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Systems of noninteracting bosons trapped by linear potentials ( ) =V r rα , where = | |r r , are studied in one 
and three dimensions. For the latter problem, an interpolation formula is suggested for energy levels between 

, 10n   and the WKB limit. Thermodynamic functions are calculated for 4= 10, , 10N   particles using discrete 
energy spectrum. The specific heat and fugacity are compared to the results of the quasiclassical approach, in 
which the external potential effectively increases the space dimensionality. As expected, the comparison demon-
strates that the thermodynamic functions obtained using the discrete spectra rapidly approach the quasiclassical 
ones in a space with the effectively tripled space dimensionality as N  increases. 
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1. Introduction

As early as four centuries ago, Johannes Kepler was 
perhaps the first person to assume the mechanical action of 
light [1] when discussing the possibility of Sun rays to 
shape tails of comets in his 1619 book [2]. A lot of time 
had passed before this effect was introduced into the world 
of microparticles [3] and ultimately allowed trapping and 
cooling of atoms [4]. 

The development of techniques for cooling and trapping 
of neutral atoms played a key role in obtaining Bose–
Einstein condensates of alkali atoms in 1995 [5, 6]. In sub-
sequent years, Bose condensation was achieved for other 
atom species [7] as well as for other systems, like exciton-
polaritons [8, 9] and light in microcavities [10]. Practical 
applications of trapped Bose condensates envisage such 
fields as quantum computations [11, 12] and high-pre-
cision interferometry [13, 14]. Studies of trapped bosons 
remain thus a topical subject in the field of quantum many-
body physics. 

The aim of the present paper is two-fold. First, we 
would like to demonstrate, using exact calculations involv-
ing discrete spectrum, how an external trapping potential 
influences thermodynamics of bosons and to compare the 
respective results with those obtained within the 
quasiclassical approach. We consider this external poten-
tial ( ) =V r rα , where = | |r r , corresponding thus to a line-
ar trap. Such a problem triggers the second task, namely, 
obtaining the spectrum in space dimensions > 1D . In par-
ticular, using numerical treatment of the respective eigen-

value problem, we propose an approximation for the spec-
trum applicable in a wide range of quantum numbers. 

Linear potentials of various types appear in magnetic 
quadrupole traps [15] or in problems involving Bose–
Einstein condensate surfaces [16]. Time-dependent linear 
terms in the external potential of the Gross–Pitaevskii 
equation can be used to study problems with energy dissi-
pation [17, 18]. The so-called Airy gas model is suitable 
for the description of the electron gas near edge regions 
[19, 20]. We, therefore, expect our results to be applicable 
in a set of related problems. 

The paper is organized as follows. Section 2 summariz-
es the general calculation procedure. In Sec. 3, obtaining 
energy levels in the one-dimensional | |x  potential is brief-
ly recalled and the three-dimensional linear trap is ana-
lyzed in more detail. The quasiclassical treatment of exter-
nal potentials is presented in Sec. 4. Results of numerical 
calculations are given in Sec. 5. Finally, Sec. 6 contains 
conclusions. 

2. Calculation scheme

For a Bose system with excitation spectrum kε , occupa-
tion numbers are given by  

/1

1= ,
e 1

k Tk
n

z ε− −
 (1) 

where T  is temperature and z is fugacity related to the 
chemical potential µ as /= e Tz µ . The total number of par-
ticles is  
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 = .k
k

N n∑  (2) 

Note that the summation index k  runs over the set of all 
possible quantum numbers. In specific cases, level degene-
racies should be taken into consideration. 

In fact, the above equation, namely,  

 /1

1=
e 1Tkk

N
z ε− −

∑  (3) 

can be considered a transcendental equation for z  as a 
function of T  and N . Energy of the system is then calcu-
lated as  

 /1
=

e 1
k

Tkk
E

z ε−

ε

−
∑ , (4) 

yielding the specific heat as follows  

 1=C dE
N N dT

. (5) 

For interlevel separations 1=k k k+∆ε ε − ε  small com-
paring to temperature, the summations in Eqs. (3)–(4) can 
be replaced by integration using the density of state func-
tion ( )g ε :  

 0 1 /
0

( )= ,
e 1T

g dN n
z

∞

− ε
ε ε

+
−∫  (6) 

and  

 1 /
0

( )= .
e 1T

g dE
z

∞

− ε
ε ε ε

−∫  (7) 

The occupation of the ground state, 0n  (the number of par-
ticles in the Bose condensate), should be written explicitly 
in this case. 

Note that the condition k T∆ε   holds in most typical 
experimental setups up to very low temperatures, signifi-
cantly lower that the critical temperature cT , at which the 
Bose condensation occurs. For instance, a D-dimensional 
system of N  bosons trapped by the harmonic potential 
with frequency ω has  

 
1/

= ,
( )

D

c
NT
D

 
ω ζ 
  (8) 

where ( )Dζ  is Riemann’s zeta function. The interlevel 
separation ω  becomes thus much smaller than cT  already 
for 3 410 –10N  . 

3. Energy levels in linear traps 

Energy levels for particles in potentials ( ) ( )sgn qV r q r∝  
are obtained from the eigenvalues ( )nE q



 corresponding to  

 ( )( ) ( ) = ( ) ( )sgn q
n n nq r r E q r−∆ + ψ ψ
  

 (9) 

using simple relations [21]  

 

2
2

( ) ( ),sgn
qq

nq r E q
+ α

−ξ∆ +α → ξ ξ 


 (10) 

where the coupling constant > 0α  and 2= / (2 )mξ   for 
particles of mass m. 

Further, we consider the case of linear trapping poten-
tials ( = 1q ). For linear potentials ( ) =V r rα  we thus have 
eigenvalues  

 
2/32

2
2 ,

2 n
m E

m
α 

 
 







 (11) 

where nE


 correspond to the dimensionless problem (9). 

3.1. One-dimensional case 

The Schrödinger equation reads  

 
2

2 | | ( ) = ( ).n n n
d x x E x
dx

 
− + ψ ψ 
 

 (12) 

The eigenvalues nE  are obtained as zeros of the Airy function  

 
3

0

1Ai( ) = cos
3
tz zt dt

∞  
+ 

π  
∫  (13) 

and its derivative Ai ( )z′  [22–24]. Namely,  

 2 1 2Ai( ) = 0, Ai ( ) = 0, where = 0, 1, 2, .p pE E p+ ′− −    

  (14) 
The asymptotic expression within the WKB approxima-

tion is as follows:  

 
2/3 2/3

asymp 3 1= .
4 2nE nπ   +   

   
 (15) 

The exact and asymptotic values are given in Table 1. 
In future calculations of thermodynamic functions, we 

shift the spectrum so that the ground state energy is zero, 
namely:  
 0= ,n nE Eε −  (16) 

where 0( )E−  is the first zero of the Airy function deriva-
tive, 0 = 1.01879297E  . 

3.2. Three-dimensional case 

In higher dimensions, angular and radial variables in the 
Schrödinger equation can be separated and the radial equa-
tion inherits an additional term from the angular part yield-
ing an effective potential  

 eff 2( ) = ,V r r
r
γ

+  (17) 

where 2= mγ  in two dimensions and = ( 1)γ +   in three 
dimensions. 



Z. Shvaika, P. Sapriianchuk, and A. Rovenchak 

628 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 7 

No closed-form expressions are known for > 0m  and 
> 0 , only the s states are given by the Airy functions:  

 0Ai( ) = 0, where = 0, 1, 2, .nE n−   (18) 

Note that the radial coordinate 0r ≥ , while in the one-
dimensional case we had < <x−∞ ∞, so that the zeros of 
the Airy function derivative Ai ( )z′  do not survive in higher 
dimensions. 

Further we will focus on the three-dimensional case on-
ly. Analytical expressions for > 0  are not known, so the 
respective eigenvalue problem should be treated numeri-
cally. One of possible approaches is the Numerov method 
[25, 26], which we will use for the respective calculations 
in the present work. 

The general scheme of our approach is as follows. We 
first solve the eigenvalue problem for low-lying n and  
quantum numbers and compare the obtained results with 
those available in the literature [26–30]. The most com-
plete data we were able to discover are given in [29] for 

= 0, , 19n   and = 0, , 10  . 
We solve the problem on the [0; ]r L∈  segment evenly 

discretized into a K-sized grid. With = 50L  and = 8000K  
still permitting reasonable-time-consuming computations 
on accessible computers, we are able to achieve the rela-
tive accuracy within 510− . Note that eigenvalues very close 
to or higher than L  cannot be calculated reliably already. 

On the other hand, the quasiclassical limit for the spec-
trum is also known [31]:  

 
2/3 2/3

asymp 3 3= 2 .
4 2nE nπ   + +   

   


  (19) 

Our analysis shows that the following expression yields 
proper results for eigenvalues:  

 ( )2/33/2
0= ( ) ,n nE E b n+



  (20) 

where the values of coefficient ( )b n  are obtained by fitting 
function (20) to the calculated eigenvalues nE



, see Fig. 1. 
Comparing the asymptotic expression  

 
2/3 2/3

asymp
0

3 3= 2
4 2nE nπ   +   

   
 (21) 

with (19) and (20), we immediately obtain the limiting 
value ( ) = 3 / 4b n →∞ π . The fitting of the calculated ( )b n  
values for n = 3–50 can be done using  

 ( )4/33( ) = exp
4

b n A Bnπ
+ −  (22) 

with = 0.233 0.003A ± , = 0.0049 0.0002B ± . For illustra-
tion, see Fig. 2. Actually, we have tested the powers of n 

Table 1. The first eleven and some higher eigenvalues com-
pared to the asymptotic expression (15) 

n  nE  asymp
nE  asymp| | /n n nE E E−  

0 1.01879 1.115461 9.5⋅10–2 
1 2.33811 2.320251 7.6⋅10–3 
2 3.24820 3.261626 4.1⋅10–3 
3 4.08795 4.081811 15⋅10–3 
4 4.82010 4.826317 1.3⋅10–3 
5 5.52056 5.517165 6.2⋅10–4 
6 6.16331 6.167129 6.2⋅10–4 
7 6.78671 6.784455 3.3⋅10–4 
8 7.37218 7.374854 3.6⋅10–4 
9 7.94413 7.942488 2.1⋅10–4 

10 8.488493 8.218782 2.4⋅10–4 
20 13.26222 13.26305 6.2⋅10–5 
50 24.19156 24.19181 1.0⋅10–5 

100 38.27516 38.27526 2.6⋅10–6 
200 60.65734 60.65738 6.5⋅10–7 

 

Fig. 1. Energy levels nE


 in the three-dimensional linear trap 
(circles) compared to function (20) (solid lines) for several values 
of n, bottom to top, n = 0, 1, 2, 3, 5, 10, 20. 

Fig. 2. Coefficient ( )b n  (circles with errorbars) compared to 
function (22) (solid line). The horizontal line at 3 / 4 = 2.356π  
is the asymptotic value as n →∞ . 
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within the range from 1 to 2 and the best fit has been 
achieved for 1.33n , with the determination coefficient 

2 > 0.995R , so the rational fraction 4 / 3 is chosen. 
Similarly to the one-dimensional case, in our further calcu-

lations of thermodynamic functions, we shift the energy levels 
by ( 00E− ) to ensure the zero energy of the ground state:  

 00= ,n nE Eε −
 

 (23) 

where 00( )E−  is the first zero of the Airy function, 
00 = 2.33810741E  . 

4. Quasiclassical approximation 

Following Bagnato et al. [32, 33], we can obtain the 
expression for the density of states corresponding to parti-
cles in power law potentials. The underlying idea is sim-
ple: the space region accessible to a particle with energy ε 
is limited by classical turning points. 

Let us briefly recall the derivation chain for the respec-
tive D-dimensional problem [34]. Let the particles of mass m 
be placed in the isotropic external potential (for simplicity)  

 0 0( ) = , where , > 0,rV r V V
a

η
  η 
 

 (24) 

and a is a parameter having the dimension of length. The 
single-particle spectrum is  

 
2

( , ) = ( ).
2
pp r V r
m

ε +  (25) 

In these formulas, 2 2
1= Dp p p+ +  and 

2 2
1= Dr x x+ + . The summation over energy levels is 

changed to the integration over the phase space, and, con-
sequently, over energies, as follows:  

1 1( ) = ( ) = ( )( ) .
(2 )

D D
D

n

dp dp dx dx d gε ε
π∑ ∫ ∫

 

  



 (26) 

For the isotropic problem,  

1 1
1 1= , = ,D D

D D D Ddp dp p dp dx dx r dr− −Ω Ω   (27) 

where the D-dimensional solid angle can be written using 
Euler’s gamma-function as follows:  

 
/22= .

( / 2)

D

D D
π

Ω
Γ

 (28) 

So, the number of particles (3), (6) is given by  

 
2 /2

0
(2 )=

2(2 )

D
D

D
mN N Ω

+ ×
π

  

 [ ] /2 11
1 /

0 ( )=

( ) ,
e 1

DD
T

V r

d drr V r
z

∞
−−

− ε
ε

ε
× ε −

−∫ ∫  (29) 

where momentum and energy are related as  

 = 2 [ ( )]p m V rε − , (30) 

and the classical turning points are defined by the condi-
tion = 0p , hence ( ) =V r ε . For the potential given by 
(24) the integral over r  evaluates to the beta-function 
yielding the following expression for the density of states:  

2 /2
/2 / 1

/
0

(2 )( ) = B , .
2 2(2 )

D D
D D D

D D
m a D Dg

V
+ η−

η

Ω  
ε ε ηπ η  

 (31) 

Comparing this expression to the density of states of the 
D-dimensional ideal Bose gas placed in a box of volume 

D  [35, 36],  

 
/2 /2

/2 1(2 )( ) = ,
( / 2)(2 )

D D
D

D D
mg
D

−π
ε ε

Γπ
  (32) 

one can easily notice that external potential effectively 
increases the space dimensionality to some  

 eff
2= 1D D  

+ η 
, (33) 

and also that some effective volume eff  can be defined 
using the parameters of the potential a and 0V . The critical 
temperature (Bose condensation point) is defined by  

 
2/ eff2

eff eff

2 1= ;
( / 2)

D

c
NT

m D
 π
 ζ 




 (34) 

after simple transformations this yields for linear traps ( = 1η ):  

 
1/3 2/(3 )2/32

02 ( / 2)=
2 2 ( ) (3 / 2)

D

c
V D NT

m a D D
   Γ 
     Γ ζ    

 , (35) 

while the effective space dimensionality eff = 3D D. 

5. Results for the thermodynamic functions 

In the one-dimensional case, there is no level degen-
eracy, so  

 /1
=0

1= ,
e 1Tnn

N
z

∞

ε− −
∑  (36) 

where spectrum nε  is given by (16) and (14). Solving this 
transcendental equation numerically we obtain = ( , )z z T N , 
which is used in the calculation of energy and the specific heat  

 /1
=0

1= , = .
e 1

n
Tnn

C dEE
N N dTz

∞

ε−

ε

−
∑  (37) 

The results of calculations are shown in Figs. 3 and 4. 
In these figures, comparison is made for several values of 
the number of particles N  with the ideal three-dimensional 
Bose gas. The latter corresponds to the system with effec-
tive space dimensionality eff = 3D , see Eq. (33). 

Note that for a D-dimensional ideal Bose gas of parti-
cles with mass m the critical temperature is given by  
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2/22= ,

( / 2)

D
D

cT
m D

 ρπ
 ζ 

  (38) 

where concentration = /D DN Vρ  is fixed in the thermo-
dynamic limit as both the number of particles N →∞  and 
the D-dimensional volume DV →∞ . 

For > cT T , fugacity z  is defined from Eq. (6) yielding 
after some transformation  

 
( ) ( )

/2 /2 1

1
0

11 = ,
/ 2 / 2 e 1

D D

x
c

T x dx
D D T z

∞ −

−

 
 Γ ζ − 

∫  (39) 

while = 1z  for cT T≤ . In the same fashion, for energy 
from Eq. (7) one gets  

 
( ) ( )

/2

= .
/ 2 / 2

D

c

NT TE
D D T

 
 Γ ζ  

 (40) 

As we can observe in Fig. 4, for finite N  specific heat 
is a smooth curve having a maximum at some ( )

max
NT  such 

that ( )
max / > 1N

cT T , where cT  is given by (35). These max-
ima tend to cT  as the number of particles N  increases. In 
the latter case, the specific heat curve approaches that of 
the ideal three-dimensional Bose gas as expected. The dif-
ference is already barely noticeable for 4= 10N  and is the 
most pronounced in the vicinity of cT  only, where the 3D 
system exhibits a cusp corresponding to the phase transi-
tion, which cannot be obtained for a finite system. 

We also see in Fig. 3 that as the temperature increases, 
the value of z  decreases (tending in fact to zero), and for 
high temperatures the Bose distribution turns into the 
Boltzmann distribution, and the specific heat tends to the 
classical limit 3/2 (Fig. 4). 

Similarly, one can obtain results in the three-
dimensional case. Upon taking into account the level de-
generacy of 2 1+ , we have  

 /1
=0 =0

(2 1)= ,
e 1Tnn

N
z

∞ ∞

ε−

+

−
∑ ∑





  (41) 

Fig. 3. Fugacity 1D compared to the 3D ideal Bose gas. 

Fig. 4. Specific heat in 1D compared to the 3D ideal Bose gas. 

Fig. 5. Fugacity 3D compared to the 9D ideal Bose gas. 

Fig. 6. Specific heat in 3D compared to the 9D ideal Bose gas. 
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where spectrum nε 

 is given by (18)–(23). The numerical 
solution = ( , )z z T N  is inserted in the expression for ener-
gy allowing then to calculate the specific heat, as above:  

 /1
=0 =0

(2 1) 1= , = .
e 1

n
Tnn

C dEE
N N dTz

∞ ∞

ε−

+ ε

−
∑ ∑ 





  (42) 

The results of calculations are shown in Figs. 5 and 6. 
Comparison is shown for several values of the number of 
particles N  with the ideal nine-dimensional Bose gas cor-
responding to the effective space dimensionality (33). 

Note that for > 3D  the specific heat of the ideal Bose gas 
has a discontinuity at the critical temperature, cf. [34, 37, 38]. 
Contrary to the one-dimensional case, here we have speci-
fic heat curve maxima at some ( )

max
NT  such that ( )

max / < 1N
cT T . 

The shape of the maxima rapidly becomes rather spiky 
predicting a gap observed in the thermodynamic limit of 
the nine-dimensional ideal Bose gas. At high temperatures, 

/ 9 / 2C N →  as expected. 

6. Conclusions 

In the present work, we have used numerical calcula-
tions to directly obtain thermodynamic functions based on 
the discrete energy spectrum of bosons trapped in the line-
ar potential. After performing the analysis of the one-
dimensional system, where the spectrum is known to be 
defined by zeros of the Airy function and its derivative, we 
have also studied the three-dimensional problem in detail. 
For the latter case, interpolating expressions have been ob-
tained to describe the spectrum for intermediate values of 
quantum numbers between , 10n   and the WKB limit. 

The results of the calculations with discrete spectra 
have been compared to those within the quasiclassical 
treatment of an external potential. In the latter approach, 
particles are confined in the space limited by classical turn-
ing points that yields a change in the density of states, 
hence, the effective rise in the space dimensionality com-
pared to the real one. In the case of a linear external poten-
tial, it triples. So, the one-dimensional system confined by 

( ) = | |V x xα  would behave like a three-dimensional sys-
tem in a box, while the three-dimensional system with 

( ) =V r rα  is effectively a nine-dimensional one. Our cal-
culations have confirmed these facts. Namely, the specific 
heat calculated for finite systems of 4= 10, , 10N   parti-
cles with the discrete spectrum rapidly approaches to the 
quasiclassical result in the thermodynamic limit. 

We hope our results explicitly confirming the validity 
of the notion of effective space dimensionality to be useful 
in studies of trapped Bose systems. The obtained interpola-
tion for the spectrum in the three-dimensional linear trap is 
of interest on its own as well. 
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Бозе-системи в лінійних пастках: точні розрахунки 
в порівнянні з ефективною вимірністю простору 

Z. Shvaika, P. Sapriianchuk, A. Rovenchak 

Системи невзаємодіючих бозонів, захоплених лінійними 
потенціалами ( ) =V r rα , де = | |r r , вивчаються у випадку 
одновимірного та тривимірного просторів. Для останнього 
запропоновано інтерполяційну формулу для рівнів енергії  
між , 10n   та квазікласичною границею. Термодинамічні 
функції розраховано для 4= 10, , 10N   частинок з викори-
станням дискретного енергетичного спектра. Питома тепло-
ємність та фуґативність порівнюються з результатами квазі-
класичного підходу, при якому зовнішній потенціал ефективно 
збільшує вимірність простору. Як і слід очікувати, це 
порівняння показує, що термодинамічні функції, отримані з 
використанням дискретних спектрів, зі збільшенням N швид-
ко наближаються до квазікласичних у просторі з ефективною 
потроєною вимірністю. 

Ключові слова: бозе-системи, лінійні пастки, ефективна 
вимірність простору.
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