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This special issue celebrates 100 years since the birth of Moisey Isaakovich Kaganov. This date is a personal
event for us, since Moisey Issakovich (or Musik, for his friends and close ones) is the father of one of us,
and the grandfather of the other. In addition, we have both been his students. We received the problem discussed
in this paper by succession. In 1949 llya Mikhailovich Lifshitz was interested in studying electrodynamic
and elastic properties of solids, and this analysis required knowledge of the corresponding Green’s functions.
He suggested to his two graduate students, Moisey Kaganov and Victor Tzukernik, to calculate the displacement
vector caused by an instant point source acting at the surface of an elastic half-space. At that time they had cho-
sen a different topic, and the problem hibernated until the early 1990s, when Moisey Issakovich suggested
it as a subject for a Master’s thesis for one of us (ML) to be conducted under the supervision of the other one (IK).
The results have been published in papers I. M. Kaganova and M. L. Litinskaia, Phys. Lett. A 200, 365 (1995) [1]
and I. M. Kaganova and M. L. Litinskaia, Phys. Lett. A 200, 375 (1995) [2]. The first paper discussed the deriva-
tion of the normal component of the displacement vector. We showed that the displacement can be calculated
as an integral in the complex plane, and examined the displacement at the surface of the half-space and at the di-
rection normal to the surface. We showed that the singularities of the displacement are linked to certain changes
in the shape of the integration contour. In the second paper, we applied the expression for the normal displace-
ment to the calculation of the elastic energy due to an external load, and found the amount of energy lost
by a small ball incident onto an elastic half-space. In this publication, we expand the analysis by investigating
the singularities of the displacement vector in an arbitrary point of the half-space, and briefly review our pre-
vious results.
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1. Introduction

Propagation of sound waves in elastic media has been
studied since long ago. Applications include a wide range
of solid state physics problems, applied problems and seis-
mological disturbances. To find the waves excited in an elas-
tic medium by an external load it is often convenient to use
the Green’s function, which describes the response of the
medium to a point-like momentarily load. Then the elastic
response to a spatially distributed and time-dependent source
can be calculated by convoluting the Green’s function and
the load.
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As known [3], elastic media support various kinds of
waves. Firstly, in an infinite medium there are longitudinal
and transverse waves, which are coupled by elastic dyna-
mical equations, and cannot be treated independently. Se-
condly, if the geometry of the problem assumes presence
of a boundary, the system supports additional surface modes.
In an elastic half-space these modes are known as Rayleigh
waves. Each component of the displacement vector is a wave
packet made of all the tree types of the waves, and its specific
form is dictated by the boundary conditions and the exter-
nal load. A naive glance into what this vector might look
like for a half-space subject to delta-like source suggests
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emergence of a non-trivial pattern possibly featured by
presence of singularities. Indeed, the Green’s function for
the simplest scalar wave equation,

c?AU —d?U / dt? = A3(r)3(t),

crucially depends on the dimensionality of the problem:
while in 3D the displacement Uy oc 3(r —tc) / r is a sphere

with a zero distortion inside it and a delta-like singularity
at the wave front, in 2D the displacement U, exists for all

r < tc, and has another singularity at the wave front: it di-
verges as U,p (r —tc) ~1/4/(tc)? —r2. In a semi-infinite
medium the bulk waves, which might be similar to U,p,

will coexist with 2D-like surface Rayleigh waves, which
might be similar to U, . These qualitative arguments hint

at a possible presence of delta-like singularities and inter-
play between “empty” (zero-distortion) and “filled” (finite
distortion) tendencies.

The presence of a surface makes the problem less trac-
table than in an infinite system. Before [1], only asymptotic
expressions for the displacement vector, which hold at the
distances large comparatively to the size of the source,
were known [4]. Below, following [1], we derive the ex-
pression for the dynamical Green’s function for a semi-
infinite elastic medium. After that, we analytically investi-
gate the locus of its singularities and discontinuities, which
are of special interest. We use complex analysis to connect
these peculiar points with the dynamics of the singularities
in the Green’s function integral representation (Sec. 2).
Specifically, delta-like singularities and jumps of the dis-
placement vector appear when a pair of time- and position-
dependent singularities overlaps with one of the “station-
ary” singularities determined solely by the elastic constants
of the medium. In Sec. 3 following [2], we study the elastic
energy associated with the displacement caused by a point-
like surface force and by a distributed load, for example,
by a small ball incident on the surface of the half-space.
We show that the major part of the elastic energy is carried
by the surface waves. Our results can be used in many the-
oretical and applied problems of classical theory of elastic-
ity, as well as for studying interaction between particles
and solid medium: though such problems require quantum-
mechanical consideration, knowing the classical limit may
appear to be useful.
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where J,;(x) are Bessel functions. The functions

2. Dynamical Green’s function

2.1. General equations

We consider a semi-infinite solid medium, which occupies
the half-space x; > 0. The components of the displacement
vector u, which describes elastic waves in this medium,
satisfy the dynamical equation

62Ui 60ik
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where p is the density of the medium, and o; are the
components of the stress tensor, which obey the Hooke law

1({ou; ou
ik = 2pCeUy +p(cf — 26 )uy Sy, Uy = E(aTl+a_><kJ
K i
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where ¢, and c, are, respectively, the longitudinal and
transverse speed of sound (as known, ¢, > c,). Here and
below summation over repeated indexes is assumed.

Let an instantaneous force with a magnitude F act at
t=0 at the point x;, =X, =0 normally to the surface:
F=(0,0,F5(r)3(t)), with r, being a radius-vector in the
(X1, X,)-plane. Then the boundary conditions for the elastic
system can be written as

031(X3 =0) = 05,(X3 =0) =0, ©35(x3 =0) = F5(r;)3(t).

®)

The displacement vector that satisfies Eqs. (1)—(3) is the
Green’s function of the elastic half-space. We denote it as
U(r, X5;t), Fourier transform its components

itk

U; (r, Xg;t) = Jdme*“”‘j dkge r“_‘”t)vi (k@i %), (4)

and set up the system of equations for its Fourier coeffi-
cients V;(k;,®;x3). This problem has been solved in [5]
for an arbitrary direction of the applied force. For the nor-
mal surface force the components of the displacement vec-
tor U1y, Xg3t) = (Uy (1, X351),0,U5 (1, Xg3t) ) written in cy-
lindrical coordinates become:

ki, (kyn
i 1(2” ”)[(af+klf)e‘°"x3 200,602 ],
r(k?)
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are the normal components of the k-vector of the modes.
The sign in front of the square root is chosen so that
the excited waves propagate away from the surface. Equa-
tions (5) show that the components of the displacement
vector are sums of two terms, the first corresponds to lon-
gitudinal sound waves (I-waves, oc e~*1*3), the second to
transverse sound waves (t-waves, oc e™*t*3). These two
waves are coupled and cannot propagate independently.
From Eq. (6) it follows that the range of k; is naturally
divided into three intervals [see Fig. 1(a)] according to the
character, either bulk or surface, of the excited waves in
each of these two terms.
Furthermore, the denominator of the integrands

r(kf) = (af +kf)? —4kfo,a, (7)

has a single root
2

k7 = C:;’? 8)

which is the dispersion equation for surface Rayleigh waves.
Here £=¢(c,/c,) is the smallest positive real root of
the equation £® —8&* +8¢2(3-2¢2 /c2)-16(1-c2 /cf) =0,
0.874 < £ < 0.955 [3]. Account of dissipation yields a comp-
lex correction to this pole. For infinitesimally small damp-
ing, ki = o* / ¢Z&? +i8 sgn [], where 5 — +0.

There are three characteristic sound wave speeds in this
problem: ¢,& <c, <c;, where ¢,& is the speed of surface
Rayleigh waves. The displacement at a distance R from

@ I I i
: volume /- : surface l-waves,: surface /-
, and#-waves | volume #-waves | and -waves
0 |o|/c, |w|/c, k
(b) 0 clt c,t ct
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Fig. 1. (a) Three intervals of the wave vector k;, and the type
(surface or volume) of longitudinal and transverse waves in each
interval. (b) Upper axis shows characteristic distances R = ¢,&t,ct,ct.
For a given time t, these distances set the boundaries of four
space regions. Each region is characterized by a specific set of
waves (surface Rayleigh waves, transverse, longitudinal, or none
of them) that have been able to reach that region. Lower axis: the
same four regions in terms of the dimensionless parameter A (9),
which combines temporal and spatial coordinates.

the origin at a moment t is determined by the superposition
of the waves that have reached this point by that time. We
introduce a dimensionless parameter

:t%, R= /r”2+x§, 9)

whose magnitude determines which kinds of waves cause
the displacement at point r, = Rsin0, x; = Rcos6 at a giv-
entime t (here 6 is the angle counted from the x;-axis). Fi-
gure 1(b) shows characteristic values of the parameter A,
that serve as “boundaries” between various types of waves,
and the correspondence between (R,t)- and A-representa-
tions. For example, at A <1 (or, equivalently, at R > c;t)
the displacement must be zero, since even the fastest longi-
tudinal waves could not reach these locations in time t.

Below we investigate the normal component of the dis-
placement vector, U (rj, X5;t). The radial component of the
displacement vector can be addressed in a similar way. Let
us simplify the double integral from Eqg. (5). We introduce
the shortcuts

2

c,=-2L, c,=—L (10)
Ct2 ‘:thz
(note that 1 < C; < C,) and a dimensionless variable
2
= N (11)
w? /¢t

As a result of the replacement (11), an extra o appears in
the integral over do in (5). We absorb it into a derivative
over time:

“ . r/x I rx
Idwme_'mtJo o= :—ZImEJ‘dwe'“‘tJ0 o=,
C oty C

(12)
Then integration over o can be carried out using the equality

2 ) /X
Idco et J, [m—ll[} =
0 G

_o(nxlc -t) Ny ot-rvx/c)
JaxTe)? -2\t - (x /)

o (13)

where ©(x) is the Heaviside step function [6]. We can fi-
nally write:

F G 0

Uy(RA,0) = — 1
3(Ri4.0) (2m)2p R%cZ i

(2, 0), (14)

where the function ¢(1,0) is the integral over Xx. It is con-
venient to split it into two integrals corresponding to the
longitudinal and the transverse waves:

o(h,0) = J, (1, 0) + I, (1, 0). (15)
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Since, by virtue of (6) and (13), the integrands of
J,(A,0) and J;(A,0) have different functional forms in
each of the x-intervals shown in Fig. 1(a), it is convenient
to write them as follows:

1
3,(.,0) =_[dx f,(x;1,0) © (Vxsin0—| A —cosO~1—x )+
0
+1Im T dx f,(x;,0);
1
1
3,(0,0) :jdx f (X1, 0)0(/xsin0 —| A —cos® /C, — X |) +
0

G
+1m j dx ft(x;k,e)[G)(\/;sine—|x—cose1/C1—x )+
1
+isgn[A-cos0,/C,—x]O (|A—cos6,/C, —x |—«/§sine)]+

+1Im I dx f (x;1,90).

G
(16)
Here
f (X)\, 6) - _ Vl X_ll(ZX_Cl)
ne FOON; (:2,6)
17)

2%+ x=1]

OO = N (2 0)'

where F(x) is the dimensionless version of the denomina-
tor (7), and

N, (X1, 0) = {(Jl—a, ~VI=x)
x (Jl——x—sgn (A—sinB)/1-a, )}1/2 ,

N, (x;2,0) = {(,/cl— - T —x)x
x (JC1 —x —sgn (A—+/C, sin6)/C, —b, )}1/2,

(18)

with
a, = (Asin@+cosO~1-1%)2 =
=[r2(sin? 6—cos? 0) +cos? 0] F 2iAvA% —1sin 6¢osH,

b, = (Asin®+cos0/C, —1?)% =

=[A2(sin? 8 —cos? ) + C,cos? 8] F 2iry/A% —C, sinOCos 6.
(19)

For two directions, on the axis x; and on the surface

X3 = 0, the integrals (16) can be calculated analytically,
and the expression for the normal displacement can be ob-
tained by differentiating the result with respect to A [see
Eq. (14)]. We have done this in [1] and found that the an-
swers, while being the limiting cases of the same expres-
sion, were astoundingly different. The displacement on the
axis x5 had one delta-singularity, and in this aspect it was

similar to a 3D Green’s function (see Introduction). Fur-
thermore, it carried no dependence on the Rayleigh wave
parameter &. In contrast, on the surface the displacement
had discontinuities, and it diverged at the Rayleigh wave-
front, as is typical for a 2D Green’s function.

For an arbitrary direction the integrals (16) cannot be
calculated analytically. However, using complex analysis,
we can examine the singularities (jumps and cusps) of these
two integrals, and hence determine the locus and type (del-
ta-singularities and jumps) of the normal displacement
singularities, thus visualizing the wavefront of the signal in
the half-space. We do this in the next section.

2.2. Singularities of the dynamical Green’s function

We examine the integrals J, ;(A,0) (16) by replacing a
real x with a complex z and performing contour integra-
tion. We find that the singularities of the Green’s function
of an elastic half-space are entirely determined by the
shape of the integration contours, and therefore by the
number and mutual locations of the singularities of the
integrands of J, ;(%,0).

Let us start with identifying the singularities of the inte-
grands of J, ; (1,0). Already from Egs. (6) and (7) it is seen
that the function r(z) has three singular points, which are
inherited by the integrands: two branch points z=1 and
z=C, (they appear from the square roots in the expres-
sions for a,,) and the Rayleigh pole z =C, [see Eq. (8)].
These singular points do not depend on the value of the
parameter A, so we will call them “Fixed singularities” (FS).
In addition, the integration over o brings the functions
N, ¢ (x,A,0) [see (18)] into the integrands. These functions
introduce four additional singularities, a, (1,0) and b, (%, 0)
(19). In general, they are four branch points. However, their
characters and even their number depend on A and 6. For
example, for small A <sin6 there are only two additional
branch points, a_ and b_, while for sinf < < JCTSiﬂG
we have three additional branch points a_, a, and b_ (see
Figs. 3 and 4 below). We will also see that pairs of these
branch points can overlap and produce new poles. Since
these points depend on A and 8 (i.e., on time and location),
we will call them “Moving singularities” (MS).

Assume that 0 is fixed, and let A vary from zero to in-
finity. This can be viewed as if we have picked an observa-
tion point at a distance R from the origin, which has the
coordinates (Rsin6,Rcos8), and look at the displacement
at this point as the time goes fromt=0 to t =c. As A
varies, the MS travel around FS, and the shapes of the in-
tegration contours for J; and J, change accordingly. Cer-
tain changes in the shape of the integration contours result
in cusps or jumps in the corresponding integral J, (A,06) or
J; (A, 0) (16). Since, in accordance with Eq. (14), the nor-
mal displacement U, is the derivative of these integrals
over A, it means that at these values of A and 6 the dis-
placement vector will have, respectively, a jump and a del-
ta-singularity.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7 605
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Our analysis shows that the singularities of the displace-
ment vector appear as a result of the following events:

— Coincidence of two MS. For small A the MS are at the
real axis. At certain values of (A,0) they overlap, i.e.,
a, =a_, or b, =b_. Then instead of two branch points a
new pole appears in the integrand of, respectively, J, or J,.
This results in a jump of the corresponding integral and in
a delta-like singularity of the displacement.

— An MS-pair moves over a stationary branch point. As
we will discuss shortly, and as can be seen from the second
form of Eqgs. (19), with the increase of A the pairs of MS
(a, and a_, or b, and b_) move away from the real axis and
form a pair, which is symmetric about Re [z]-axis (a “ver-
tical pair”). When such a “vertical pair” overlaps with a
stationary branch point x=1 or x=C; (i.e., when
Re[a,]=1 or C;, and the same for Re[b,]), the corre-
sponding integral J, or J, has a cusp. As a result, the dis-
placement has a jump.

— An MS-pair moves over a stationary Rayleigh pole.
Finally, at certain values of (A,0) a “vertical pair” of MS
moves over the Rayleigh pole in the complex plane (it
happens when Re[a,]=C, or Re[b,]=C,). This results
in a jump of the corresponding integral J, or J;, and hence
in a delta-like singularity of the displacement.

For all other types of unusual behavior of MS (such as,
for example, overlap of a single moving singularity a,
with a stationary branch point x =1) the integrals J; or J,
remain regular. Therefore, the singularities of the displace-

ct G

ct

X3

0 <45°

Fig. 2. (Color online) Locations of the Green’s function singulari-
ties at a fixed moment of time t: delta-singularities are shown by
thick solid lines, and discontinuities by thick dashed lines. The
black empty circles numbered from 1 to 5 mark the points where
the delta-singularities are suppressed. Points marked (a) through (i)
connect this diagram with the dynamics of the MS shown in
Figs. 3, 4, with blue and green colors referring, respectively, to
the MS of the integral J, and J, (see text).

ment vector are exhausted by the mentioned events. The
magnitude of the displacement between the singular points
can be calculated by numerical evaluation of J, and J; (16).

The loci of the singularities of the normal displacement
are summarized on the diagram in Fig. 2, which shows a
snapshot of U4 (R, 6;t) at some moment t. Thick black solid
lines represent delta-singularities, and thick black dashed
lines are the lines of the jumps of U,;(R, 6;t). At some lo-
cations shown by black empty circles the magnitude of the
jump of J; or J, appears to be equal to zero (see below),
and the corresponding delta-singularity becomes suppressed.
This figure confirms that the displacement near the vertical
axis differs dramatically from the displacement near the
surface. Indeed, we will see that surface Rayleigh waves
do not produce any effect for directions more than 45° away
from the surface.

Let us fix the angle 6 and vary A from zero to infinity
to trace the behavior of the MS and its contribution to the
displacement. We start with 6 < 45° (closer to the vertical
axis). In the real space, this corresponds to moving along
the red line marked as “0 < 45°” in Fig. 2. The motion is
from outside to the origin of the coordinate system. The set
of diagrams in Fig. 3 shows the dynamics of the MS and of
the integration contours in the complex z-plane, where
Re[z] = x for positive Re[z]. The left column is for the
integral J,, the right column is for the integral J,. The parts
of the contours shown in the figure consist of horizontal and
vertical cuts. The cuts at Re [z] — o are closed by a circle
of an infinite radius | z |- o, where the integrands vanish.
In each column, the upper graph serves as a reference,
showing the locations of the three FS: two branch points
x=1and x = C; marked as red circles, and the Rayleigh
pole x=C, marked as a red cross. They are fixed, and
always remain the same for the whole discussion below.
As we can see from Eq. (19), for small A all MS are on the
real axis. Furthermore, from the definitions of N, and N, (18)
we see that the singularities a, and b, appear, respectively,
only when A >sin6 and A > \/C_lsin 0. Hence, for small
A <sin® the only MS are a_ <1 and 1<b_ < C;. When A
increases, they start moving in negative-x direction. When
A =sin6, a, appears on top of x =1, and when A = \/C_lsin 0,
b, appears on top of x = C;, but these events do not result
in any special behavior of the integrals J; and J,. With
further increase of A the points a, and b, move to the left,
and a, moves faster than a_, and b, moves faster than b_.
At A =1, a, overtakes a_, and their real parts become
equal [see expression (19) for a,]. At this moment a new
pole appears in the integrand of J; as shown at the graph
labelled (a). Note that A =1 corresponds to the arrival of
the longitudinal waves to the observation point. With fur-
ther increase of A the branch points a, form a “vertical
pair” and move away from x-axis into the complex plane.
This “vertical pair” moves to the left, in negative-x direc-
tion, and does not play any further role. In turn, in accord-
ance with (19), the two branch points b, overlap when
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0

®—

Fig. 3. (Color online) Dynamics of the moving singularities (MS) and of the integration contours with the change of A for 6 < 45°. Two
large red circles and one large red cross show fixed singularities (FS) on the x-axis. Blue circles correspond to the branch points a_ and
a, of the integral J,, and green circles correspond to the branch points b_ and b, of the integral J,. At small A the pairs of MS approach

each other on the horizontal axis as A increases. At, respectively, A =

land A = \/CT the pairs overlap with a formation of a new pole.

These events are shown by a cross of the respective color at the plots labelled by (a) and (b) (these letters allow one to locate these
events on the normal displacement snapshot (Fig. 2), where they contribute delta-singularities to U,). With further increase of A the
pairs of MS shift into the complex plane. As A grows, the “vertical pair” of MS shift to the left, and the vertical distance between them
is growing, as shown by dotted guide-to-eye arrows in the lowest three plots.

1<) = \/C_l (graph marked as (b); A = \/C_l corresponds to
the arrival of the transverse waves to the observation
point). This introduces a new pole into the integrand of Ji,
as a result J; has a jump and U, has a delta-singularity at
A= \/CT After that the pair b, leaves the real axis and
forms a “vertical pair”, which, similarly to a,, continues to
the left. For larger values of A there will be no changes in
the contour shape and hence no other singularities. The
events (a) and (b) are marked in the sketch of U, (Fig. 2)
on the red line “6 < 45°”.

There is one more nuance that is not captured by this
discussion. If 0 is very close to 45° namely, if
1A/CT<Siﬂ9<1/x/§, then the pair b, forms in between
the fixed branch points x =1 and x = C, [this can be seen
by examining the second form of b, given in Eq. (19)]. In
this case, when the “vertical” b,-pair starts moving to the
left, it goes over the branch point x = 1. This happens when

C,cos? -1

r=A0)= | ———mm ———,
1(0) cos? 0—sin% 0

(20)

and this line is marked as A, in Fig. 2: it contributes a cusp
to J¢, and hence a jump to U,

Now let us switch to the case 6 > 45°, pick an angle and
vary A from zero to infinity. The corresponding dynamics
of the MS is shown in Fig. 4, and all the events numbered

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7

there as (c)—(i) are marked in Fig. 2 on the red line “0 > 45°”.
Here a_ and b_ both form to the left of X =1 and start mov-
ing to the left when A increases. When they reach x =0,
they “reflect” from the origin and start moving back to the
right, where they will meet, respectively, a, (which ap-
pears on top of x =1 when A =sin®) and b, (which ap-
pears on top of x = C, when A = \/C_lsin 0). The points a,
meet at x <1 and produce a new pole when A =1 (arrival
of the longitudinal wave, same as for 6 < 45°), which re-
sults in a delta-singularity of the displacement component;
this event is labelled as (c). After that, a, form a “vertical
pair”, which starts moving to the right, and passes over all
the three FS. The same does the pair b,. The dynamics of
the MS follows the scenario outlined below. First, the “ver-
tical” a,-pair crosses the branch point x =1 [event (d)],
which happens at

sin®
\sin? —cos? 6

which results in a cusp of J; , and hence in a jump of Us.
The “vertical pair” a, proceeds to the right for & > X,, and
at A= \/C—l b_and b, overlap [event (e), arrival of the trans-
verse wave to the observation point]. This new pole in J¢
results in a delta-singularity for U,. After that, b, form a
“vertical pair”, which passes over the fixed branch point
x =C, [event (f)] at

h=2,(0) = (21)
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Fig. 4. (Color online) Dynamics of the MS with the change of A for 6 > 45°. The notations are the same as in Fig. 3, integration con-
tours are shown for the most important events. After formation of the new poles in the diagrams (c) and (e), the “vertical pair” of MS
move in the positive direction of the x-axis passing over all the FS. Passing of a “vertical pair” over a fixed branch point [events (d), (),
(9)] contributes a jump, and it’s passing over the Rayleigh pole [events (h) and (i)] contributes a delta-singularity to U,. The functional
forms of A, i = 2...6 are given in the text.

. larities are contributions of the surface Raleigh waves, and
A=25(0) = M (22) they occur, respectively, at

\/sin® B —cos? 6 ’

/c —Cycos® 0
wyartical” a3 -pai A=A (0)= [—2 1=
and soon after that the “vertical” a,-pair passes over 5(0) sin? 0—cos? 0

X = C, [event (g)] at (24)
C,—cos? 0
C,—cos? 0 A=hg(0) =, | —2——.
=R (0) = | ————— (23) +(0) sin? @ —cos? @
sin“ 0—cos” 0
Events (f) and (g) result, respectively, in cusps of J, Finally, we report the expressions for the jumps of the
and J,, and hence contribute two jumps to the displace-  integral J,

ment U,. Finally, the “vertical pair” b,, and soon after that
the “vertical pair” a,, pass over the Rayleigh pole x = C, x-C;

Ny o . A=1+0,0)-J,(A=1-0,0)=2 o ——
[events (h) and (i)]. Each of these events adds a jump to the I (=1+0,6)-9,( ) = 2mos* ~( ) ) 2o
integral J, or J,, introducing two additional delta-singu-

larities to the normal displacement. These two delta-singu- (25)
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and of the integral J,

J(.=C, +0,6)-3,(» =/C, —0,0) =
_ 16mnsin* Bcos? O(sin2 6-1/C))
(2sin? 0—1)* +16sin* Ocos? O(sin? 0-1/C;)’

(26)

In [1] we discussed in detail the normal displacement in
two limiting cases: at the vertical axis (6 =0) and on the
surface (6 =n/2). At the vertical axis, the displacement
had only one delta-singularity at x; =cjt. Indeed, as
Eqg. (26) shows, the jump of J, is zero for 6 =0, hence
®(A,0=0) (15) has no jump at A = \/C7 and thus the del-
ta-singularity at x; = c;t is suppressed (we showed in [1]
that it gets replaced by a weaker singularity, a jump). This
suppression is marked by an empty circle (1) in Fig. 2.
This special behavior of the displacement vector is a result
of the fact that at 6 =0 we have a, =a_, b, =b_, and in-
stead of a pair of branch points at all values of A we have
two poles, a, and b,.

Furthermore, at the surface the displacement had no del-
ta-singularities at all. This is consistent with Eqgs. (25, 26),
which state that the jumps of both J, and J, are zero at
0 =mn/2, so the function ¢(A,0 = =/ 2) has no jumps. In [1]
we showed that, instead, the displacement is finite at r = c;t
and has a jump at r; = c;t [these points are marked as empty
circles (2) and (3) in Fig. 2]. The third delta-singularity at
the surface is expected at r; = c,&t, where two lines of del-
ta-singularities, A5 (0) and A4 (0), meet. The overlap of these
singularities, however, leads to a different type of singular-
rity [1], and at r =cé&t the displacement diverges as
(7 —(c,&t)?) ™%, as marked by the empty circle (4) in Fig. 2.

Finally, according to (26), there is one more angle,
sin® =1/\/C_l, where the second jump vanishes, and the
corresponding delta-singularity is suppressed. This point
(marked as (5) in Fig. 2) lies at the intersection of the loci
of the jump X, and the second delta-surface A = \/CT Here,
again, an overlap of two singularities results in a different
behavior of the normal displacement.

3. Elastic energy radiated due to collision

3.1. Elastic energy due to a point surface force

In this section, we will use the expression for the normal
component of the Green’s function to determine the elastic
energy of sound waves excited in a half-space due to an
external load. In the absence of volume forces the elastic
energy flow through a closed surface S is given by [3]
%:_! %Gik dsy , @7)
where u; are the components of the displacement vector
in the medium, and ds is an area vector directed outwards.

We start with the energy flow caused by a normal in-
stant point surface force F = (0;0, F5(r;)3(t)). The surface S
in Eq. (27) consists of a hemisphere with a radius Ry — o

and acircle (1 < Rg, X3 = 0). Since for any given time t we
can choose such a radius Rg that the hemisphere will be
ahead of the wavefront, we only need to account for the
X5 =0 part of the surface. The components of the stress
tensor at x; = 0 are defined by Egs. (3), and after integrat-
ing over time we find that the elastic energy, eg, in this
case is

oU,(n, Xt
= 3(|| 3)

€c =~ (28)

r”:O, x3=0;t=0

Using the second of Egs. (5) for the displacement vec-
tor U;, we get after converting the integration over
—o0 < @ < oo into the integral over o > 0:

2F? Td‘” 3T dky kjou

pct(2n)? " r(kf) )

0 0

We split the integration over k; into three intervals ac-
cording to different combinations of the types of waves
that comprise the signal [see Fig. 1(a)], and rewrite the in-
tegrand using the dimensionless variable x defined in (11).
We get:

F2c

SG e S—
pct (2m)?

] fG>+Q§G>+Q§G>]Tdm2, (30)
0

where the three Q-coefficients

V1-x
(2x—C)? +4xJ1-x)(C, - x)
G
©) - _ 4x(x-1){/C; — X
2 !%(X) a. %) (2x—C,)* +16x%(x-1)(C, - x)’

VG, -1(2-€%)°

4 Ce*-28%(3C, - 2)+6(C, 1)

1
= [0 de, ()=
0

©_T
(©) =

31)
correspond to the three k-intervals from Fig. 1(a). They

determine how the elastic energy splits between various
types of waves. Figure 5 shows the normalized coefficients

A =Q® /> Q® as functions of the ratio
i

0<c, /¢ <1/+/2. Itis seen that the largest part of the en-
ergy is always carried away by the surface waves, while
the role of the volume waves is relatively low. Note that
the value of Q; comes entirely from the contribution of the

Rayleigh pole of the corresponding real-valued integral.

The unphysical divergence of the integral over o in (30)
is due to the fact that the Fourier transform of the instanta-
neous force is constant. As we show in the next Subsec-
tion, for a distributed load the Fourier coefficient
G33(K, ® —> ) = 0, which provides convergence of the
integral over o.
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Fig. 5. The coefficients Q, = Q; /ZQj as a function of ¢, /c,.
j

These coefficients determine the fraction of elastic energy carried
away by volume waves [i =1, interval | from Fig. 1(a)], mixed
volume-surface waves (i = 2, interval Il), and pure surface waves
(i =3, interval IlI).

3.2. Collision between a small elastic ball and a large
elastic object

We now switch to the case when the external force
F=(0;0,F(r,t)) is still normal to the surface and sym-
metric about the xs-axis, but is time- and position-depen-
dent. The displacement vector now can be expressed in the
form

uz(ry, X3;t) =
2t
= jdt' I drjoss(rj, Xg = 0;t) Us(ry — 1, X3 = 0;t-t')
0 r||’<a(t’)

(32)
where 2t is the total time during which the force is acting,
a(t) is the time-dependent radius of the area where the
force is applied, and U;(ry, X3;t) is the Green’s function

defined in (5). As before, the boundary condition is
o331, X3 = 0;t) = F(r,t). Then Eq. (27) gives:

d2k”a| (kyj, @)
r(k”2)

g = i(2(7;)3 ]3 do m?’J- |033(k||’°°)|2’ (33)
t

p

where

1 < i(ot—k
o33k, 0) = g j dt jdzr“e'( V64 (1, % = 03t). (34)

After performing the same transformations as in Sec. 3.1
we get:

4
e= (2;‘24‘" [Qu+Q,+Qs], (35)

t

where

1 0
Q= [000 8 [doo? ok = Vo /¢, o)
L |
Q; = [0,(x) dx Idm®2‘633(k|| = \/;o)/q,u))‘ . (36)
1 0
Q= Q?EG)J-d‘D o’ |533(k|| = o/cg, (D)|2
0

and the functions ¢, , (x) and Q{’ are defined in (31).

In order to proceed we need to specify the external load
og3(f), X3 = 0;t). Let us assume that the force acting on the
surface of the half-space is due to a small ball of mass mj,
which collides with the elastic half-space. Then the energy
expressed by (35) defines the part of the kinetic energy of
the ball that will be lost to sound waves excited in the half-
space.

If the speed of the ball v is much smaller than the speed
of the sound waves in the medium, we can use perturbation
theory assuming that & < m,v? /2. Then in the zeroth or-
der the collision is elastic. During the collision a contact
spot forms, over which the force acts onto the half-space.
Using energy conservation, one can determine the radius of
the contact spot, a(t), in the quasistatic approximation, as
well as the collision time 2t. Using these expressions, it
will be possible to determine the elastic energy lost during
the collision in the first order of the perturbation theory.

We performed this calculation using the results for the
static contact problem of theory of elasticity (the Hertz
problem; see Sec. 9 of Ref. 3 and Problem 1 therein). The
pressure created by a small ball of radius R, on the surface
of a sphere of an infinite radius (a half-space) is given by

i R T
Gss("ulxs—o,t)—znaz(t) 1 22(0) (37)

where F is the force with which the two objects are com-
pressed, and the collision time is

2/5
5m, D
. 8J/rl'(2/5)( 5m, | 38)
5I'(9/10) | 4R,
where D is a dimensionless factor
_ <2
_ 3 (1+x) , :£1 Gb, (39)
16 pcZ(1—-c2 /cf) Ep 1- 62

with E and o being, respectively, the Young module and
the shear module (the subscript “b” refers to the material of
the ball, while its absence to the material of the half-
space). This problem has been solved in [2] for the case
when the ball and the half-space are made from the same
material, and here we report the result for arbitrary material
parameters.
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We see that the coefficients (36) differ from the corre-
sponding coefficients for the Green’s function (31) only
by the factor o(k, ®) replacing F / (2m)3. The calculation
showed (see [2]) that this factor depends not on k; and o
per se, but on dimensionless combinations:
| 533 (Kj@nax » Oy / ) 7, where a, and hy, = a2, /R,
are, respectively, the maximum radius of the contact spot
and maximum distance of approach of the ball and the
half-space (note that h,,, /v ~ t). Moreover, according to
Eqg. (36), we need to set k, ~ w/c, where c is one of the
speeds of sound. Since by our assumption v < c, in the
first order of perturbation theory we should keep
| 535(0, ®h,a / ) |2 Then the integrals over x and o in (36)
decouple, and the integrals over x become identical to
those for the instantaneous point load, Eq. (31). The re-
maining integration over  can be done analytically, and
we finally obtain:

2 3/5
_.,Mo"| v ©) . A6G) . O
e=y— [Ct) [ +Q¥+Q{® ], (40)

where

100 T(9/5) (LJUSC_I( b j”s -t/

10n) clpy (1+1x)%5

1= 394 T(13/10)
(41)

is a material-dependent factor [« is defined in (39)]. Note
that the energy split between the different types of the
waves is the same as for a point source (Fig. 2).

Let us compare this result with our previous answer
(30) for a point instantaneous source, where we will intro-
duce a cut-off frequency w. and replace the integral with
w3 /3. Since Fy = 2mo is the momentum transferred to the
half-space, we get using Eq. (38):

1/5 e 1
o] L] Stz (42)
Ct Rb T
Then the characteristic excited wavelength is
c c 1/5
du ~ =4~ Ry (—‘j > R,. (43)
(OF (%

In our calculation we accounted for the waves excited
in the half-space, but neglected the vibrations of the small
ball. Eq. (43) substantiates this assumption, since the vibra-
tions with the characteristic wavelength A.. merely do not
fit into the ball. Furthermore, this inequality explains why
in the first order of the perturbation theory we were able to
replace k; by zero in the integrands of Eq. (36). Indeed, the
only parameter of the dimension of the length in our prob-
lemis Ry. Since A. > R,, the corresponding characteristic
wave vectors k. ~1/A.« < 1/R,. Finally, Eq. (43) allows
us to estimate the minimum linear size of the object with
which the ball collides. The linear size L of the object can

be neglected and the object can be modelled by a half-
space if

c 1/5
L> A ~R, (—‘j : (44)
v

4. Concluding remarks

The results of the last section were summarized by
A. Yu. Grosberg and M. I. Kaganov in their paper in the
popular science magazine “Kvant” [7]. Each of the two
authors had their own history with this problem, and want-
ed to make the answer accessible to younger readers.
Moreover, they discussed how the elastic energy emitted
during a collision of two balls of a similar radii R, (smaller
than the characteristic wavelength of the sound waves)
would look like. They argued that in this case

- N 1/5
~ 2 — —_
Rb/c} mo exp{ ﬁ(cj } (45)

where o and B are some numerical coefficients, and c is a
characteristic speed of sound.

We would like to conclude with a quote from the intro-
duction to that paper. After telling the reader how this
problem appeared in his life and about transferring it to us,
M. 1. Kaganov writes: “l was happy when the solution was
found. It felt like | had fulfilled my duty. Though it was
not me who solved the problem, I think that | can say that |
also contributed something to the solution”.

We think so too. In 1995 the three of us discussed pub-
lishing this work together. Musik not only suggested this
problem to us, but kept asking about our progress, dis-
cussed our findings and challenging places with us, and
gave us a lot of advice and guidance. We had and still have
a feeling that this work would possibly not have been done
(or at least would have looked strikingly different) without
his continuous presence. However, when the decision was
to be made, Musik said: “I never wrote anything down
with a pen. Talking does not count. | cannot author this
paper, you should mention me in the acknowledgements
instead”. Which we did, knowing about and respecting this
*“using or not using a pen” rule of the old school ethics.
However, we would like to use this opportunity to say that
we miss seeing Musik among the authors of Refs. 1 and 2.

£ ~ mo? exp{—a
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OuHamiyni dyHKUiT [piHa ona npy>KHOro NiBNpocTopy
Ta BTpaTW eHepril Npu 3iTKHEHHI

Marina Litinskaya, Inna Kaganova

et cnemianpHuid BUIyck mpucBsiueHO 100-piudro Bix IHS
HapokeHHS Moiices IcakoBnua Karanosa. Ll mata — Takox
ocoOucTa moJis Ui Hac sIK aBTOPIiB, OCKUIbKH Moiiceit IcakoBud
(abo nmpocto «Mycuk» [Uis CBOIX Apy3iB Ta 01n3bKuX) OyB 6aTh-
koM mis onHiel 3 Hac (1. K.), 1 mimycem mns inmoi (M. JI.). Kpim
TOro, M1 o0uaBi Oynu Horo yueHULsIMH Ta, K OU y CIIaJIOK, 3a-
HMancst MOIIYKOM BUPIIICHHS MPOOJIEMHHUX MHUTaHb, SKi OKpec-
neHi y wiid crarti. ¥ 1949 p. It Muxaiinosny Jlipumis Oys
3axXOIUIEHUH NPOOIEMOI0 eIeKTPOJUHAMIYHUX W MPYXHHUX BIac-
TUBOCTeH TBepaux Tii. Lei aHani3 BUMaraB 3HaHHS BiIIOBIIHHUX
¢ynkniit I'pina. Bin 3ampornonyBaB cBoiM acmipanTtam, Moiicero
KaranoBy Ta Bikropy LlykepHuKy, 0OUHCIUTH BEKTOP 3MilllCHHS,

SIKUH BUKJIMKAHUH TOYKOBHM JDKEPENIOM, II0 MHTTEBO i€ HA IO-
BEpXHi IPYKHOTO IBIPOCTOPY. AJie TOi BOHU 3aiMaIiCs PO3-
POOKOIO IHIIOT TeMH, Ta Lie JOCIIPKSHHS He PO3IIILIaIocs JI0 1Mo-
yatky 1990-x pokiB, komu M. 1. Karanos 3anpononyBas 1o izeto
SIK TeMy Marictepcbkoi podotu ass oxaniel 3 nac (M. J1.), sika O6yne
npoBoauTucs mix kepiBaunreoM iHmoi (I. K.). Pesymbraru omy6mi-
koBaHo y crarrsx |. M. Kaganova and M. L. Litinskaia, Phys. Lett.
A 200, 365 (1995) [1] Ta I. M. Kaganova and M. L. Litinskaia,
Phys. Lett. A 200, 375 (1995) [2]. V nepuuiii crarti 06rosopro-
BaJIOCsl MOXOJ/UKEHHSI HOPMAIbHOI CKJIaJ0BOI BEKTOpA 3MIlLICHHSL.
IToka3aHo, 110 3CYB MOXe OyTH OOUMCIICHO SIK IHTErpaji B KOMII-
JICKCHIH IUIONMHI, NP LIbOMY MOXXHa BHBYATH 3MILICHHS SK Ha
MOBEPXHi MiBIIPOCTOPY, TaK i B HAMPSIMKY, HOPMaJbHOMY JI0 I10-
BepxHi. BusiBieno, mo 0coOIMBOCTI 3MIIIEHHS IIOB’sI3aHi 3 IIEB-
HUMH 3MiHaMH (OPMH KOHTYpY iHTerpyBaHHs. Y Opyrid cTaTTi
BHKOPUCTAHO BHpa3 ISl HOPMAIBHOTO 3MILLCHHSI IPU O0YUCIICHHI
NPYXXKHOI eHeprii, BUKIMKAHOI 30BHILIHIM HABaHTa)XCHHSM, 3Hai-
JICHO KIJIBKICTh CHEprii, 110 BTPA4YaEeThCsi MAJICHBKOK KYJIBKOIO,
sIKa 11a/1a€ Ha MOBEPXHIO MPYXKHOTO MiBIpocTopy. Y AaHiil poboTi
PO3IINPEHO aHaNi3 3 ypaxyBaHHSIM OCOOIHMBOCTI BEKTOpa 3Mi-
IIEHHS B JOBUIBHIA TOYI MiBIPOCTOPY Ta 3pOOJICHO KOPOTKHIA
OIJISI] HAILIKX IOTIEPEIHIX pe3ybTaTiB.

KurouoBi cioBa: ¢ynkuii I'pina, npyxHuil miBopocTip, BEKTOp
3MileHHs, (opMa KOHTYPY IHTETpyBaHHS.
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