy’ (m,q,0)=—2——x

4ntad Alsin %

[k[+%]d (k;—%]d ’
x| | dcd(siny-C,)- [ ded(sinx-C.)

7
(71(,- +1]d (—kj' fg]d
2 2

where

(5.28)

1 e +A—
ki = Earccosl—uo

is the maximum moment of electrons in the miniband with
(I,0 =) number,

0-Q,

C, = . Qu=ggm[2(l4+m)Em]+Q  (5.29)

2A sinﬂ
2

are frequencies of vertical transitions of electrons between
miniband boundaries [7,&7 +2A] (where & =gy (/+n)” +
+ougB+gn_,) with spin-flip transition — — + under ac-
tion of an alternating field. Sum over / in (5.27) and (5.28)
is limited by the condition |in + A—p0| < A which means

that Fermi energy is in the miniband (l ,0= i).

6. Collective excitations on a tube with a superlattice

6.1. Plasmons

In the framework of the hydrodynamic approach, using
the continuity equation for electron liquid and Poisson
equation for electrical potential, the authors [65, 66] have
obtained the dispersion equation for the spectrum of sur-
face plasma waves on the tube:

2

m
®=4ma —ZIch(

m,0)+q¢*Imo._, (m,o))} x
a

,(6.1)
xI,, (qa)Km (qa)

where m is the projection of the plasmon angular moment
on the tube axis z; G, and G, are components of electron
gas dynamical conductivity in absentia of spatial dispersion
(gvy < o, v, is the Fermi velocity) in cylindrical coordi-
nates ¢,z; /,, and K, are modified Bessel functions.

The Eq. (6.1) is true also for the tube with a superlattice.
Substituting Drude expression for conductivity ie*nim,o
into Eq.(6.1), we obtained the known spectrum for
intraband (m = 0) and interband (m = 0) plasmons [65-67]:

4 2 2
Q2 = an{’:—z+q2}lm (ga)K,, (qa). (62)

m,

The Eq. (6.2) does not take into account the interband cur-
rent caused by quantum transitions of electrons in the wave

field between the minibands. Taking that into account, the
transverse component of dynamical conductivity tensor for
electron gas on the tube is

en . 26

o :i—+12—2f(alk)><

mo  mliateS4
mY mY
X[(H-EJ ((D—Q++i0)_l—(1—3j ((D—Q+i0)_l],

where Q, =¢g,m(2/+m) are frequencies of direct transi-

(6.3)

tions of electrons between the minibands. The longitudinal
conductivity o, is obtained from (6.3) using substitution

2
of a2 (li%j by k* and Gy =0, =0. In Eq. (6.3) we

apply the electron energy on the surface of the semicon-
ductor nanotube with a superlattice [26, 74]: g, = g,/ 24
+A(l-coskd). The imaginary part of the interband con-

ductivity has resonance singularities at frequencies €2,.
The Landau attenuation is concentrated in narrow bands
dm ~ Agd near these frequencies [27].

In formulas for conductivity, we restrict ourselves to the
quantum limit where electrons in the degenerated gas oc-
cupy partially only the lower miniband / = 0 with width 2A
and their density does not exceed 1/mad . In this case, the
solution of Eq.(6.1) is defined by the parameter
o, =3m*/4(aky)*. That is connected with forces of oscil-
lators for resonance transitions 0 — m of electrons between
the minibands. Here

A—py

1
ky, = —arccos
d

is the maximum momentum of an electron in the miniband
with [/ =0.

If a,, <1, there exists a series of branches in the plas-
mon spectrum

1 2
2 _ 2 2 2 2
0)'”‘1_5 mm+qu+ (mm+§2mq) +

(6.4)

12
2 2\7!

16( a\' 2 q a
(e i, 0o (105 |

where ®,, =gom® are frequencies of electron single-
particle transitions 0 — m. Figure 7 shows the frequency of
the wave (6.4) miq =0,,/8, (solid line) and wave (6.2)
Qj, =,/ (dashed curve) as a function of x =ga for
m=1 and o, =0.75. Here Q,, =(2ne’*n/m,a)"* is the
limiting frequency for the wave with the spectrum (6.2).
Parameter values m, =0.64-1072%g (GaAs), a=10"" cm,
kya =1 are used. Under the condition a,; <1 the Fermi level
lies in the upper half of the miniband. If o, >1, then two
branches are connected with each 0 — m transition:

590 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7



Superlattice on the surface of a nanotube
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Fig. 7. The dispersion curves of waves with the spectrum (6.4)
(solid line) and with the spectrum (6.2) (dashed line) under m =1,
o, <1 are shown. Parameter values are given in the text.

02 (mg)=3 |03 + 03, 2| (0} +02, )" -

2

16( a\' 2 q*a?®
_?(_j 02,02, (o, ~1)(gky) (H -

m

Figure 8 shows the dependence of the wave frequencies
(6.5) 0, (L,g9) = 0, (1,9)/ Q, (solid and dash-dotted curves)
and wave (6.2) Q] g =€21,/Qy (dashed curve) as a function
of x=ga under m=1 and a,; =3. The above mentioned
values of m,, a, and kya = 0.5 were used. In this case the
Fermi level lies in the lower half of the miniband. The
branches (6.4) and o, (6.5) are positioned above ®,,, and
the branches w_ (6.5) are below ,,,.

In the limit of long waves (ga < 1) and at o, <1 from
Eq. (6.4) we obtain

1 Qf
(Dlzq =0} {1 +Em12+—122120(qa)2 Inga +
(6.6)
4 o} Qf
3 (of +Qf)?

<1—a1>(koa>2<qa>2}

2
2 2 m0 m- =2 ( 2
=m,0| 1+ qa) +
mq m |: 0\)31 +Q%10 2m2(m2 _1)\ )
202

i 4 (DQOO

' 4, 2 2 \2
3m” (@, +Q50)

(@)

(l—am)(koa)z(qa)z}, m=12,+3, ..

(6.7)

The critical frequencies of waves with spectra (6.6) and
(6.7) are

2¢%k, |m|

m,a’®

2 2.4

02, =02 +Q2  =eim* + (6.8)

2.0
1.8+
1.6+ -
1.4F -7
1.2+ .-

o 10F---- -

0.8
0.6 -
0.4+ e

02 -7

0 - | | | |
0.5 1.0 1.5 2.0 2.5

Fig. 8. The dispersion curves of waves with the spectrum (6.5)
(solid and dash-dotted curves) and with the spectrum (6.2)
(dashed line) under m=1,a, >1 are shown. The parameters
values are given in the text.

The frequency depolarization shift in Eq. (6.8) contains the
period and the amplitude of the superlattice modulating
potential. At a.,, >1 the expressions (6.6) and (6.7) are true
for the upper branch ®,. The bottom branch o_ has the
sound spectrum o_(m,q) = c,,q, where

2 202
(ﬁ:::”4(hﬂ)2wm?m°(am—1) (6.9)

Optical o, and acoustic w_ branches are connected with
in-phase and anti-phase density oscillations of electrons
which participate in longitudinal and transversal motion on
the tube.

6.2. Spin waves
In the random-phase approximation, the dispersion equa-
tion for the spectrum of transverse spin waves on a tube with
a superlattice in the magnetic field has the form [34]

g
l—mxg (m,q,u)) =0.

(6.10)
Components y, correspond to spin transversal waves with
positive (—) and negative (+) helicity. The plus (minus)
sign in 7y, corresponds to transverse Landau-Silin spin
waves [69-72] with a negative (positive) chirality. The
solution of Eq. (6.10) for a degenerate electron gas de-
pends on the position of the Fermi level p,,. If the electron
density # satisfies the inequality

(6.11)

n<

- +
ana(k0—+ko),
the Fermi level occurs in the miniband overlapping region
in Fig. 1. Inequality (6.11) involves

&g +A— 1y

1
ki =—arccos————-,
d A
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which is the maximum electron momentum in the miniband
0*. If the minibands do not overlap and the level p, is situ-
ated in the second miniband then k; in Eq. (6.11) should be
replaced by m/d .

The graphical analysis of Eq.(6.10) in the case
€5 <MW <&y +2A indicates that each m value, i. e., each
spin-flip — — + electron transition 0~ — m* between the
minibands / =0 and [/ = m corresponds to two branches of
the magnon spectrum with a positive chirality. These
branches are situated between the frequencies of single-
electron transitions between the minibands

Q. =ggm[2ntm]+Q.

In the long-wavelength limit (ZA sin%

<|o-Q, |j, the
magnon spectrum with a positive chirality reads
o, (q)=0l +o, sinz%, (6.12)
where
! :%[Q +Q_ vk —k; ) |+
i%[(gh —Q ) -20(ky — k3 )(Q, +Q_)+ (6.13)
+0? (kg k7 )= 4o (k§Q, — k5O )T/z

are the limiting frequencies of the modes,

g
L= s
2n’a

(6.14)

If the minibands 0~ and 0" do not overlap, k, in Egs. (6.13)
and (6.14) must be replaced by n/d . The spectrum of neg-
ative-chirality spin waves can be found from Egs. (6.13)
and (6.14) by exchanging the spin indices — <>+ and a
sign change of Q.

In the case of weak electron-electron interaction v << dQ, ,
we find from Egs. (6.13) and (6.14)

0

o) =Q, -k, (6.15)
inkTd
a, =720 E (6.16)
* kid

where vk is the depolarization frequency shift. The upper
(lower) branch o, (w_) of the magnon spectrum has a neg-
ative (positive) chirality. Collisionless damping of spin
waves is given by the imaginary part of susceptibility
(5.26). In the case of a degenerate electron gas, it is

Hz qd ) -1/2

Imy_=—2— 4A%sin’ = —(0-0 R 6.17
" 2nad Zl: { y (o) 17

where frequency is in the interval

Q. —2Asin%< 0<Q, +2Asin%,

2 d -1/2

Imy_ =-—2-%14A2sin? L& _(0-Q )| , (6.19)

2nad 2

where frequency is in the interval

Q_ —2Asin%< o<Q_ +2Asin%.

The Landau damping of spin waves is nonzero in the Ston-
er sectors of the g— plane bounded by the curves

o, =Q, £2Asin % Dispersion curves (6.12) are situated

outside the Stoner sectors, i. e., the spin waves considered
in this Subsection are undamped. To observe the effects
associated with these modes the distances between the
edges ki =2n?avn, of the Stoner sector and the limiting

frequencies must exceed both the thermal and impurity
broadening of the electron energy levels.

Conclusion

Superlattice at the surface of a nanotube has a signifi-
cant impact on its properties. It can be obtained by embed-
ding fullerenes or other additives to the nanotube or when
the nanotube is attached to a substrate for charge exchange
[47]. In the absence of a superlattice, the tube spectrum in
a longitudinal magnetic field is a collection of one-dimen-
sional subbands located next to each other and having
nonequidistant boundaries [22, 26, 27, 34, 86, 89]. Periodic
modulating potential artificially created at the surface of
the tube converts the spectrum into a system of minibands,
the widths of which are determined by the amplitude of the
modulating potential [22]. In a longitudinal magnetic field
its amplitude and period depend on the magnetic field
strength. Energy gaps separating the minibands have
widths defined by the ratio of the miniband width to the
magnitude of the rotational quantum and depend on mag-
netic field strength [26, 27]. Density of electronic states
has a root singularity at miniband borders [22]. As the ra-
dius of the tube increases, the minibands overlap resulting
in a continuous spectrum [22].

In this review, the density of states, chemical potential,
energy, and heat capacity of a degenerate and non-dege-
nerate electron gas at the surface of a nanotube with metal-
lic conductivity character in a longitudinal magnetic field
have been presented [22]. We show that abovementioned
thermodynamic values include monotonic and oscillating
components. In agreement with Pauli principle monotonic
heat capacity component of a degenerate electron gas is
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proportional to the temperature [22]. Heat capacity displays
de Haas—van Alphen type oscillations due to the passage of
state density root singularity through the Fermi boundary
with a change in electron density [22]. These oscillations
persist in the absence of a magnetic field. Heat capacity
also displays Aharonov—Bohm type oscillations when
magnetic field flux through cross-sectional of the tube is
varied. Heat capacity studies allow observation of the tran-
sition of modulating potential from the localized gaps
mode to the mode of free motion along the tube [22].

The obtained in the present review formulas for the
conductivity tensor components may be applied for stu-
dying electromagnetic wave propagation in nanotubes
with superlattices based on Al,Ga,_,/GaAS, InGaAs/GaAs,
InAs/GaAs, GeSi/Si heterojunctions and in carbon nano-
tubes in the regime of metallic conductivity. The real part
of conductivity determines the wave energy absorbed by
electrons [24]. In the degenerated electron gas, this is non-
zero in the areas of Landau collisionless damping [24].
Knowing the positions of transparency windows for the
waves, it is possible to improve the waveguide characteris-
tics of nanotubes [21]. The imaginary part of conductivity
is included into the dispersion equation for electromagnetic
wave spectrum [32, 65—67]. This has the resonance singu-
larities at frequencies of electron direct transitions between
minibands. Usually, near these frequencies there exist new
branches in the wave spectrum and related band transpar-
ency. Observation of conductivity oscillations of de Haas—
van Alphen type allows determining the electron effective
mass, Fermi momentum, rotational quantum and super-
lattice parameters d and A [24]. These values are included
in the oscillation amplitude and period expressions. Re-
vealing the instant of appearing the beats under variation of
the nanotube parameters gives the opportunity to obtain the
ratio of Fermi energy to miniband width.

In the framework of the hydrodynamic approach, the
plasma waves on the surface of a nanotube with a longitu-
dinal superlattice were discussed [32]. Not only longitudi-
nal electron current but also transversal one has been taken
into consideration. It has been shown that both optical and
acoustical plasmons could propagate along the tube with
one sort of carrier [32]. The results of this review can be
used in studying the magnetic scattering of neutrons by the
spin magnetization current of conduction band electrons on
a tube. The cross-sections of scattering by spin waves and
Stoner excitations are of interest. This problem was solved
earlier for a two-dimensional electron gas on a plane [73].
The curvature of a cylinder should manifest itself in addi-
tional features of the scattering cross-section. The electron-
electron interaction constant, the amplitude, and period of
the modulating potential can be found by measuring the
depolarization frequency shift and group velocity of spin
waves on a tube [31].

The authors are thankful to T. I. Rashba for help during
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HaprpaTka Ha noBepxHi HAHOTPY6KK
A. M. Ermolaev, G. |. Rashba

HaBeneHo pe3ynbTaTH TEOPETHYHHX MOCITIIKEHb TEPMOAU-
HAaMiYHUX, KIHeTHYHHX T2 BUCOKOYACTOTHHX BJIACTHBOCTEH €leK-
TPOHHOTO ra3y Ha IOBEPXHI HAHOTPYOKH y MarHiTHOMY IIOJI TIpH
HasBHOCTI TIOB3/I0BXHBOI Haarpatku. Hanopo3mipu o6aacti pyxy

SJICKTPOHIB TIPHU3BOJATH 1O KBAaHTYBAaHHS eHeprii, a 1 Heon-
HO3B’SI3HICTH y MPUCYTHOCTI MarHiTHOTO TOJIST — 10 e(eKTiB, AKi
€ moxizHuMu Bin edekty AapoHoBa—boma. IToka3zaHo, 110 Kpu-
BHMHA HAHOTPYOKM HAaBiTh y BIZICYTHOCTI MarHiTHOTo IoJisi 00y-
MOBJIIOE HOBI MaKpOCKOMIYHI OCIIJIALIIHI e(eKTH TUIY OCLHUIIS-
wiif ne ['aaza—Ban Anb(ena, siKi OB’ s13aHi 3 KBAaHTYBAaHHSIM €HEprii
HOTNEPEYHOT0 PYXY ENEKTPOHIB Ta 3 KOPEHEBUMH OCOOIMBOCTAMU
TYCTHHH €JICKTPOHHUX CTaHIB Ha MOBEPXHI HaHOTPyOkH. Y raso-
BOMY HaOMIKEHHI PO3paxOoBaHO TEPMOIMHAMIUHI MOTEHIIATH Ta
TEIUIOEMHICTB eJIEKTPOHHOTO ra3zy Ha Tpyoui. Otpumano Gopmyiry
Ky6o mist TeH30pa MPOBIAHOCTI €IEKTPOHHOIO ra3y Ha IOBEPXHi
HaHOTPYOKH. Bu3naueno obuacti 3racanns Jlangay enmekrpomar-
HITHUX XBWJIb HAa TPYOLI Ta TEOPETHYHO nependadeHo OUTTs Ha
rpa¢iky 3aJeXHOCTI NPOBIAHOCTI Bif mapameTpiB TpyOku. ¥ rin-
pOIMHAMIYHOMY HaONVIKEHHI PO3IJISIHYTO IUIa3MOBI XBHIII Ha MO-
BEpXHI HAIMIBIPOBITHUKOBOI HAHOTPYOKH 3 Haxarparkoro. [loxa-
3aHO, WO Y3J0BX TPYOKH 3 OJHMM COPTOM HOCIIB MOXKYTh
PO3IMOBCIODKYBATHCS ONTHYHI Ta aKyCTHYHI Iuta3MoHu. Jlocmin-
JKEHO €JICKTPOHHI CITIHOBI XBHJII Ha MOBEPXHI HamiBOPOBIAHUKO-
BOT HAaHOTPYOKY 3 HaATPaTKOIO y MarHiTHoMy moiii. Po3paxoBano
CIIEKTpPH Ta 00sacTi 6e3 3ITKHEHHs 3racaHHs LUX XBUib. [loka3aHo,
0 B WX 00NACTSIX y BUMAAKYy TPyOOK Majioro pajiyca 3 BHPOJ-
JKEHUM EJICKTPOHHHUM 'a30M 3raCaHHs CIIHOBUX XBHJIb BiJICYTHE.

Kitro4uoBi ciioBa: HaHOTPYOKH, HaArpaTKa, MarHiTHE MOJIE, TEPMO-
quHaMivHi GyHKOii, AWHAMIiYHA T[POBIJHICTD,
IIA3MOBI XBHIII, €IEKTPOHHI CIIIHOBI XBHIIL.
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