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This special issue celebrates 100 years since the birth of Moisey Isaakovich Kaganov. This date is a personal 
event for us, since Moisey Issakovich (or Musik, for his friends and close ones) is the father of one of us, 
and the grandfather of the other. In addition, we have both been his students. We received the problem discussed 
in this paper by succession. In 1949 Ilya Mikhailovich Lifshitz was interested in studying electrodynamic 
and elastic properties of solids, and this analysis required knowledge of the corresponding Green’s functions. 
He suggested to his two graduate students, Moisey Kaganov and Victor Tzukernik, to calculate the displacement 
vector caused by an instant point source acting at the surface of an elastic half-space. At that time they had cho-
sen a different topic, and the problem hibernated until the early 1990s, when Moisey Issakovich suggested 
it as a subject for a Master’s thesis for one of us (ML) to be conducted under the supervision of the other one (IK). 
The results have been published in papers I. M. Kaganova and M. L. Litinskaia, Phys. Lett. A 200, 365 (1995) [1] 
and I. M. Kaganova and M. L. Litinskaia, Phys. Lett. A 200, 375 (1995) [2]. The first paper discussed the deriva-
tion of the normal component of the displacement vector. We showed that the displacement can be calculated 
as an integral in the complex plane, and examined the displacement at the surface of the half-space and at the di-
rection normal to the surface. We showed that the singularities of the displacement are linked to certain changes 
in the shape of the integration contour. In the second paper, we applied the expression for the normal displace-
ment to the calculation of the elastic energy due to an external load, and found the amount of energy lost 
by a small ball incident onto an elastic half-space. In this publication, we expand the analysis by investigating 
the singularities of the displacement vector in an arbitrary point of the half-space, and briefly review our pre-
vious results. 

Keywords: Green’s functions, elastic half-space, displacement vector, integration contour shape. 

 
 

1. Introduction 

Propagation of sound waves in elastic media has been 
studied since long ago. Applications include a wide range 
of solid state physics problems, applied problems and seis-
mological disturbances. To find the waves excited in an elas-
tic medium by an external load it is often convenient to use 
the Green’s function, which describes the response of the 
medium to a point-like momentarily load. Then the elastic 
response to a spatially distributed and time-dependent source 
can be calculated by convoluting the Green’s function and 
the load. 

As known [3], elastic media support various kinds of 
waves. Firstly, in an infinite medium there are longitudinal 
and transverse waves, which are coupled by elastic dyna-
mical equations, and cannot be treated independently. Se-
condly, if the geometry of the problem assumes presence 
of a boundary, the system supports additional surface modes. 
In an elastic half-space these modes are known as Rayleigh 
waves. Each component of the displacement vector is a wave 
packet made of all the tree types of the waves, and its specific 
form is dictated by the boundary conditions and the exter-
nal load. A naive glance into what this vector might look 
like for a half-space subject to delta-like source suggests 
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emergence of a non-trivial pattern possibly featured by 
presence of singularities. Indeed, the Green’s function for 
the simplest scalar wave equation, 

 2 2 2/ = ( ) ( )c U d U dt A t∆ − δ δr ,  

crucially depends on the dimensionality of the problem: 
while in 3D the displacement 3 ( ) /DU r tc r∝ δ −  is a sphere 
with a zero distortion inside it and a delta-like singularity 
at the wave front, in 2D the displacement 2DU  exists for all 

<r tc, and has another singularity at the wave front: it di-

verges as 2 2
2 ( ) 1/ ( )DU r tc tc r→ −

. In a semi-infinite 
medium the bulk waves, which might be similar to 3DU , 
will coexist with 2D-like surface Rayleigh waves, which 
might be similar to 2DU . These qualitative arguments hint 
at a possible presence of delta-like singularities and inter-
play between “empty” (zero-distortion) and “filled” (finite 
distortion) tendencies. 

The presence of a surface makes the problem less trac-
table than in an infinite system. Before [1], only asymptotic 
expressions for the displacement vector, which hold at the 
distances large comparatively to the size of the source, 
were known [4]. Below, following [1], we derive the ex-
pression for the dynamical Green’s function for a semi-
infinite elastic medium. After that, we analytically investi-
gate the locus of its singularities and discontinuities, which 
are of special interest. We use complex analysis to connect 
these peculiar points with the dynamics of the singularities 
in the Green’s function integral representation (Sec. 2). 
Specifically, delta-like singularities and jumps of the dis-
placement vector appear when a pair of time- and position-
dependent singularities overlaps with one of the “station-
ary” singularities determined solely by the elastic constants 
of the medium. In Sec. 3 following [2], we study the elastic 
energy associated with the displacement caused by a point-
like surface force and by a distributed load, for example, 
by a small ball incident on the surface of the half-space. 
We show that the major part of the elastic energy is carried 
by the surface waves. Our results can be used in many the-
oretical and applied problems of classical theory of elastic-
ity, as well as for studying interaction between particles 
and solid medium: though such problems require quantum-
mechanical consideration, knowing the classical limit may 
appear to be useful. 

2. Dynamical Green’s function 

2.1. General equations 

We consider a semi-infinite solid medium, which occupies 
the half-space 3 > 0x . The components of the displacement 
vector u, which describes elastic waves in this medium, 
satisfy the dynamical equation 

 
2

2 = ,i ik

k

u
xt

∂ ∂σ
ρ

∂∂
  (1) 

where ρ is the density of the medium, and ikσ  are the 
components of the stress tensor, which obey the Hooke law 

 2 2 2 1= 2 ( 2 ) , = ,
2

i k
ik t ik l t ll ik ik

k i

u u
c u c c u u

x x
 ∂ ∂

σ ρ +ρ − δ + ∂ ∂ 
  

  (2) 

where lc  and tc  are, respectively, the longitudinal and 
transverse speed of sound (as known, >l tc c ). Here and 
below summation over repeated indexes is assumed. 

Let an instantaneous force with a magnitude F  act at 
= 0t  at the point 1 2= = 0x x  normally to the surface: 

||= (0,0, ( ) ( ))F tδ δF r , with ||r  being a radius-vector in the 
1 2( , )x x -plane. Then the boundary conditions for the elastic 

system can be written as 

 31 3 32 3 33 3 ||( = 0) = ( = 0) = 0, ( = 0) = ( ) ( ).x x x F tσ σ σ δ δr   

  (3) 

The displacement vector that satisfies Eqs. (1)–(3) is the 
Green’s function of the elastic half-space. We denote it as 

|| 3( , ; )x tU r , Fourier transform its components 

 ( )|| ||
|| 3 || || 3( , ; ) = e e ( , ; ),i ti t

i iU x t d d V x
∞

−ω− ω

−∞

ω ω∫ ∫
k rr k k   (4) 

and set up the system of equations for its Fourier coeffi-
cients || 3( , ; )iV xωk . This problem has been solved in [5] 
for an arbitrary direction of the applied force. For the nor-
mal surface force the components of the displacement vec-
tor ( )|| 3 || || 3 3 || 3( , ; ) = ( , ; ),0, ( , ; )x t U r x t U r x tU r  written in cy-
lindrical coordinates become:

 ___________________________________________________  

 

2
|| 1 || || 2 2 3 3

|| || 3 || ||2 2 2
||0

|| 0 || || 2 2 23 3
3 || 3 || || ||2 2 2

||0

( )
( , ; ) = e ( ) e 2 e ,

(2 ) ( )

( )
( , ; ) = e ( ) e 2 e ,

(2 ) ( )

x xi t l t
t l t

t

l x xi t l t
t

t

k J k rFU r x t d dk k
c r k

k J k rFU r x t d dk k k
c r k

∞ ∞
−α −α− ω

−∞

∞ ∞
−α −α− ω

−∞

 − ω α + − α α ρ π

α
 − ω α + − ρ π

∫ ∫

∫ ∫

  (5) 

where 0,1( )J x  are Bessel functions. The functions 
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2 2 2
|| , || ,

, ||
2 2 2

, || || ,

/ , > | | / ,
( , ) =

sgn ( ) / , < | | /

l t l t
l t

l t l t

k c k c
k

i c k k c

 −ω ωα ω 
− ω ω − ω

  (6) 

are the normal components of the k -vector of the modes. 
The sign in front of the square root is chosen so that 
the excited waves propagate away from the surface. Equa-
tions (5) show that the components of the displacement 
vector are sums of two terms, the first corresponds to lon-
gitudinal sound waves (l-waves, 3e xl−α∝ ), the second to 
transverse sound waves (t-waves, 3e xt−α∝ ). These two 
waves are coupled and cannot propagate independently. 
From Eq. (6) it follows that the range of ||k  is naturally 
divided into three intervals [see Fig. 1(a)] according to the 
character, either bulk or surface, of the excited waves in 
each of these two terms. 

Furthermore, the denominator of the integrands 

 2 2 2 2 2
|| || ||( ) = ( ) 4t l tr k k kα + − α α   (7) 

has a single root 

 
2

2
|| 2 2= ,

t
k

c
ω
ξ

  (8) 

which is the dispersion equation for surface Rayleigh waves. 
Here = ( / )t lc cξ ξ  is the smallest positive real root of 
the equation 6 4 2 2 2 2 28 8 (3 2 / ) 16(1 / ) = 0t l t lc c c cξ − ξ + ξ − − − , 
0.874 < < 0.955ξ  [3]. Account of dissipation yields a comp-
lex correction to this pole. For infinitesimally small damp-
ing, 2 2 2 2

|| = / sgn [ ]tk c iω ξ + δ ω , where 0δ → + . 
There are three characteristic sound wave speeds in this 

problem: < <t t lc c cξ , where tc ξ is the speed of surface 
Rayleigh waves. The displacement at a distance R  from 

the origin at a moment t  is determined by the superposition 
of the waves that have reached this point by that time. We 
introduce a dimensionless parameter 

 2 2
|| 3= , = ,ltc

R r x
R

λ +   (9) 

whose magnitude determines which kinds of waves cause 
the displacement at point || = sinr R θ, 3 = cosx R θ at a giv-
en time t  (here θ is the angle counted from the 3x -axis). Fi-
gure 1(b) shows characteristic values of the parameter λ, 
that serve as “boundaries” between various types of waves, 
and the correspondence between ( , )R t - and λ-representa-
tions. For example, at < 1λ  (or, equivalently, at > lR c t ) 
the displacement must be zero, since even the fastest longi-
tudinal waves could not reach these locations in time t . 

Below we investigate the normal component of the dis-
placement vector, 3 || 3( , ; )U r x t . The radial component of the 
displacement vector can be addressed in a similar way. Let 
us simplify the double integral from Eq. (5). We introduce 
the shortcuts 

 
2 2

1 22 2 2= , =l l

t t

c c
C C

c cξ
  (10) 

(note that 1 21 < <C C ) and a dimensionless variable 

 
2
||

2 2= .
/ l

k
x

cω
  (11) 

As a result of the replacement (11), an extra ω appears in 
the integral over dω in (5). We absorb it into a derivative 
over time: 

|| ||
0 0

0

e = 2 Im e .i t i t

l l

r x r x
d J d J

c t c

∞ ∞
− ω ω

−∞

   ∂   ω ω ω − ω ω
   ∂   

∫ ∫   

   (12) 
Then integration over ω can be carried out using the equality 

 ||
0

0

e =i t

l

r x
d J

c

∞
ω

 
 ω ω
 
 

∫   

 || ||

2 2 2 2
|| ||

( / ) ( / )
=

( / ) ( / )

l l

l l

r x c t t r x c
i

r x c t t r x c

Θ − Θ −
+

− −
,  (13) 

where ( )xΘ  is the Heaviside step function [6]. We can fi-
nally write: 

 3 2 2 2( , , ) = ( , ),
(2 )

l

t

cFU R
R c

∂
λ θ φ λ θ

∂λπ ρ
  (14) 

where the function ( , )φ λ θ  is the integral over x . It is con-
venient to split it into two integrals corresponding to the 
longitudinal and the transverse waves: 

 ( , ) ( , ) ( , ).l tJ Jφ λ θ ≡ λ θ + λ θ   (15) 

Fig. 1. (a) Three intervals of the wave vector ||k , and the type 
(surface or volume) of longitudinal and transverse waves in each 
interval. (b) Upper axis shows characteristic distances = , ,t t lR c t c t c tξ . 
For a given time t , these distances set the boundaries of four 
space regions. Each region is characterized by a specific set of 
waves (surface Rayleigh waves, transverse, longitudinal, or none 
of them) that have been able to reach that region. Lower axis: the 
same four regions in terms of the dimensionless parameter λ  (9), 
which combines temporal and spatial coordinates. 
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Since, by virtue of (6) and (13), the integrands of 
( , )lJ λ θ  and ( , )tJ λ θ  have different functional forms in 

each of the x-intervals shown in Fig. 1(a), it is convenient 
to write them as follows: 

1

0

1

( , ) = ( ; , ) ( sin | cos 1 |)

Im ( ; , );

l l

l

J dx f x x x

dx f x
∞

λ θ λ θ Θ θ− λ − θ − +

+ λ θ

∫

∫
1

1
0

1

1
1

1 1

1

( , ) = ( ; , ) ( sin | cos |)

Im ( ; , ) ( sin | cos |)

sgn [ cos ] (| cos | sin )

Im ( ; , ).

t t

C

t

t
C

J dx f x x C x

dx f x x C x

i C x C x x

dx f x
∞

λ θ λ θ Θ θ − λ − θ − +

+ λ θ Θ θ − λ − θ − +

+ λ − θ − Θ λ − θ − − θ +

+ λ θ

∫

∫

∫
  (16) 
Here 

 

1| 1 |(2 )
( ; , ) = ,

( ) ( ; , )

2 | 1 |
( ; , ) = ,

( ) ( ; , )

l
l

t
t

x x C
f x

r x N x

x x
f x

r x N x

− −
λ θ −

λ θ

−
λ θ

λ θ





  (17) 

where ( )r x  is the dimensionless version of the denomina-
tor (7), and 

 

( ){
( )}

( ){
( )}

1/2

1 1

1/2
1 1 1

( ; , ) = 1 1

1 sgn ( sin ) 1 ,

( ; , ) =

sgn ( sin ) ,

l

t

N x a x
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N x C b C x

C x C C b

−

+

−

+

λ θ − − − ×

× − − λ − θ −

λ θ − − − ×

× − − λ − θ −

  (18) 

with 
2 2

2 2 2 2 2

2 2
1

2 2 2 2 2
1 1

= ( sin cos 1 ) =

= [ (sin cos ) cos ] 2 1sin cos ,

= ( sin cos ) =

= [ (sin cos ) cos ] 2 sin cos .

a

i

b C

C i C

±

±

λ θ ± θ −λ

λ θ− θ + θ λ λ − θ θ

λ θ± θ −λ

λ θ− θ + θ λ λ − θ θ





  (19) 
For two directions, on the axis 3x  and on the surface 

3 = 0x , the integrals (16) can be calculated analytically, 
and the expression for the normal displacement can be ob-
tained by differentiating the result with respect to λ [see 
Eq. (14)]. We have done this in [1] and found that the an-
swers, while being the limiting cases of the same expres-
sion, were astoundingly different. The displacement on the 
axis 3x  had one delta-singularity, and in this aspect it was 

similar to a 3D Green’s function (see Introduction). Fur-
thermore, it carried no dependence on the Rayleigh wave 
parameter ξ . In contrast, on the surface the displacement 
had discontinuities, and it diverged at the Rayleigh wave-
front, as is typical for a 2D Green’s function. 

For an arbitrary direction the integrals (16) cannot be 
calculated analytically. However, using complex analysis, 
we can examine the singularities (jumps and cusps) of these 
two integrals, and hence determine the locus and type (del-
ta-singularities and jumps) of the normal displacement 
singularities, thus visualizing the wavefront of the signal in 
the half-space. We do this in the next section. 

2.2. Singularities of the dynamical Green’s function 

We examine the integrals , ( , )l tJ λ θ  (16) by replacing a 
real x  with a complex z  and performing contour integra-
tion. We find that the singularities of the Green’s function 
of an elastic half-space are entirely determined by the 
shape of the integration contours, and therefore by the 
number and mutual locations of the singularities of the 
integrands of , ( , )l tJ λ θ . 

Let us start with identifying the singularities of the inte-
grands of , ( , )l tJ λ θ . Already from Eqs. (6) and (7) it is seen 
that the function ( )r z  has three singular points, which are 
inherited by the integrands: two branch points = 1z  and 

1=z C  (they appear from the square roots in the expres-
sions for ,l tα ) and the Rayleigh pole 2=z C  [see Eq. (8)]. 
These singular points do not depend on the value of the 
parameter λ, so we will call them “Fixed singularities” (FS). 
In addition, the integration over ω brings the functions 

, ( , , )l tN x λ θ  [see (18)] into the integrands. These functions 
introduce four additional singularities, ( , )a± λ θ  and ( , )b± λ θ  
(19). In general, they are four branch points. However, their 
characters and even their number depend on λ and θ. For 
example, for small < sinλ θ there are only two additional 
branch points, a− and b−, while for 1sin < < sinCθ λ θ 
we have three additional branch points a−, a+ and b− (see 
Figs. 3 and 4 below). We will also see that pairs of these 
branch points can overlap and produce new poles. Since 
these points depend on λ and θ (i.e., on time and location), 
we will call them “Moving singularities” (MS). 

Assume that θ is fixed, and let λ vary from zero to in-
finity. This can be viewed as if we have picked an observa-
tion point at a distance R  from the origin, which has the 
coordinates ( sin , cos )R Rθ θ , and look at the displacement 
at this point as the time goes from = 0t  to =t ∞ . As λ 
varies, the MS travel around FS, and the shapes of the in-
tegration contours for lJ  and tJ  change accordingly. Cer-
tain changes in the shape of the integration contours result 
in cusps or jumps in the corresponding integral ( , )lJ λ θ  or 

( , )tJ λ θ  (16). Since, in accordance with Eq. (14), the nor-
mal displacement 3U  is the derivative of these integrals 
over λ, it means that at these values of λ and θ the dis-
placement vector will have, respectively, a jump and a del-
ta-singularity. 
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Our analysis shows that the singularities of the displace-
ment vector appear as a result of the following events: 

– Coincidence of two MS. For small λ the MS are at the 
real axis. At certain values of ( , )λ θ  they overlap, i.e.,

=a a+ −, or =b b+ − . Then instead of two branch points a 
new pole appears in the integrand of, respectively, lJ  or tJ . 
This results in a jump of the corresponding integral and in 
a delta-like singularity of the displacement. 

– An MS-pair moves over a stationary branch point. As 
we will discuss shortly, and as can be seen from the second 
form of Eqs. (19), with the increase of λ the pairs of MS 
(a+  and a−, or b+ and b−) move away from the real axis and 
form a pair, which is symmetric about Re [ ]z -axis (a “ver-
tical pair”). When such a “vertical pair” overlaps with a 
stationary branch point = 1x  or 1=x C  (i.e., when 
Re [ ] = 1a±  or 1C , and the same for Re [ ]b± ), the corre-
sponding integral lJ  or tJ  has a cusp. As a result, the dis-
placement has a jump. 

– An MS-pair moves over a stationary Rayleigh pole. 
Finally, at certain values of ( , )λ θ  a “vertical pair” of MS 
moves over the Rayleigh pole in the complex plane (it 
happens when 2Re [ ] =a C±  or 2Re [ ] =b C± ). This results 
in a jump of the corresponding integral lJ  or tJ , and hence 
in a delta-like singularity of the displacement. 

For all other types of unusual behavior of MS (such as, 
for example, overlap of a single moving singularity a+ 
with a stationary branch point = 1x ) the integrals lJ  or tJ  
remain regular. Therefore, the singularities of the displace-

ment vector are exhausted by the mentioned events. The 
magnitude of the displacement between the singular points 
can be calculated by numerical evaluation of lJ  and tJ  (16). 

The loci of the singularities of the normal displacement 
are summarized on the diagram in Fig. 2, which shows a 
snapshot of 3 ( , ; )U R tθ  at some moment t . Thick black solid 
lines represent delta-singularities, and thick black dashed 
lines are the lines of the jumps of 3 ( , ; )U R tθ . At some lo-
cations shown by black empty circles the magnitude of the 
jump of lJ  or tJ  appears to be equal to zero (see below), 
and the corresponding delta-singularity becomes suppressed. 
This figure confirms that the displacement near the vertical 
axis differs dramatically from the displacement near the 
surface. Indeed, we will see that surface Rayleigh waves 
do not produce any effect for directions more than 45° away 
from the surface. 

Let us fix the angle θ and vary λ from zero to infinity 
to trace the behavior of the MS and its contribution to the 
displacement. We start with < 45θ ° (closer to the vertical 
axis). In the real space, this corresponds to moving along 
the red line marked as “ < 45θ °” in Fig. 2. The motion is 
from outside to the origin of the coordinate system. The set 
of diagrams in Fig. 3 shows the dynamics of the MS and of 
the integration contours in the complex z-plane, where 
Re [ ] =z x  for positive Re [ ]z . The left column is for the 
integral lJ , the right column is for the integral tJ . The parts 
of the contours shown in the figure consist of horizontal and 
vertical cuts. The cuts at Re [ ]z →∞  are closed by a circle 
of an infinite radius | |z →∞, where the integrands vanish. 
In each column, the upper graph serves as a reference, 
showing the locations of the three FS: two branch points 

= 1x  and 1=x C  marked as red circles, and the Rayleigh 
pole 2=x C  marked as a red cross. They are fixed, and 
always remain the same for the whole discussion below. 
As we can see from Eq. (19), for small λ all MS are on the 
real axis. Furthermore, from the definitions of lN  and tN  (18) 
we see that the singularities a+ and b+ appear, respectively, 
only when > sinλ θ and 1> sinCλ θ. Hence, for small 

< sinλ θ the only MS are < 1a−  and 11 < <b C− . When λ 
increases, they start moving in negative-x direction. When 

= sinλ θ, a+ appears on top of = 1x , and when 1= sinCλ θ, 
b+ appears on top of 1=x C , but these events do not result 
in any special behavior of the integrals lJ  and tJ . With 
further increase of λ the points a± and b± move to the left, 
and a+ moves faster than a−, and b+ moves faster than b−. 
At = 1λ , a+ overtakes a−, and their real parts become 
equal [see expression (19) for a±]. At this moment a new 
pole appears in the integrand of lJ  as shown at the graph 
labelled (a). Note that = 1λ  corresponds to the arrival of 
the longitudinal waves to the observation point. With fur-
ther increase of λ the branch points a± form a “vertical 
pair” and move away from x-axis into the complex plane. 
This “vertical pair” moves to the left, in negative-x  direc-
tion, and does not play any further role. In turn, in accord-
ance with (19), the two branch points b± overlap when 

Fig. 2. (Color online) Locations of the Green’s function singulari-
ties at a fixed moment of time t : delta-singularities are shown by 
thick solid lines, and discontinuities by thick dashed lines. The 
black empty circles numbered from 1 to 5 mark the points where 
the delta-singularities are suppressed. Points marked (a) through (i) 
connect this diagram with the dynamics of the MS shown in 
Figs. 3, 4, with blue and green colors referring, respectively, to 
the MS of the integral lJ  and tJ  (see text). 
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11 < = Cλ  (graph marked as (b); 1= Cλ  corresponds to 
the arrival of the transverse waves to the observation 
point). This introduces a new pole into the integrand of tJ , 
as a result tJ  has a jump and 3U  has a delta-singularity at 

1= Cλ . After that the pair b± leaves the real axis and 
forms a “vertical pair”, which, similarly to a±, continues to 
the left. For larger values of λ there will be no changes in 
the contour shape and hence no other singularities. The 
events (a) and (b) are marked in the sketch of 3U  (Fig. 2) 
on the red line “ < 45θ °”. 

There is one more nuance that is not captured by this 
discussion. If θ is very close to 45°, namely, if 

11/ < sin < 1/ 2C θ , then the pair b± forms in between 
the fixed branch points = 1x  and 1=x C  [this can be seen 
by examining the second form of b± given in Eq. (19)]. In 
this case, when the “vertical” b±-pair starts moving to the 
left, it goes over the branch point = 1x . This happens when 

 
2

1
1 2 2

cos 1
= ( ) = ,

cos sin
C θ−

λ λ θ
θ− θ

  (20) 

and this line is marked as 1λ  in Fig. 2: it contributes a cusp 
to tJ , and hence a jump to 3U . 

Now let us switch to the case > 45θ °, pick an angle and 
vary λ from zero to infinity. The corresponding dynamics 
of the MS is shown in Fig. 4, and all the events numbered 

there as (c)–(i) are marked in Fig. 2 on the red line “ > 45 ”.θ °  
Here a− and b− both form to the left of = 1x  and start mov-
ing to the left when λ increases. When they reach = 0x , 
they “reflect” from the origin and start moving back to the 
right, where they will meet, respectively, a+ (which ap-
pears on top of = 1x  when = sinλ θ) and b+ (which ap-
pears on top of 1=x C  when 1= sinCλ θ). The points a± 
meet at < 1x  and produce a new pole when = 1λ  (arrival 
of the longitudinal wave, same as for < 45θ °), which re-
sults in a delta-singularity of the displacement component; 
this event is labelled as (c). After that, a± form a “vertical 
pair”, which starts moving to the right, and passes over all 
the three FS. The same does the pair b±. The dynamics of 
the MS follows the scenario outlined below. First, the “ver-
tical” a±-pair crosses the branch point = 1x  [event (d)], 
which happens at 

 2 2 2

sin( )
sin cos

θ
λ = λ θ =

θ− θ
 (21) 

which results in a cusp of lJ  , and hence in a jump of 3U . 
The “vertical pair” a± proceeds to the right for 2λ > λ , and 
at 1Cλ =  b− and b+ overlap [event (e), arrival of the trans-
verse wave to the observation point]. This new pole in tJ  
results in a delta-singularity for 3U . After that, b± form a 
“vertical pair”, which passes over the fixed branch point 

1x C=  [event (f)] at 

Fig. 3. (Color online) Dynamics of the moving singularities (MS) and of the integration contours with the change of λ  for < 45θ °. Two 
large red circles and one large red cross show fixed singularities (FS) on the x -axis. Blue circles correspond to the branch points a−  and 
a+  of the integral lJ , and green circles correspond to the branch points b− and b+ of the integral tJ . At small λ  the pairs of MS approach 
each other on the horizontal axis as λ  increases. At, respectively, = 1λ  and 1= Cλ  the pairs overlap with a formation of a new pole. 
These events are shown by a cross of the respective color at the plots labelled by (a) and (b) (these letters allow one to locate these 
events on the normal displacement snapshot (Fig. 2), where they contribute delta-singularities to 3U ). With further increase of λ  the 
pairs of MS shift into the complex plane. As λ  grows, the “vertical pair” of MS shift to the left, and the vertical distance between them 
is growing, as shown by dotted guide-to-eye arrows in the lowest three plots. 



Marina Litinskaya and Inna Kaganova 

608 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7 

 1
3 2 2

sin
= ( ) = ,

sin cos

C θ
λ λ θ

θ− θ
  (22) 

and soon after that the “vertical” a±-pair passes over 
1=x C  [event (g)] at 

 
2

1
4 2 2

cos
= ( ) = .

sin cos
C − θ

λ λ θ
θ− θ

  (23) 

Events (f) and (g) result, respectively, in cusps of tJ  
and lJ , and hence contribute two jumps to the displace-
ment 3U . Finally, the “vertical pair” b±, and soon after that 
the “vertical pair” a±, pass over the Rayleigh pole 2=x C  
[events (h) and (i)]. Each of these events adds a jump to the 
integral tJ  or lJ , introducing two additional delta-singu-
larities to the normal displacement. These two delta-singu-

larities are contributions of the surface Raleigh waves, and 
they occur, respectively, at 

 

2
2 1

5 2 2

2
2

6 2 2

cos
= ( ) = ,

sin cos

cos
= ( ) = .

sin cos

C C

C

− θ
λ λ θ

θ− θ

− θ
λ λ θ

θ− θ

  (24) 

Finally, we report the expressions for the jumps of the 
integral lJ  

2

2 1

=sin

2
( = 1 0, ) ( = 1 0, ) = 2 cos

( )l l
x

x CJ J
r x θ

 −
λ + θ − λ − θ π θ 

 

  

  (25) 

Fig. 4. (Color online) Dynamics of the MS with the change of λ  for > 45θ °. The notations are the same as in Fig. 3, integration con-
tours are shown for the most important events. After formation of the new poles in the diagrams (c) and (e), the “vertical pair” of MS 
move in the positive direction of the x -axis passing over all the FS. Passing of a “vertical pair” over a fixed branch point [events (d), (f), 
(g)] contributes a jump, and it’s passing over the Rayleigh pole [events (h) and (i)] contributes a delta-singularity to 3U . The functional 
forms of iλ , = 2...6i  are given in the text. 
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and of the integral tJ  

 1 1( = 0, ) ( = 0, ) =t tJ C J Cλ + θ − λ − θ   

 
4 2 2

1
2 4 4 2 2

1

16 sin cos (sin 1/ )
= .

(2sin 1) 16sin cos (sin 1/ )
C

C
π θ θ θ−

θ− + θ θ θ−
  (26) 

In [1] we discussed in detail the normal displacement in 
two limiting cases: at the vertical axis ( = 0θ ) and on the 
surface ( = / 2θ π ). At the vertical axis, the displacement 
had only one delta-singularity at 3 = lx c t . Indeed, as 
Eq. (26) shows, the jump of tJ  is zero for = 0θ , hence 

( , = 0)φ λ θ  (15) has no jump at 1= Cλ , and thus the del-
ta-singularity at 3 = tx c t  is suppressed (we showed in [1] 
that it gets replaced by a weaker singularity, a jump). This 
suppression is marked by an empty circle (1) in Fig. 2. 
This special behavior of the displacement vector is a result 
of the fact that at = 0θ  we have a a+ −≡ , b b+ −≡ , and in-
stead of a pair of branch points at all values of λ we have 
two poles, a± and b±. 

Furthermore, at the surface the displacement had no del-
ta-singularities at all. This is consistent with Eqs. (25, 26), 
which state that the jumps of both tJ  and lJ  are zero at 

= / 2θ π , so the function ( , = / 2)φ λ θ π  has no jumps. In [1] 
we showed that, instead, the displacement is finite at || = lr c t 
and has a jump at || = tr c t [these points are marked as empty 
circles (2) and (3) in Fig. 2]. The third delta-singularity at 
the surface is expected at || = tr c tξ , where two lines of del-
ta-singularities, 5 ( )λ θ  and 6 ( )λ θ , meet. The overlap of these 
singularities, however, leads to a different type of singular-
rity [1], and at || = tr c tξ  the displacement diverges as 

2 2 3/2
||( ( ) )tr c t −− ξ , as marked by the empty circle (4) in Fig. 2. 

Finally, according to (26), there is one more angle, 
1sin = 1/ Cθ , where the second jump vanishes, and the 

corresponding delta-singularity is suppressed. This point 
(marked as (5) in Fig. 2) lies at the intersection of the loci 
of the jump 1λ  and the second delta-surface 1= Cλ . Here, 
again, an overlap of two singularities results in a different 
behavior of the normal displacement. 

3. Elastic energy radiated due to collision 

3.1. Elastic energy due to a point surface force 

In this section, we will use the expression for the normal 
component of the Green’s function to determine the elastic 
energy of sound waves excited in a half-space due to an 
external load. In the absence of volume forces the elastic 
energy flow through a closed surface S  is given by [3]  

 = i
ik k

S

ud ds
dt t

∂ε
σ

∂∫ ,  (27) 

where iu  are the components of the displacement vector 
in the medium, and ds  is an area vector directed outwards. 

We start with the energy flow caused by a normal in-
stant point surface force ||= (0;0, ( ) ( ))F tδ δF r . The surface S 
in Eq. (27) consists of a hemisphere with a radius SR →∞ 

and a circle || 3( < , = 0)Sr R x . Since for any given time t  we 
can choose such a radius SR  that the hemisphere will be 
ahead of the wavefront, we only need to account for the 

3 = 0x  part of the surface. The components of the stress 
tensor at 3 = 0x  are defined by Eqs. (3), and after integrat-
ing over time we find that the elastic energy, Gε , in this 
case is 

 3 || 3

=0, =0; =0|| 3

( , ; )
= .G

r x t

U r x t
F

t
∂

ε −
∂

  (28) 

Using the second of Eqs. (5) for the displacement vec-
tor 3U , we get after converting the integration over 

< <−∞ ω ∞  into the integral over > 0ω : 

 
2

|| ||3
4 2 2

||0 0

2= Im .
(2 ) ( )

l
G

t

dk kF d
c r k

∞ ∞ α
ε − ωω

ρ π ∫ ∫   (29) 

We split the integration over ||k  into three intervals ac-
cording to different combinations of the types of waves 
that comprise the signal [see Fig. 1(a)], and rewrite the in-
tegrand using the dimensionless variable x  defined in (11). 
We get: 

 
2

( ) ( ) ( ) 2
1 2 34 2

0

= ,
(2 )

G G Gl
G

t

F c
Q Q Q d

c

∞

 ε + + ωω ρ π ∫   (30) 

where the three Q-coefficients 
1

( )
1 11 2

1 10

1
1( )

2 22 4 2
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2 2
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3 4 2
1 1 1

1= ( ) , ( ) = ,
(2 ) 4 (1 )( )
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= ( ) , ( ) = ,
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=
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xQ q x dx q x
x C x x C x

x x C x
Q q x dx q x

x C x x C x

C
Q

C C C

−
− + − −

− −

− + − −

− − ξπ
ξ − ξ − + −

∫

∫

  (31) 

correspond to the three ||k -intervals from Fig. 1(a). They 
determine how the elastic energy splits between various 
types of waves. Figure 5 shows the normalized coefficients 

( ) ( ) ( )= /G G G
i i j

j
Q Q Q∑  as functions of the ratio 

0 < / < 1/ 2t lc c . It is seen that the largest part of the en-
ergy is always carried away by the surface waves, while 
the role of the volume waves is relatively low. Note that 
the value of 3Q  comes entirely from the contribution of the 
Rayleigh pole of the corresponding real-valued integral. 

The unphysical divergence of the integral over ω in (30) 
is due to the fact that the Fourier transform of the instanta-
neous force is constant. As we show in the next Subsec-
tion, for a distributed load the Fourier coefficient 

33 ||( , ) 0kσ ω→∞ → , which provides convergence of the 
integral over ω. 
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3.2. Collision between a small elastic ball and a large 
elastic object 

We now switch to the case when the external force 
||= (0;0, ( , ))F r tF  is still normal to the surface and sym-

metric about the 3x -axis, but is time- and position-depen-
dent. The displacement vector now can be expressed in the 
form 

 3 || 3( , ; ) =u x tr   

||

2

|| 33 || 3 3 || || 3
0 < ( )

= ( , = 0; ) ( , = 0; ) ,
r a t

dt d x t U x t t
τ

′ ′

′ ′ ′ ′ ′ ′σ − −∫ ∫ r r r r   

  (32) 

where 2τ is the total time during which the force is acting, 
( )a t  is the time-dependent radius of the area where the 

force is applied, and 3 || 3( , ; )U x tr  is the Green’s function 
defined in (5). As before, the boundary condition is 

33 || 3 ||( , = 0; ) = ( , )r x t F r tσ . Then Eq. (27) gives: 

 
23 2|| ||3

33 ||4 2
||

( , )(2 )= ( , ) ,
( )

l

t

d k ki d k
c r k

∞

−∞

α ωπ
ε ωω σ ω

ρ ∫ ∫   (33) 

where 

( )2 || ||
33 || || 33 || 33

1( , ) = e ( , = 0; ).
(2 )

i tk dt d r r x t
∞

ω −

−∞

σ ω σ
π ∫ ∫

k r   (34) 

After performing the same transformations as in Sec. 3.1 
we get: 

 [ ]
4

1 2 34
(2 )

= ,l

t

c
Q Q Q

c
π

ε + +
ρ

 (35) 

where 
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∫

  (36) 

and the functions 1,2 ( )q x  and ( )
3
GQ  are defined in (31). 

In order to proceed we need to specify the external load 
33 || 3( , = 0; )r x tσ . Let us assume that the force acting on the 

surface of the half-space is due to a small ball of mass bm , 
which collides with the elastic half-space. Then the energy 
expressed by (35) defines the part of the kinetic energy of 
the ball that will be lost to sound waves excited in the half-
space. 

If the speed of the ball v is much smaller than the speed 
of the sound waves in the medium, we can use perturbation 
theory assuming that 2 / 2bm vε . Then in the zeroth or-
der the collision is elastic. During the collision a contact 
spot forms, over which the force acts onto the half-space. 
Using energy conservation, one can determine the radius of 
the contact spot, ( )a t , in the quasistatic approximation, as 
well as the collision time 2τ. Using these expressions, it 
will be possible to determine the elastic energy lost during 
the collision in the first order of the perturbation theory. 

We performed this calculation using the results for the 
static contact problem of theory of elasticity (the Hertz 
problem; see Sec. 9 of Ref. 3 and Problem 1 therein). The 
pressure created by a small ball of radius bR  on the surface 
of a sphere of an infinite radius (a half-space) is given by 

 
2

||0
33 || 3 2 2

3( , = 0; ) = 1 ,
2 ( ) ( )

rF
r x t

a t a t
σ −

π
  (37) 

where 0F  is the force with which the two objects are com-
pressed, and the collision time is 

 
2/5

58 (2 / 5)2 = ,
5 (9 /10) 4

b

b

m D
R

 πΓ
τ   Γ  v

  (38) 

where D  is a dimensionless factor 

 
2

2 2 2 2
13 (1 )= , = ,

16 (1 / ) 1
b

bt t l

ED
Ec c c

−σ+ κ
κ

ρ − −σ
  (39) 

with E  and σ  being, respectively, the Young module and 
the shear module (the subscript “b” refers to the material of 
the ball, while its absence to the material of the half-
space). This problem has been solved in [2] for the case 
when the ball and the half-space are made from the same 
material, and here we report the result for arbitrary material 
parameters. 

Fig. 5. The coefficients = /i i j
j

Q Q Q∑  as a function of /t lc c . 

These coefficients determine the fraction of elastic energy carried 
away by volume waves [ = 1i , interval I from Fig. 1(a)], mixed 
volume-surface waves ( = 2i , interval II), and pure surface waves 
( = 3i , interval III). 
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We see that the coefficients (36) differ from the corre-
sponding coefficients for the Green’s function (31) only 
by the factor ||( , )kσ ω  replacing 3/ (2 )F π . The calculation 
showed (see [2]) that this factor depends not on ||k  and ω 
per se, but on dimensionless combinations: 

2
33 || max max| ( , / ) |k a hσ ω v , where maxa  and 2

max max= / bh a R  
are, respectively, the maximum radius of the contact spot 
and maximum distance of approach of the ball and the 
half-space (note that max /h τv ). Moreover, according to 
Eq. (36), we need to set || /k cω , where c is one of the 
speeds of sound. Since by our assumption cv , in the 
first order of perturbation theory we should keep 

2
33 max| (0, / ) |hσ ω v . Then the integrals over x  and ω in (36) 

decouple, and the integrals over x become identical to 
those for the instantaneous point load, Eq. (31). The re-
maining integration over ω can be done analytically, and 
we finally obtain: 
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where 
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(13 /10) 10 (1 )39
l t l
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c c c
c
  −Γ ρ γ   Γ π ρ + κπ    



   (41) 

is a material-dependent factor [κ  is defined in (39)]. Note 
that the energy split between the different types of the 
waves is the same as for a point source (Fig. 2). 

Let us compare this result with our previous answer 
(30) for a point instantaneous source, where we will intro-
duce a cut-off frequency *ω  and replace the integral with 

3
* / 3ω . Since 0 = 2F mv  is the momentum transferred to the 

half-space, we get using Eq. (38): 

 
1/5

*
1 .t

t b

c
c R

 
ω   τ 
 

v   (42) 

Then the characteristic excited wavelength is 
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.t t
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c c
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v
  (43) 

In our calculation we accounted for the waves excited 
in the half-space, but neglected the vibrations of the small 
ball. Eq. (43) substantiates this assumption, since the vibra-
tions with the characteristic wavelength *λ  merely do not 
fit into the ball. Furthermore, this inequality explains why 
in the first order of the perturbation theory we were able to 
replace ||k  by zero in the integrands of Eq. (36). Indeed, the 
only parameter of the dimension of the length in our prob-
lem is bR . Since * bRλ  , the corresponding characteristic 
wave vectors * *1/ 1/ bk Rλ  . Finally, Eq. (43) allows 
us to estimate the minimum linear size of the object with 
which the ball collides. The linear size L  of the object can 

be neglected and the object can be modelled by a half-
space if 

 
1/5

* .t
b

c
L R  λ  

 
 

v
  (44) 

4. Concluding remarks 

The results of the last section were summarized by 
A. Yu. Grosberg and M. I. Kaganov in their paper in the 
popular science magazine “Kvant” [7]. Each of the two 
authors had their own history with this problem, and want-
ed to make the answer accessible to younger readers. 
Moreover, they discussed how the elastic energy emitted 
during a collision of two balls of a similar radii bR  (smaller 
than the characteristic wavelength of the sound waves) 
would look like. They argued that in this case 

 
1/5

2 2exp exp ,
/b

m m
R c c

  τ  ε −α −β    
     

 

vv v  (45) 

where α and β are some numerical coefficients, and c is a 
characteristic speed of sound. 

We would like to conclude with a quote from the intro-
duction to that paper. After telling the reader how this 
problem appeared in his life and about transferring it to us, 
M. I. Kaganov writes: “I was happy when the solution was 
found. It felt like I had fulfilled my duty. Though it was 
not me who solved the problem, I think that I can say that I 
also contributed something to the solution”. 

We think so too. In 1995 the three of us discussed pub-
lishing this work together. Musik not only suggested this 
problem to us, but kept asking about our progress, dis-
cussed our findings and challenging places with us, and 
gave us a lot of advice and guidance. We had and still have 
a feeling that this work would possibly not have been done 
(or at least would have looked strikingly different) without 
his continuous presence. However, when the decision was 
to be made, Musik said: “I never wrote anything down 
with a pen. Talking does not count. I cannot author this 
paper, you should mention me in the acknowledgements 
instead”. Which we did, knowing about and respecting this 
“using or not using a pen” rule of the old school ethics. 
However, we would like to use this opportunity to say that 
we miss seeing Musik among the authors of Refs. 1 and 2. 

 ________  

1. I. M. Kaganova and M. L. Litinskaia, Phys. Lett. A 200, 365 
(1995). 

2. I. M. Kaganova and M. L. Litinskaia, Phys. Lett. A 200, 375 
(1995). 

3. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Perga-
mon Press (1989). 

4. G. F. Miller and H. Pursey, Proc. Roy. Soc. A 223, 521 (1954). 
5. I. M. Kaganova and A. A. Maradudin, Phys. Scripta 1992, 

104 (1992). 

https://doi.org/10.1016/0375-9601(95)00153-T
https://doi.org/10.1016/0375-9601(95)00154-U
https://doi.org/10.1088/0031-8949/1992/T44/017


Marina Litinskaya and Inna Kaganova 

612 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7 

6. See Eqs. (6.699.5-6) in: Table of Integrals, Series, and Pro-
ducts, I. S. Gradshteyn and I. M. Ryzhik, Academic Press 
(2007). 

7. A. Yu. Grosberg and M. I. Kaganov, Kvant, No. 2 (1996) [in 
Russian]. 

 ___________________________  

Динамічнi функції Гріна для пружного півпростору 
та втрати енергії при зіткненні 

Marina Litinskaya, Inna Kaganova 

Цей спеціальний випуск присвячено 100-річчю від дня 
народження Мойсея Ісаковича Каганова. Ця дата — також 
особиста подія для нас як авторів, оскільки Мойсей Ісакович 
(або просто «Мусик» для своїх друзів та близьких) був бать-
ком для однієї з нас (І. К.), і дідусем для іншої (М. Л.). Крім 
того, ми обидві були його ученицями та, як би у спадок, за-
ймалися пошуком вирішення проблемних питань, які окрес-
лені у цій статті. У 1949 р. Ілля Михайлович Ліфшиць був 
захоплений проблемою електродинамічних й пружних влас-
тивостей твердих тіл. Цей аналіз вимагав знання відповідних 
функцій Гріна. Він запропонував своїм аспірантам, Мойсею 
Каганову та Віктору Цукернику, обчислити вектор зміщення, 

який викликаний точковим джерелом, що миттєво діє на по-
верхні пружного півпростору. Але тоді вони займалися роз-
робкою іншої теми, та це дослідження не розглядалося до по-
чатку 1990-х років, коли М. І. Каганов запропонував цю ідею 
як тему магістерської роботи для однієї з нас (М. Л.), яка буде 
проводитися під керівництвом іншої (І. К.). Результати опублі-
ковано у статтях I. M. Kaganova and M. L. Litinskaia, Phys. Lett. 
A 200, 365 (1995) [1] та I. M. Kaganova and M. L. Litinskaia, 
Phys. Lett. A 200, 375 (1995) [2]. У першій статті обговорю-
валося походження нормальної складової вектора зміщення. 
Показано, що зсув може бути обчислено як інтеграл в комп-
лексній площині, при цьому можна вивчати зміщення як на 
поверхні півпростору, так і в напрямку, нормальному до по-
верхні. Виявлено, що особливості зміщення пов’язані з пев-
ними змінами форми контуру інтегрування. У другій статті 
використано вираз для нормального зміщення при обчисленні 
пружної енергії, викликаної зовнішнім навантаженням, знай-
дено кількість енергії, що втрачається маленькою кулькою, 
яка падає на поверхню пружного півпростору. У даній роботі 
розширено аналіз з урахуванням особливості вектора змі-
щення в довільній точці півпростору та зроблено короткий 
огляд наших попередніх результатів. 

Ключові слова: функції Гріна, пружний півпростір, вектор 
зміщення, форма контуру інтегрування.
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